llvm-6502/lib/ExecutionEngine/JIT/JITEmitter.cpp
Jeffrey Yasskin 40966a7c68 Make it possible to create multiple JIT instances at the same time, by removing
the global TheJIT and TheJITResolver variables.  Lazy compilation is supported
by a global map from a stub address to the JITResolver that knows how to
compile it.

Patch by Olivier Meurant!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95837 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-11 01:07:39 +00:00

1643 lines
60 KiB
C++

//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a MachineCodeEmitter object that is used by the JIT to
// write machine code to memory and remember where relocatable values are.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "JIT.h"
#include "JITDebugRegisterer.h"
#include "JITDwarfEmitter.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/CodeGen/MachineCodeInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Disassembler.h"
#include "llvm/System/Memory.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/ValueMap.h"
#include <algorithm>
#ifndef NDEBUG
#include <iomanip>
#endif
using namespace llvm;
STATISTIC(NumBytes, "Number of bytes of machine code compiled");
STATISTIC(NumRelos, "Number of relocations applied");
STATISTIC(NumRetries, "Number of retries with more memory");
// A declaration may stop being a declaration once it's fully read from bitcode.
// This function returns true if F is fully read and is still a declaration.
static bool isNonGhostDeclaration(const Function *F) {
return F->isDeclaration() && !F->isMaterializable();
}
//===----------------------------------------------------------------------===//
// JIT lazy compilation code.
//
namespace {
class JITEmitter;
class JITResolverState;
template<typename ValueTy>
struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
typedef JITResolverState *ExtraData;
static void onRAUW(JITResolverState *, Value *Old, Value *New) {
assert(false && "The JIT doesn't know how to handle a"
" RAUW on a value it has emitted.");
}
};
struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
typedef JITResolverState *ExtraData;
static void onDelete(JITResolverState *JRS, Function *F);
};
class JITResolverState {
public:
typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
FunctionToLazyStubMapTy;
typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
CallSiteValueMapConfig> FunctionToCallSitesMapTy;
typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
private:
/// FunctionToLazyStubMap - Keep track of the lazy stub created for a
/// particular function so that we can reuse them if necessary.
FunctionToLazyStubMapTy FunctionToLazyStubMap;
/// CallSiteToFunctionMap - Keep track of the function that each lazy call
/// site corresponds to, and vice versa.
CallSiteToFunctionMapTy CallSiteToFunctionMap;
FunctionToCallSitesMapTy FunctionToCallSitesMap;
/// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
/// particular GlobalVariable so that we can reuse them if necessary.
GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
/// Instance of the JIT this ResolverState serves.
JIT *TheJIT;
public:
JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
FunctionToCallSitesMap(this),
TheJIT(jit) {}
FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
const MutexGuard& locked) {
assert(locked.holds(TheJIT->lock));
return FunctionToLazyStubMap;
}
GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
assert(locked.holds(TheJIT->lock));
return GlobalToIndirectSymMap;
}
pair<void *, Function *> LookupFunctionFromCallSite(
const MutexGuard &locked, void *CallSite) const {
assert(locked.holds(TheJIT->lock));
// The address given to us for the stub may not be exactly right, it might be
// a little bit after the stub. As such, use upper_bound to find it.
CallSiteToFunctionMapTy::const_iterator I =
CallSiteToFunctionMap.upper_bound(CallSite);
assert(I != CallSiteToFunctionMap.begin() &&
"This is not a known call site!");
--I;
return *I;
}
void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
assert(locked.holds(TheJIT->lock));
bool Inserted = CallSiteToFunctionMap.insert(
std::make_pair(CallSite, F)).second;
(void)Inserted;
assert(Inserted && "Pair was already in CallSiteToFunctionMap");
FunctionToCallSitesMap[F].insert(CallSite);
}
// Returns the Function of the stub if a stub was erased, or NULL if there
// was no stub. This function uses the call-site->function map to find a
// relevant function, but asserts that only stubs and not other call sites
// will be passed in.
