llvm-6502/lib/ProfileData/CoverageMappingReader.cpp
Justin Bogner c0c2133484 InstrProf: Simplify the construction of BinaryCoverageReader
Creating BinaryCoverageReader is a strange and complicated dance where
the constructor sets error codes that member functions will later
read, and the object is in an invalid state if readHeader isn't
immediately called after construction.

Instead, make the constructor private and add a static create method
to do the construction properly. This also has the benefit of removing
readHeader completely and simplifying the interface of the object.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230676 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-26 20:06:28 +00:00

537 lines
18 KiB
C++

//=-- CoverageMappingReader.cpp - Code coverage mapping reader ----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading coverage mapping data for
// instrumentation based coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/CoverageMappingReader.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/LEB128.h"
using namespace llvm;
using namespace coverage;
using namespace object;
#define DEBUG_TYPE "coverage-mapping"
void CoverageMappingIterator::increment() {
// Check if all the records were read or if an error occurred while reading
// the next record.
if (Reader->readNextRecord(Record))
*this = CoverageMappingIterator();
}
std::error_code RawCoverageReader::readULEB128(uint64_t &Result) {
if (Data.size() < 1)
return error(instrprof_error::truncated);
unsigned N = 0;
Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return error(instrprof_error::malformed);
Data = Data.substr(N);
return success();
}
std::error_code RawCoverageReader::readIntMax(uint64_t &Result,
uint64_t MaxPlus1) {
if (auto Err = readULEB128(Result))
return Err;
if (Result >= MaxPlus1)
return error(instrprof_error::malformed);
return success();
}
std::error_code RawCoverageReader::readSize(uint64_t &Result) {
if (auto Err = readULEB128(Result))
return Err;
// Sanity check the number.
if (Result > Data.size())
return error(instrprof_error::malformed);
return success();
}
std::error_code RawCoverageReader::readString(StringRef &Result) {
uint64_t Length;
if (auto Err = readSize(Length))
return Err;
Result = Data.substr(0, Length);
Data = Data.substr(Length);
return success();
}
std::error_code RawCoverageFilenamesReader::read() {
uint64_t NumFilenames;
if (auto Err = readSize(NumFilenames))
return Err;
for (size_t I = 0; I < NumFilenames; ++I) {
StringRef Filename;
if (auto Err = readString(Filename))
return Err;
Filenames.push_back(Filename);
}
return success();
}
std::error_code RawCoverageMappingReader::decodeCounter(unsigned Value,
Counter &C) {
auto Tag = Value & Counter::EncodingTagMask;
switch (Tag) {
case Counter::Zero:
C = Counter::getZero();
return success();
case Counter::CounterValueReference:
C = Counter::getCounter(Value >> Counter::EncodingTagBits);
return success();
default:
break;
}
Tag -= Counter::Expression;
switch (Tag) {
case CounterExpression::Subtract:
case CounterExpression::Add: {
auto ID = Value >> Counter::EncodingTagBits;
if (ID >= Expressions.size())
return error(instrprof_error::malformed);
Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
C = Counter::getExpression(ID);
break;
}
default:
return error(instrprof_error::malformed);
}
return success();
}
std::error_code RawCoverageMappingReader::readCounter(Counter &C) {
uint64_t EncodedCounter;
if (auto Err =
readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = decodeCounter(EncodedCounter, C))
return Err;
return success();
}
static const unsigned EncodingExpansionRegionBit = 1
<< Counter::EncodingTagBits;
/// \brief Read the sub-array of regions for the given inferred file id.
