llvm-6502/lib/Analysis/AliasAnalysis.cpp
Chandler Carruth eeeec3ce0d [PM] Separate the TargetLibraryInfo object from the immutable pass.
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.

Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226157 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 10:41:28 +00:00

561 lines
20 KiB
C++

//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified. This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation. Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
using namespace llvm;
// Register the AliasAnalysis interface, providing a nice name to refer to.
INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
char AliasAnalysis::ID = 0;
//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//
AliasAnalysis::AliasResult
AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->alias(LocA, LocB);
}
bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
bool OrLocal) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->pointsToConstantMemory(Loc, OrLocal);
}
AliasAnalysis::Location
AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
AliasAnalysis::ModRefResult &Mask) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->getArgLocation(CS, ArgIdx, Mask);
}
void AliasAnalysis::deleteValue(Value *V) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
AA->deleteValue(V);
}
void AliasAnalysis::copyValue(Value *From, Value *To) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
AA->copyValue(From, To);
}
void AliasAnalysis::addEscapingUse(Use &U) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
AA->addEscapingUse(U);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const Location &Loc) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
ModRefBehavior MRB = getModRefBehavior(CS);
if (MRB == DoesNotAccessMemory)
return NoModRef;
ModRefResult Mask = ModRef;
if (onlyReadsMemory(MRB))
Mask = Ref;
if (onlyAccessesArgPointees(MRB)) {
bool doesAlias = false;
ModRefResult AllArgsMask = NoModRef;
if (doesAccessArgPointees(MRB)) {
for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
AI != AE; ++AI) {
const Value *Arg = *AI;
if (!Arg->getType()->isPointerTy())
continue;
ModRefResult ArgMask;
Location CSLoc =
getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
ArgMask);
if (!isNoAlias(CSLoc, Loc)) {
doesAlias = true;
AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
}
}
}
if (!doesAlias)
return NoModRef;
Mask = ModRefResult(Mask & AllArgsMask);
}
// If Loc is a constant memory location, the call definitely could not
// modify the memory location.
if ((Mask & Mod) && pointsToConstantMemory(Loc))
Mask = ModRefResult(Mask & ~Mod);
// If this is the end of the chain, don't forward.
if (!AA) return Mask;
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any mask we've managed to compute.
return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
// If CS1 or CS2 are readnone, they don't interact.
ModRefBehavior CS1B = getModRefBehavior(CS1);
if (CS1B == DoesNotAccessMemory) return NoModRef;
ModRefBehavior CS2B = getModRefBehavior(CS2);
if (CS2B == DoesNotAccessMemory) return NoModRef;
// If they both only read from memory, there is no dependence.
if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
return NoModRef;
AliasAnalysis::ModRefResult Mask = ModRef;
// If CS1 only reads memory, the only dependence on CS2 can be
// from CS1 reading memory written by CS2.
if (onlyReadsMemory(CS1B))
Mask = ModRefResult(Mask & Ref);
// If CS2 only access memory through arguments, accumulate the mod/ref
// information from CS1's references to the memory referenced by
// CS2's arguments.
if (onlyAccessesArgPointees(CS2B)) {
AliasAnalysis::ModRefResult R = NoModRef;
if (doesAccessArgPointees(CS2B)) {
for (ImmutableCallSite::arg_iterator
I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
const Value *Arg = *I;
if (!Arg->getType()->isPointerTy())
continue;
ModRefResult ArgMask;
Location CS2Loc =
getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
ArgMask);
// ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
// CS1 on that location is the inverse.
if (ArgMask == Mod)
ArgMask = ModRef;
else if (ArgMask == Ref)
ArgMask = Mod;
R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
if (R == Mask)
break;
}
}
return R;
}
// If CS1 only accesses memory through arguments, check if CS2 references
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
if (onlyAccessesArgPointees(CS1B)) {
AliasAnalysis::ModRefResult R = NoModRef;
if (doesAccessArgPointees(CS1B)) {
for (ImmutableCallSite::arg_iterator
I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
const Value *Arg = *I;
if (!Arg->getType()->isPointerTy())
continue;
ModRefResult ArgMask;
Location CS1Loc = getArgLocation(
CS1, (unsigned)std::distance(CS1.arg_begin(), I), ArgMask);
// ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
// CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
// might Ref, then we care only about a Mod by CS2.
ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
((ArgMask & Ref) != NoModRef && (ArgR & Mod) != NoModRef))
R = ModRefResult((R | ArgMask) & Mask);
if (R == Mask)
break;
}
}
return R;
}
// If this is the end of the chain, don't forward.
if (!AA) return Mask;
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any mask we've managed to compute.
return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
}
AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
ModRefBehavior Min = UnknownModRefBehavior;
// Call back into the alias analysis with the other form of getModRefBehavior
// to see if it can give a better response.
if (const Function *F = CS.getCalledFunction())
Min = getModRefBehavior(F);
// If this is the end of the chain, don't forward.
if (!AA) return Min;
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any result we've managed to compute.
return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
}
AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(const Function *F) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->getModRefBehavior(F);
}
//===----------------------------------------------------------------------===//
// AliasAnalysis non-virtual helper method implementation
//===----------------------------------------------------------------------===//
AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
AAMDNodes AATags;
LI->getAAMetadata(AATags);
return Location(LI->getPointerOperand(),
getTypeStoreSize(LI->getType()), AATags);
}
AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
AAMDNodes AATags;
SI->getAAMetadata(AATags);
return Location(SI->getPointerOperand(),
getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
}
AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
AAMDNodes AATags;
VI->getAAMetadata(AATags);
return Location(VI->getPointerOperand(), UnknownSize, AATags);
}
AliasAnalysis::Location
AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
AAMDNodes AATags;
CXI->getAAMetadata(AATags);
return Location(CXI->getPointerOperand(),
getTypeStoreSize(CXI->getCompareOperand()->getType()),
AATags);
}
AliasAnalysis::Location
AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
AAMDNodes AATags;
RMWI->getAAMetadata(AATags);
return Location(RMWI->getPointerOperand(),
getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
}
AliasAnalysis::Location
AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
uint64_t Size = UnknownSize;
if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
Size = C->getValue().getZExtValue();
// memcpy/memmove can have AA tags. For memcpy, they apply
// to both the source and the destination.
AAMDNodes AATags;
MTI->getAAMetadata(AATags);
return Location(MTI->getRawSource(), Size, AATags);
}
AliasAnalysis::Location
AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
uint64_t Size = UnknownSize;
if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
Size = C->getValue().getZExtValue();
// memcpy/memmove can have AA tags. For memcpy, they apply
// to both the source and the destination.
AAMDNodes AATags;
MTI->getAAMetadata(AATags);
return Location(MTI->getRawDest(), Size, AATags);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
// Be conservative in the face of volatile/atomic.
if (!L->isUnordered())
return ModRef;
// If the load address doesn't alias the given address, it doesn't read
// or write the specified memory.
if (!alias(getLocation(L), Loc))
return NoModRef;
// Otherwise, a load just reads.
return Ref;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
// Be conservative in the face of volatile/atomic.
if (!S->isUnordered())
return ModRef;
// If the store address cannot alias the pointer in question, then the
// specified memory cannot be modified by the store.
if (!alias(getLocation(S), Loc))
return NoModRef;
// If the pointer is a pointer to constant memory, then it could not have been
// modified by this store.
if (pointsToConstantMemory(Loc))
return NoModRef;
// Otherwise, a store just writes.
return Mod;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
// If the va_arg address cannot alias the pointer in question, then the
// specified memory cannot be accessed by the va_arg.
if (!alias(getLocation(V), Loc))
return NoModRef;
// If the pointer is a pointer to constant memory, then it could not have been
// modified by this va_arg.
if (pointsToConstantMemory(Loc))
return NoModRef;
// Otherwise, a va_arg reads and writes.
return ModRef;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
if (CX->getSuccessOrdering() > Monotonic)
return ModRef;
// If the cmpxchg address does not alias the location, it does not access it.
if (!alias(getLocation(CX), Loc))
return NoModRef;
return ModRef;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
// Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
if (RMW->getOrdering() > Monotonic)
return ModRef;
// If the atomicrmw address does not alias the location, it does not access it.
if (!alias(getLocation(RMW), Loc))
return NoModRef;
return ModRef;
}
// FIXME: this is really just shoring-up a deficiency in alias analysis.