Function *EraseStub(const MutexGuard &locked, void *Stub) {
CallSiteToFunctionMapTy::iterator C2F_I =
CallSiteToFunctionMap.find(Stub);
if (C2F_I == CallSiteToFunctionMap.end()) {
// Not a stub.
return NULL;
}
Function *const F = C2F_I->second;
#ifndef NDEBUG
void *RealStub = FunctionToLazyStubMap.lookup(F);
assert(RealStub == Stub &&
"Call-site that wasn't a stub pass in to EraseStub");
#endif
FunctionToLazyStubMap.erase(F);
CallSiteToFunctionMap.erase(C2F_I);
// Remove the stub from the function->call-sites map, and remove the whole
// entry from the map if that was the last call site.
FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F);
assert(F2C_I != FunctionToCallSitesMap.end() &&
"FunctionToCallSitesMap broken");
bool Erased = F2C_I->second.erase(Stub);
(void)Erased;
assert(Erased && "FunctionToCallSitesMap broken");
if (F2C_I->second.empty())
FunctionToCallSitesMap.erase(F2C_I);
return F;
}
void EraseAllCallSites(const MutexGuard &locked, Function *F) {
assert(locked.holds(TheJIT->lock));
EraseAllCallSitesPrelocked(F);
}
void EraseAllCallSitesPrelocked(Function *F) {
FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
if (F2C == FunctionToCallSitesMap.end())
return;
for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
E = F2C->second.end(); I != E; ++I) {
bool Erased = CallSiteToFunctionMap.erase(*I);
(void)Erased;
assert(Erased && "Missing call site->function mapping");
}
FunctionToCallSitesMap.erase(F2C);
}
};
/// JITResolver - Keep track of, and resolve, call sites for functions that
/// have not yet been compiled.
class JITResolver {
typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
/// LazyResolverFn - The target lazy resolver function that we actually
/// rewrite instructions to use.
TargetJITInfo::LazyResolverFn LazyResolverFn;
JITResolverState state;
/// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
/// for external functions. TODO: Of course, external functions don't need
/// a lazy stub. It's actually here to make it more likely that far calls
/// succeed, but no single stub can guarantee that. I'll remove this in a
/// subsequent checkin when I actually fix far calls.
std::map<void*, void*> ExternalFnToStubMap;
/// revGOTMap - map addresses to indexes in the GOT
std::map<void*, unsigned> revGOTMap;
unsigned nextGOTIndex;
JITEmitter &JE;
/// Instance of JIT corresponding to this Resolver.
JIT *TheJIT;
public:
explicit JITResolver(JIT &jit, JITEmitter &je)
: state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
}
/// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
/// lazy-compilation stub if it has already been created.
void *getLazyFunctionStubIfAvailable(Function *F);
/// getLazyFunctionStub - This returns a pointer to a function's
/// lazy-compilation stub, creating one on demand as needed.
void *getLazyFunctionStub(Function *F);
/// getExternalFunctionStub - Return a stub for the function at the
/// specified address, created lazily on demand.
void *getExternalFunctionStub(void *FnAddr);
/// getGlobalValueIndirectSym - Return an indirect symbol containing the
/// specified GV address.
void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
SmallVectorImpl<void*> &Ptrs);
GlobalValue *invalidateStub(void *Stub);
/// getGOTIndexForAddress - Return a new or existing index in the GOT for
/// an address. This function only manages slots, it does not manage the
/// contents of the slots or the memory associated with the GOT.
unsigned getGOTIndexForAddr(void *addr);
/// JITCompilerFn - This function is called to resolve a stub to a compiled
/// address. If the LLVM Function corresponding to the stub has not yet
/// been compiled, this function compiles it first.
static void *JITCompilerFn(void *Stub);
};
class StubToResolverMapTy {
/// Map a stub address to a specific instance of a JITResolver so that
/// lazily-compiled functions can find the right resolver to use.
///
/// Guarded by Lock.
std::map<void*, JITResolver*> Map;
/// Guards Map from concurrent accesses.
mutable sys::Mutex Lock;
public:
/// Registers a Stub to be resolved by Resolver.
void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
MutexGuard guard(Lock);
Map.insert(std::make_pair(Stub, Resolver));
}
/// Unregisters the Stub when it's invalidated.
void UnregisterStubResolver(void *Stub) {
MutexGuard guard(Lock);
Map.erase(Stub);
}
/// Returns the JITResolver instance that owns the Stub.