/// \param NumFileIDs the number of file ids that are defined for this
/// function.
std::error_code RawCoverageMappingReader::readMappingRegionsSubArray(
std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
size_t NumFileIDs) {
uint64_t NumRegions;
if (auto Err = readSize(NumRegions))
return Err;
unsigned LineStart = 0;
for (size_t I = 0; I < NumRegions; ++I) {
Counter C;
CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
// Read the combined counter + region kind.
uint64_t EncodedCounterAndRegion;
if (auto Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return Err;
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
uint64_t ExpandedFileID = 0;
if (Tag != Counter::Zero) {
if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
return Err;
} else {
// Is it an expansion region?
if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
Kind = CounterMappingRegion::ExpansionRegion;
ExpandedFileID = EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits;
if (ExpandedFileID >= NumFileIDs)
return error(instrprof_error::malformed);
} else {
switch (EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits) {
case CounterMappingRegion::CodeRegion:
// Don't do anything when we have a code region with a zero counter.
break;
case CounterMappingRegion::SkippedRegion:
Kind = CounterMappingRegion::SkippedRegion;
break;
default:
return error(instrprof_error::malformed);
}
}
}
// Read the source range.
uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
if (auto Err =
readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readULEB128(ColumnStart))
return Err;
if (ColumnStart > std::numeric_limits<unsigned>::max())
return error(instrprof_error::malformed);
if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
return Err;
LineStart += LineStartDelta;
// Adjust the column locations for the empty regions that are supposed to
// cover whole lines. Those regions should be encoded with the
// column range (1 -> std::numeric_limits<unsigned>::max()), but because
// the encoded std::numeric_limits<unsigned>::max() is several bytes long,
// we set the column range to (0 -> 0) to ensure that the column start and
// column end take up one byte each.
// The std::numeric_limits<unsigned>::max() is used to represent a column
// position at the end of the line without knowing the length of that line.
if (ColumnStart == 0 && ColumnEnd == 0) {
ColumnStart = 1;
ColumnEnd = std::numeric_limits<unsigned>::max();
}
DEBUG({
dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
<< ColumnStart << " -> " << (LineStart + NumLines) << ":"
<< ColumnEnd << ", ";
if (Kind == CounterMappingRegion::ExpansionRegion)
dbgs() << "Expands to file " << ExpandedFileID;
else
CounterMappingContext(Expressions).dump(C, dbgs());
dbgs() << "\n";
});
MappingRegions.push_back(CounterMappingRegion(
C, InferredFileID, ExpandedFileID, LineStart, ColumnStart,
LineStart + NumLines, ColumnEnd, Kind));
}
return success();
}
std::error_code RawCoverageMappingReader::read() {
// Read the virtual file mapping.
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
uint64_t NumFileMappings;
if (auto Err = readSize(NumFileMappings))
return Err;
for (size_t I = 0; I < NumFileMappings; ++I) {
uint64_t FilenameIndex;
if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
return Err;
VirtualFileMapping.push_back(FilenameIndex);
}
// Construct the files using unique filenames and virtual file mapping.
for (auto I : VirtualFileMapping) {
Filenames.push_back(TranslationUnitFilenames[I]);
}
// Read the expressions.
uint64_t NumExpressions;
if (auto Err = readSize(NumExpressions))
return Err;
// Create an array of dummy expressions that get the proper counters
// when the expressions are read, and the proper kinds when the counters
// are decoded.
Expressions.resize(
NumExpressions,
CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
for (size_t I = 0; I < NumExpressions; ++I) {
if (auto Err = readCounter(Expressions[I].LHS))
return Err;
if (auto Err = readCounter(Expressions[I].RHS))
return Err;
}
// Read the mapping regions sub-arrays.
for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
InferredFileID < S; ++InferredFileID) {
if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
VirtualFileMapping.size()))
return Err;
}
// Set the counters for the expansion regions.
// i.e. Counter of expansion region = counter of the first region
// from the expanded file.
// Perform multiple passes to correctly propagate the counters through
// all the nested expansion regions.
SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
for (auto &R : MappingRegions) {
if (R.Kind != CounterMappingRegion::ExpansionRegion)
continue;
assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
}
for (auto &R : MappingRegions) {
if (FileIDExpansionRegionMapping[R.FileID]) {
FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
FileIDExpansionRegionMapping[R.FileID] = nullptr;
}
}
}
return success();
}
namespace {
/// \brief The coverage mapping data for a single function.