// BasicAA isn't willing to spend linear time determining whether an alloca
// was captured before or after this particular call, while we are. However,
// with a smarter AA in place, this test is just wasting compile time.
AliasAnalysis::ModRefResult
AliasAnalysis::callCapturesBefore(const Instruction *I,
const AliasAnalysis::Location &MemLoc,
DominatorTree *DT) {
if (!DT || !DL) return AliasAnalysis::ModRef;
const Value *Object = GetUnderlyingObject(MemLoc.Ptr, DL);
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
isa<Constant>(Object))
return AliasAnalysis::ModRef;
ImmutableCallSite CS(I);
if (!CS.getInstruction() || CS.getInstruction() == Object)
return AliasAnalysis::ModRef;
if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
/* StoreCaptures */ true, I, DT,
/* include Object */ true))
return AliasAnalysis::ModRef;
unsigned ArgNo = 0;
AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
CI != CE; ++CI, ++ArgNo) {
// Only look at the no-capture or byval pointer arguments. If this
// pointer were passed to arguments that were neither of these, then it
// couldn't be no-capture.
if (!(*CI)->getType()->isPointerTy() ||
(!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
continue;
// If this is a no-capture pointer argument, see if we can tell that it
// is impossible to alias the pointer we're checking. If not, we have to
// assume that the call could touch the pointer, even though it doesn't
// escape.
if (isNoAlias(AliasAnalysis::Location(*CI),
AliasAnalysis::Location(Object)))
continue;
if (CS.doesNotAccessMemory(ArgNo))
continue;
if (CS.onlyReadsMemory(ArgNo)) {
R = AliasAnalysis::Ref;
continue;
}
return AliasAnalysis::ModRef;
}
return R;
}
// AliasAnalysis destructor: DO NOT move this to the header file for
// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
// the AliasAnalysis.o file in the current .a file, causing alias analysis
// support to not be included in the tool correctly!
//
AliasAnalysis::~AliasAnalysis() {}
/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
/// AliasAnalysis interface before any other methods are called.
///
void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
TLI = TLIP ? &TLIP->getTLI() : nullptr;
AA = &P->getAnalysis<AliasAnalysis>();
}
// getAnalysisUsage - All alias analysis implementations should invoke this
// directly (using AliasAnalysis::getAnalysisUsage(AU)).
void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>(); // All AA's chain
}
/// getTypeStoreSize - Return the DataLayout store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
}
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the location Loc.
///
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
const Location &Loc) {
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
}
/// canInstructionRangeModRef - Return true if it is possible for the
/// execution of the specified instructions to mod\ref (according to the
/// mode) the location Loc. The instructions to consider are all
/// of the instructions in the range of [I1,I2] INCLUSIVE.
/// I1 and I2 must be in the same basic block.
bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
const Instruction &I2,
const Location &Loc,
const ModRefResult Mode) {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
BasicBlock::const_iterator I = &I1;
BasicBlock::const_iterator E = &I2;
++E; // Convert from inclusive to exclusive range.
for (; I != E; ++I) // Check every instruction in range
if (getModRefInfo(I, Loc) & Mode)
return true;
return false;
}
/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool llvm::isNoAliasCall(const Value *V) {
if (isa<CallInst>(V) || isa<InvokeInst>(V))
return ImmutableCallSite(cast<Instruction>(V))
.paramHasAttr(0, Attribute::NoAlias);
return false;
}
/// isNoAliasArgument - Return true if this is an argument with the noalias
/// attribute.
bool llvm::isNoAliasArgument(const Value *V)
{
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr();
return false;
}
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas and Mallocs
/// ByVal and NoAlias Arguments
/// NoAlias returns
///
bool llvm::isIdentifiedObject(const Value *V) {
if (isa<AllocaInst>(V))
return true;
if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
return true;
if (isNoAliasCall(V))
return true;
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr() || A->hasByValAttr();
return false;
}
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
bool llvm::isIdentifiedFunctionLocal(const Value *V)
{
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
}