JITResolver *getResolverFromStub(void *Stub) const {
MutexGuard guard(Lock);
// The address given to us for the stub may not be exactly right, it might
// be a little bit after the stub. As such, use upper_bound to find it.
// This is the same trick as in LookupFunctionFromCallSite from
// JITResolverState.
std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
assert(I != Map.begin() && "This is not a known stub!");
--I;
return I->second;
}
};
/// This needs to be static so that a lazy call stub can access it with no
/// context except the address of the stub.
ManagedStatic<StubToResolverMapTy> StubToResolverMap;
/// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
/// used to output functions to memory for execution.
class JITEmitter : public JITCodeEmitter {
JITMemoryManager *MemMgr;
// When outputting a function stub in the context of some other function, we
// save BufferBegin/BufferEnd/CurBufferPtr here.
uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
// When reattempting to JIT a function after running out of space, we store
// the estimated size of the function we're trying to JIT here, so we can
// ask the memory manager for at least this much space. When we
// successfully emit the function, we reset this back to zero.
uintptr_t SizeEstimate;
/// Relocations - These are the relocations that the function needs, as
/// emitted.
std::vector<MachineRelocation> Relocations;
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
/// It is filled in by the StartMachineBasicBlock callback and queried by
/// the getMachineBasicBlockAddress callback.
std::vector<uintptr_t> MBBLocations;
/// ConstantPool - The constant pool for the current function.
///
MachineConstantPool *ConstantPool;
/// ConstantPoolBase - A pointer to the first entry in the constant pool.
///
void *ConstantPoolBase;
/// ConstPoolAddresses - Addresses of individual constant pool entries.
///
SmallVector<uintptr_t, 8> ConstPoolAddresses;
/// JumpTable - The jump tables for the current function.
///
MachineJumpTableInfo *JumpTable;
/// JumpTableBase - A pointer to the first entry in the jump table.
///
void *JumpTableBase;
/// Resolver - This contains info about the currently resolved functions.
JITResolver Resolver;
/// DE - The dwarf emitter for the jit.
OwningPtr<JITDwarfEmitter> DE;
/// DR - The debug registerer for the jit.
OwningPtr<JITDebugRegisterer> DR;
/// LabelLocations - This vector is a mapping from Label ID's to their
/// address.
std::vector<uintptr_t> LabelLocations;
/// MMI - Machine module info for exception informations
MachineModuleInfo* MMI;
// GVSet - a set to keep track of which globals have been seen
SmallPtrSet<const GlobalVariable*, 8> GVSet;
// CurFn - The llvm function being emitted. Only valid during
// finishFunction().
const Function *CurFn;
/// Information about emitted code, which is passed to the
/// JITEventListeners. This is reset in startFunction and used in
/// finishFunction.
JITEvent_EmittedFunctionDetails EmissionDetails;
struct EmittedCode {
void *FunctionBody; // Beginning of the function's allocation.
void *Code; // The address the function's code actually starts at.
void *ExceptionTable;
EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
};
struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
typedef JITEmitter *ExtraData;
static void onDelete(JITEmitter *, const Function*);
static void onRAUW(JITEmitter *, const Function*, const Function*);
};
ValueMap<const Function *, EmittedCode,
EmittedFunctionConfig> EmittedFunctions;
// CurFnStubUses - For a given Function, a vector of stubs that it
// references. This facilitates the JIT detecting that a stub is no
// longer used, so that it may be deallocated.
DenseMap<AssertingVH<const Function>, SmallVector<void*, 1> > CurFnStubUses;
// StubFnRefs - For a given pointer to a stub, a set of Functions which
// reference the stub. When the count of a stub's references drops to zero,
// the stub is unused.
DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
DILocation PrevDLT;
/// Instance of the JIT
JIT *TheJIT;
public:
JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
: SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
EmittedFunctions(this), PrevDLT(NULL), TheJIT(&jit) {
MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
if (jit.getJITInfo().needsGOT()) {
MemMgr->AllocateGOT();
DEBUG(dbgs() << "JIT is managing a GOT\n");
}
if (DwarfExceptionHandling || JITEmitDebugInfo) {
DE.reset(new JITDwarfEmitter(jit));
}
if (JITEmitDebugInfo) {
DR.reset(new JITDebugRegisterer(TM));
}
}
~JITEmitter() {
delete MemMgr;
}
/// classof - Methods for support type inquiry through isa, cast, and
/// dyn_cast:
///
static inline bool classof(const JITEmitter*) { return true; }
static inline bool classof(const MachineCodeEmitter*) { return true; }
JITResolver &getJITResolver() { return Resolver; }
virtual void startFunction(MachineFunction &F);
virtual bool finishFunction(MachineFunction &F);
void emitConstantPool(MachineConstantPool *MCP);
void initJumpTableInfo(MachineJumpTableInfo *MJTI);
void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
void startGVStub(const GlobalValue* GV,
unsigned StubSize, unsigned Alignment = 1);
void startGVStub(void *Buffer, unsigned StubSize);
void finishGVStub();
virtual void *allocIndirectGV(const GlobalValue *GV,
const uint8_t *Buffer, size_t Size,
unsigned Alignment);
/// allocateSpace - Reserves space in the current block if any, or
/// allocate a new one of the given size.
virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
/// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
/// this method does not allocate memory in the current output buffer,
/// because a global may live longer than the current function.
virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
virtual void addRelocation(const MachineRelocation &MR) {
Relocations.push_back(MR);
}
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
MBBLocations.resize((MBB->getNumber()+1)*2);
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
<< (void*) getCurrentPCValue() << "]\n");
}
virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
return MBBLocations[MBB->getNumber()];
}
/// retryWithMoreMemory - Log a retry and deallocate all memory for the
/// given function. Increase the minimum allocation size so that we get
/// more memory next time.
void retryWithMoreMemory(MachineFunction &F);
/// deallocateMemForFunction - Deallocate all memory for the specified
/// function body.
void deallocateMemForFunction(const Function *F);
/// AddStubToCurrentFunction - Mark the current function being JIT'd as
/// using the stub at the specified address. Allows
/// deallocateMemForFunction to also remove stubs no longer referenced.
void AddStubToCurrentFunction(void *Stub);
virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
virtual void emitLabel(uint64_t LabelID) {
if (LabelLocations.size() <= LabelID)
LabelLocations.resize((LabelID+1)*2);
LabelLocations[LabelID] = getCurrentPCValue();
}
virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
assert(LabelLocations.size() > (unsigned)LabelID &&
LabelLocations[LabelID] && "Label not emitted!");
return LabelLocations[LabelID];
}
virtual void setModuleInfo(MachineModuleInfo* Info) {
MMI = Info;
if (DE.get()) DE->setModuleInfo(Info);
}
void setMemoryExecutable() {
MemMgr->setMemoryExecutable();
}
JITMemoryManager *getMemMgr() const { return MemMgr; }
private:
void *getPointerToGlobal(GlobalValue *GV, void *Reference,
bool MayNeedFarStub);
void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
};
}
void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
JRS->EraseAllCallSitesPrelocked(F);
}
/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
/// if it has already been created.
void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
MutexGuard locked(TheJIT->lock);
// If we already have a stub for this function, recycle it.
return state.getFunctionToLazyStubMap(locked).lookup(F);
}
/// getFunctionStub - This returns a pointer to a function stub, creating
/// one on demand as needed.
void *JITResolver::getLazyFunctionStub(Function *F) {
MutexGuard locked(TheJIT->lock);
// If we already have a lazy stub for this function, recycle it.
void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
if (Stub) return Stub;
// Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
// must resolve the symbol now.
void *Actual = TheJIT->isCompilingLazily()
? (void *)(intptr_t)LazyResolverFn : (void *)0;
// If this is an external declaration, attempt to resolve the address now
// to place in the stub.
if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
Actual = TheJIT->getPointerToFunction(F);
// If we resolved the symbol to a null address (eg. a weak external)
// don't emit a stub. Return a null pointer to the application.
if (!Actual) return 0;
}
TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
JE.startGVStub(F, SL.Size, SL.Alignment);
// Codegen a new stub, calling the lazy resolver or the actual address of the
// external function, if it was resolved.
Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
JE.finishGVStub();
if (Actual != (void*)(intptr_t)LazyResolverFn) {
// If we are getting the stub for an external function, we really want the
// address of the stub in the GlobalAddressMap for the JIT, not the address
// of the external function.