/// It points to the function's name.
template <typename IntPtrT> struct CoverageMappingFunctionRecord {
IntPtrT FunctionNamePtr;
uint32_t FunctionNameSize;
uint32_t CoverageMappingSize;
uint64_t FunctionHash;
};
/// \brief The coverage mapping data for a single translation unit.
/// It points to the array of function coverage mapping records and the encoded
/// filenames array.
template <typename IntPtrT> struct CoverageMappingTURecord {
uint32_t FunctionRecordsSize;
uint32_t FilenamesSize;
uint32_t CoverageMappingsSize;
uint32_t Version;
};
/// \brief A helper structure to access the data from a section
/// in an object file.
struct SectionData {
StringRef Data;
uint64_t Address;
std::error_code load(SectionRef &Section) {
if (auto Err = Section.getContents(Data))
return Err;
Address = Section.getAddress();
return instrprof_error::success;
}
std::error_code get(uint64_t Pointer, size_t Size, StringRef &Result) {
if (Pointer < Address)
return instrprof_error::malformed;
auto Offset = Pointer - Address;
if (Offset + Size > Data.size())
return instrprof_error::malformed;
Result = Data.substr(Pointer - Address, Size);
return instrprof_error::success;
}
};
}
template <typename T>
std::error_code readCoverageMappingData(
SectionData &ProfileNames, StringRef Data,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
std::vector<StringRef> &Filenames) {
llvm::DenseSet<T> UniqueFunctionMappingData;
// Read the records in the coverage data section.
while (!Data.empty()) {
if (Data.size() < sizeof(CoverageMappingTURecord<T>))
return instrprof_error::malformed;
auto TU = reinterpret_cast<const CoverageMappingTURecord<T> *>(Data.data());
Data = Data.substr(sizeof(CoverageMappingTURecord<T>));
switch (TU->Version) {
case CoverageMappingVersion1:
break;
default:
return instrprof_error::unsupported_version;
}
auto Version = CoverageMappingVersion(TU->Version);
// Get the function records.
auto FunctionRecords =
reinterpret_cast<const CoverageMappingFunctionRecord<T> *>(Data.data());
if (Data.size() <
sizeof(CoverageMappingFunctionRecord<T>) * TU->FunctionRecordsSize)
return instrprof_error::malformed;
Data = Data.substr(sizeof(CoverageMappingFunctionRecord<T>) *
TU->FunctionRecordsSize);
// Get the filenames.
if (Data.size() < TU->FilenamesSize)
return instrprof_error::malformed;
auto RawFilenames = Data.substr(0, TU->FilenamesSize);
Data = Data.substr(TU->FilenamesSize);
size_t FilenamesBegin = Filenames.size();
RawCoverageFilenamesReader Reader(RawFilenames, Filenames);
if (auto Err = Reader.read())
return Err;
// Get the coverage mappings.
if (Data.size() < TU->CoverageMappingsSize)
return instrprof_error::malformed;
auto CoverageMappings = Data.substr(0, TU->CoverageMappingsSize);
Data = Data.substr(TU->CoverageMappingsSize);
for (unsigned I = 0; I < TU->FunctionRecordsSize; ++I) {
auto &MappingRecord = FunctionRecords[I];
// Get the coverage mapping.
if (CoverageMappings.size() < MappingRecord.CoverageMappingSize)
return instrprof_error::malformed;
auto Mapping =
CoverageMappings.substr(0, MappingRecord.CoverageMappingSize);
CoverageMappings =
CoverageMappings.substr(MappingRecord.CoverageMappingSize);
// Ignore this record if we already have a record that points to the same
// function name.
// This is useful to ignore the redundant records for the functions
// with ODR linkage.
if (!UniqueFunctionMappingData.insert(MappingRecord.FunctionNamePtr)
.second)
continue;
StringRef FunctionName;
if (auto Err =
ProfileNames.get(MappingRecord.FunctionNamePtr,
MappingRecord.FunctionNameSize, FunctionName))
return Err;
Records.push_back(BinaryCoverageReader::ProfileMappingRecord(
Version, FunctionName, MappingRecord.FunctionHash, Mapping,
FilenamesBegin, Filenames.size() - FilenamesBegin));
}
}
return instrprof_error::success;
}
static const char *TestingFormatMagic = "llvmcovmtestdata";
static std::error_code loadTestingFormat(StringRef Data,
SectionData &ProfileNames,
StringRef &CoverageMapping,
uint8_t &BytesInAddress) {
BytesInAddress = 8;
Data = Data.substr(StringRef(TestingFormatMagic).size());
if (Data.size() < 1)
return instrprof_error::truncated;
unsigned N = 0;
auto ProfileNamesSize =
decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return instrprof_error::malformed;
Data = Data.substr(N);
if (Data.size() < 1)
return instrprof_error::truncated;
N = 0;
ProfileNames.Address =
decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return instrprof_error::malformed;
Data = Data.substr(N);
if (Data.size() < ProfileNamesSize)
return instrprof_error::malformed;
ProfileNames.Data = Data.substr(0, ProfileNamesSize);
CoverageMapping = Data.substr(ProfileNamesSize);
return instrprof_error::success;
}
static std::error_code loadBinaryFormat(MemoryBufferRef ObjectBuffer,
SectionData &ProfileNames,
StringRef &CoverageMapping,
uint8_t &BytesInAddress) {
auto ObjectFileOrErr = object::ObjectFile::createObjectFile(ObjectBuffer);
if (std::error_code EC = ObjectFileOrErr.getError())
return EC;
auto OF = std::move(ObjectFileOrErr.get());
BytesInAddress = OF->getBytesInAddress();
// Look for the sections that we are interested in.
int FoundSectionCount = 0;
SectionRef NamesSection, CoverageSection;
for (const auto &Section : OF->sections()) {
StringRef Name;
if (auto Err = Section.getName(Name))
return Err;
if (Name == "__llvm_prf_names") {
NamesSection = Section;
} else if (Name == "__llvm_covmap") {
CoverageSection = Section;
} else
continue;
++FoundSectionCount;
}
if (FoundSectionCount != 2)
return instrprof_error::bad_header;
// Get the contents of the given sections.
if (std::error_code EC = CoverageSection.getContents(CoverageMapping))
return EC;
if (std::error_code EC = ProfileNames.load(NamesSection))
return EC;
return std::error_code();
}
ErrorOr<std::unique_ptr<BinaryCoverageReader>>
BinaryCoverageReader::create(std::unique_ptr<MemoryBuffer> &ObjectBuffer) {
std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader());
SectionData Profile;
StringRef Coverage;
uint8_t BytesInAddress;
std::error_code EC;
if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic))
// This is a special format used for testing.
EC = loadTestingFormat(ObjectBuffer->getBuffer(), Profile, Coverage,
BytesInAddress);
else
EC = loadBinaryFormat(ObjectBuffer->getMemBufferRef(), Profile, Coverage,
BytesInAddress);
if (EC)
return EC;
if (BytesInAddress == 4)
EC = readCoverageMappingData<uint32_t>(
Profile, Coverage, Reader->MappingRecords, Reader->Filenames);
else if (BytesInAddress == 8)
EC = readCoverageMappingData<uint64_t>(
Profile, Coverage, Reader->MappingRecords, Reader->Filenames);
else
return instrprof_error::malformed;
if (EC)
return EC;
return std::move(Reader);
}
std::error_code
BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
if (CurrentRecord >= MappingRecords.size())
return instrprof_error::eof;
FunctionsFilenames.clear();
Expressions.clear();
MappingRegions.clear();
auto &R = MappingRecords[CurrentRecord];
RawCoverageMappingReader Reader(
R.CoverageMapping,
makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
FunctionsFilenames, Expressions, MappingRegions);
if (auto Err = Reader.read())
return Err;
Record.FunctionName = R.FunctionName;
Record.FunctionHash = R.FunctionHash;
Record.Filenames = FunctionsFilenames;
Record.Expressions = Expressions;
Record.MappingRegions = MappingRegions;
++CurrentRecord;
return std::error_code();
}