TheJIT->updateGlobalMapping(F, Stub);
}
DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
<< F->getName() << "'\n");
// Register this JITResolver as the one corresponding to this call site so
// JITCompilerFn will be able to find it.
StubToResolverMap->RegisterStubResolver(Stub, this);
// Finally, keep track of the stub-to-Function mapping so that the
// JITCompilerFn knows which function to compile!
state.AddCallSite(locked, Stub, F);
// If we are JIT'ing non-lazily but need to call a function that does not
// exist yet, add it to the JIT's work list so that we can fill in the stub
// address later.
if (!Actual && !TheJIT->isCompilingLazily())
if (!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage())
TheJIT->addPendingFunction(F);
return Stub;
}
/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
/// GV address.
void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
MutexGuard locked(TheJIT->lock);
// If we already have a stub for this global variable, recycle it.
void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
if (IndirectSym) return IndirectSym;
// Otherwise, codegen a new indirect symbol.
IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
JE);
DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
<< "] for GV '" << GV->getName() << "'\n");
return IndirectSym;
}
/// getExternalFunctionStub - Return a stub for the function at the
/// specified address, created lazily on demand.
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
// If we already have a stub for this function, recycle it.
void *&Stub = ExternalFnToStubMap[FnAddr];
if (Stub) return Stub;
TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
JE.startGVStub(0, SL.Size, SL.Alignment);
Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
JE.finishGVStub();
DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
<< "] for external function at '" << FnAddr << "'\n");
return Stub;
}
unsigned JITResolver::getGOTIndexForAddr(void* addr) {
unsigned idx = revGOTMap[addr];
if (!idx) {
idx = ++nextGOTIndex;
revGOTMap[addr] = idx;
DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
<< addr << "]\n");
}
return idx;
}
void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
SmallVectorImpl<void*> &Ptrs) {
MutexGuard locked(TheJIT->lock);
const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked);
GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end();
i != e; ++i){
Function *F = i->first;
if (F->isDeclaration() && F->hasExternalLinkage()) {
GVs.push_back(i->first);
Ptrs.push_back(i->second);
}
}
for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
i != e; ++i) {
GVs.push_back(i->first);
Ptrs.push_back(i->second);
}
}
GlobalValue *JITResolver::invalidateStub(void *Stub) {
MutexGuard locked(TheJIT->lock);
// Remove the stub from the StubToResolverMap.
StubToResolverMap->UnregisterStubResolver(Stub);
GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
// Look up the cheap way first, to see if it's a function stub we are
// invalidating. If so, remove it from both the forward and reverse maps.
if (Function *F = state.EraseStub(locked, Stub)) {
return F;
}
// Otherwise, it might be an indirect symbol stub. Find it and remove it.
for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
i != e; ++i) {
if (i->second != Stub)
continue;
GlobalValue *GV = i->first;
GM.erase(i);
return GV;
}
// Lastly, check to see if it's in the ExternalFnToStubMap.
for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
e = ExternalFnToStubMap.end(); i != e; ++i) {
if (i->second != Stub)
continue;
ExternalFnToStubMap.erase(i);
break;
}
return 0;
}
/// JITCompilerFn - This function is called when a lazy compilation stub has
/// been entered. It looks up which function this stub corresponds to, compiles
/// it if necessary, then returns the resultant function pointer.
void *JITResolver::JITCompilerFn(void *Stub) {
JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
assert(JR && "Unable to find the corresponding JITResolver to the call site");
Function* F = 0;
void* ActualPtr = 0;
{
// Only lock for getting the Function. The call getPointerToFunction made
// in this function might trigger function materializing, which requires
// JIT lock to be unlocked.
MutexGuard locked(JR->TheJIT->lock);
// The address given to us for the stub may not be exactly right, it might
// be a little bit after the stub. As such, use upper_bound to find it.
pair<void*, Function*> I =
JR->state.LookupFunctionFromCallSite(locked, Stub);
F = I.second;
ActualPtr = I.first;
}
// If we have already code generated the function, just return the address.
void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
if (!Result) {
// Otherwise we don't have it, do lazy compilation now.
// If lazy compilation is disabled, emit a useful error message and abort.
if (!JR->TheJIT->isCompilingLazily()) {
llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
+ F->getName() + "' when lazy compiles are disabled!");
}
DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
<< "' In stub ptr = " << Stub << " actual ptr = "
<< ActualPtr << "\n");
Result = JR->TheJIT->getPointerToFunction(F);
}
// Reacquire the lock to update the GOT map.
MutexGuard locked(JR->TheJIT->lock);
// We might like to remove the call site from the CallSiteToFunction map, but
// we can't do that! Multiple threads could be stuck, waiting to acquire the
// lock above. As soon as the 1st function finishes compiling the function,
// the next one will be released, and needs to be able to find the function it
// needs to call.
// FIXME: We could rewrite all references to this stub if we knew them.
// What we will do is set the compiled function address to map to the
// same GOT entry as the stub so that later clients may update the GOT
// if they see it still using the stub address.
// Note: this is done so the Resolver doesn't have to manage GOT memory
// Do this without allocating map space if the target isn't using a GOT
if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
JR->revGOTMap[Result] = JR->revGOTMap[Stub];
return Result;
}
//===----------------------------------------------------------------------===//
// JITEmitter code.
//
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
bool MayNeedFarStub) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return TheJIT->getOrEmitGlobalVariable(GV);
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
// If we have already compiled the function, return a pointer to its body.
Function *F = cast<Function>(V);
void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
if (FnStub) {
// Return the function stub if it's already created. We do this first so
// that we're returning the same address for the function as any previous
// call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
// close enough to call.
AddStubToCurrentFunction(FnStub);
return FnStub;
}
// If we know the target can handle arbitrary-distance calls, try to
// return a direct pointer.
if (!MayNeedFarStub) {
// If we have code, go ahead and return that.
void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
if (ResultPtr) return ResultPtr;
// If this is an external function pointer, we can force the JIT to
// 'compile' it, which really just adds it to the map.
if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
return TheJIT->getPointerToFunction(F);
}
// Otherwise, we may need a to emit a stub, and, conservatively, we
// always do so.
void *StubAddr = Resolver.getLazyFunctionStub(F);
// Add the stub to the current function's list of referenced stubs, so we can
// deallocate them if the current function is ever freed. It's possible to
// return null from getLazyFunctionStub in the case of a weak extern that
// fails to resolve.
if (StubAddr)
AddStubToCurrentFunction(StubAddr);
return StubAddr;
}
void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
// Make sure GV is emitted first, and create a stub containing the fully
// resolved address.
void *GVAddress = getPointerToGlobal(V, Reference, false);
void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
// Add the stub to the current function's list of referenced stubs, so we can
// deallocate them if the current function is ever freed.
AddStubToCurrentFunction(StubAddr);
return StubAddr;
}
void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
assert(CurFn && "Stub added to current function, but current function is 0!");
SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
StubsUsed.push_back(StubAddr);
SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
FnRefs.insert(CurFn);
}
void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
if (!DL.isUnknown()) {
DILocation CurDLT = EmissionDetails.MF->getDILocation(DL);
if (BeforePrintingInsn) {
if (CurDLT.getScope().getNode() != 0
&& PrevDLT.getNode() != CurDLT.getNode()) {
JITEvent_EmittedFunctionDetails::LineStart NextLine;
NextLine.Address = getCurrentPCValue();
NextLine.Loc = DL;
EmissionDetails.LineStarts.push_back(NextLine);
}
PrevDLT = CurDLT;
}
}
}
static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
const TargetData *TD) {
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
if (Constants.empty()) return 0;
unsigned Size = 0;
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
MachineConstantPoolEntry CPE = Constants[i];
unsigned AlignMask = CPE.getAlignment() - 1;
Size = (Size + AlignMask) & ~AlignMask;
const Type *Ty = CPE.getType();
Size += TD->getTypeAllocSize(Ty);
}
return Size;
}
static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI, JIT *jit) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return 0;
unsigned NumEntries = 0;
for (unsigned i = 0, e = JT.size(); i != e; ++i)
NumEntries += JT[i].MBBs.size();
return NumEntries * MJTI->getEntrySize(*jit->getTargetData());
}
static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
if (Alignment == 0) Alignment = 1;
// Since we do not know where the buffer will be allocated, be pessimistic.
return Size + Alignment;
}
/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
/// into the running total Size.
unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
const Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
size_t GVAlign =
(size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
DEBUG(GV->dump());
// Assume code section ends with worst possible alignment, so first
// variable needs maximal padding.
if (Size==0)
Size = 1;
Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
Size += GVSize;
return Size;
}
/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
/// but are referenced from the constant; put them in GVSet and add their
/// size into the running total Size.
unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
unsigned Size) {
// If its undefined, return the garbage.
if (isa<UndefValue>(C))
return Size;
// If the value is a ConstantExpr
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Constant *Op0 = CE->getOperand(0);
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast: {
Size = addSizeOfGlobalsInConstantVal(Op0, Size);
break;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
Size = addSizeOfGlobalsInConstantVal(Op0, Size);
Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
break;
}
default: {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "ConstantExpr not handled: " << *CE;
llvm_report_error(Msg.str());
}
}
}
if (C->getType()->getTypeID() == Type::PointerTyID)
if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
if (GVSet.insert(GV))
Size = addSizeOfGlobal(GV, Size);
return Size;
}
/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
/// but are referenced from the given initializer.
unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
unsigned Size) {
if (!isa<UndefValue>(Init) &&
!isa<ConstantVector>(Init) &&
!isa<ConstantAggregateZero>(Init) &&
!isa<ConstantArray>(Init) &&
!isa<ConstantStruct>(Init) &&
Init->getType()->isFirstClassType())
Size = addSizeOfGlobalsInConstantVal(Init, Size);
return Size;
}
/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
/// globals; then walk the initializers of those globals looking for more.
/// If their size has not been considered yet, add it into the running total
/// Size.
unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
unsigned Size = 0;
GVSet.clear();
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
const TargetInstrDesc &Desc = I->getDesc();
const MachineInstr &MI = *I;
unsigned NumOps = Desc.getNumOperands();
for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
const MachineOperand &MO = MI.getOperand(CurOp);
if (MO.isGlobal()) {
GlobalValue* V = MO.getGlobal();
const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
if (!GV)
continue;
// If seen in previous function, it will have an entry here.
if (TheJIT->getPointerToGlobalIfAvailable(GV))
continue;
// If seen earlier in this function, it will have an entry here.
// FIXME: it should be possible to combine these tables, by
// assuming the addresses of the new globals in this module
// start at 0 (or something) and adjusting them after codegen
// complete. Another possibility is to grab a marker bit in GV.
if (GVSet.insert(GV))
// A variable as yet unseen. Add in its size.
Size = addSizeOfGlobal(GV, Size);
}
}
}
}
DEBUG(dbgs() << "JIT: About to look through initializers\n");
// Look for more globals that are referenced only from initializers.
// GVSet.end is computed each time because the set can grow as we go.
for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
I != GVSet.end(); I++) {
const GlobalVariable* GV = *I;
if (GV->hasInitializer())
Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
}
return Size;
}
void JITEmitter::startFunction(MachineFunction &F) {
DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
<< F.getFunction()->getName() << "\n");
uintptr_t ActualSize = 0;
// Set the memory writable, if it's not already
MemMgr->setMemoryWritable();
if (MemMgr->NeedsExactSize()) {
DEBUG(dbgs() << "JIT: ExactSize\n");
const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
MachineConstantPool *MCP = F.getConstantPool();
// Ensure the constant pool/jump table info is at least 4-byte aligned.
ActualSize = RoundUpToAlign(ActualSize, 16);
// Add the alignment of the constant pool
ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
// Add the constant pool size
ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) {
// Add the aligment of the jump table info
ActualSize = RoundUpToAlign(ActualSize,
MJTI->getEntryAlignment(*TheJIT->getTargetData()));
// Add the jump table size
ActualSize += GetJumpTableSizeInBytes(MJTI, TheJIT);
}
// Add the alignment for the function
ActualSize = RoundUpToAlign(ActualSize,
std::max(F.getFunction()->getAlignment(), 8U));
// Add the function size
ActualSize += TII->GetFunctionSizeInBytes(F);
DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n");
// Add the size of the globals that will be allocated after this function.
// These are all the ones referenced from this function that were not
// previously allocated.
ActualSize += GetSizeOfGlobalsInBytes(F);
DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n");
} else if (SizeEstimate > 0) {
// SizeEstimate will be non-zero on reallocation attempts.
ActualSize = SizeEstimate;
}
BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
ActualSize);
BufferEnd = BufferBegin+ActualSize;
EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
// Ensure the constant pool/jump table info is at least 4-byte aligned.
emitAlignment(16);
emitConstantPool(F.getConstantPool());
if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
initJumpTableInfo(MJTI);
// About to start emitting the machine code for the function.
emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
MBBLocations.clear();
EmissionDetails.MF = &F;
EmissionDetails.LineStarts.clear();
}
bool JITEmitter::finishFunction(MachineFunction &F) {
if (CurBufferPtr == BufferEnd) {
// We must call endFunctionBody before retrying, because
// deallocateMemForFunction requires it.
MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
retryWithMoreMemory(F);
return true;
}
if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
emitJumpTableInfo(MJTI);
// FnStart is the start of the text, not the start of the constant pool and
// other per-function data.
uint8_t *FnStart =
(uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
// FnEnd is the end of the function's machine code.
uint8_t *FnEnd = CurBufferPtr;
if (!Relocations.empty()) {
CurFn = F.getFunction();
NumRelos += Relocations.size();
// Resolve the relocations to concrete pointers.
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
MachineRelocation &MR = Relocations[i];
void *ResultPtr = 0;
if (!MR.letTargetResolve()) {
if (MR.isExternalSymbol()) {
ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
false);
DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
<< ResultPtr << "]\n");
// If the target REALLY wants a stub for this function, emit it now.
if (MR.mayNeedFarStub()) {
ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
}
} else if (MR.isGlobalValue()) {
ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
BufferBegin+MR.getMachineCodeOffset(),
MR.mayNeedFarStub());
} else if (MR.isIndirectSymbol()) {
ResultPtr = getPointerToGVIndirectSym(
MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
} else if (MR.isBasicBlock()) {
ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
} else if (MR.isConstantPoolIndex()) {
ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
} else {
assert(MR.isJumpTableIndex());
ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
}
MR.setResultPointer(ResultPtr);
}
// if we are managing the GOT and the relocation wants an index,
// give it one
if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
MR.setGOTIndex(idx);
if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
<< "\n");
((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
}
}
}
CurFn = 0;
TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
Relocations.size(), MemMgr->getGOTBase());
}
// Update the GOT entry for F to point to the new code.
if (MemMgr->isManagingGOT()) {
unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
<< "\n");
((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
}
}
// CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
// global variables that were referenced in the relocations.
MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
if (CurBufferPtr == BufferEnd) {
retryWithMoreMemory(F);
return true;
} else {
// Now that we've succeeded in emitting the function, reset the
// SizeEstimate back down to zero.
SizeEstimate = 0;
}
BufferBegin = CurBufferPtr = 0;
NumBytes += FnEnd-FnStart;
// Invalidate the icache if necessary.
sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
EmissionDetails);
DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
<< "] Function: " << F.getFunction()->getName()
<< ": " << (FnEnd-FnStart) << " bytes of text, "
<< Relocations.size() << " relocations\n");
Relocations.clear();
ConstPoolAddresses.clear();
// Mark code region readable and executable if it's not so already.
MemMgr->setMemoryExecutable();
DEBUG(
if (sys::hasDisassembler()) {
dbgs() << "JIT: Disassembled code:\n";
dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
(uintptr_t)FnStart);
} else {
dbgs() << "JIT: Binary code:\n";
uint8_t* q = FnStart;
for (int i = 0; q < FnEnd; q += 4, ++i) {
if (i == 4)
i = 0;
if (i == 0)
dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
bool Done = false;
for (int j = 3; j >= 0; --j) {
if (q + j >= FnEnd)
Done = true;
else
dbgs() << (unsigned short)q[j];
}
if (Done)
break;
dbgs() << ' ';
if (i == 3)
dbgs() << '\n';
}
dbgs()<< '\n';
}
);
if (DwarfExceptionHandling || JITEmitDebugInfo) {
uintptr_t ActualSize = 0;
SavedBufferBegin = BufferBegin;
SavedBufferEnd = BufferEnd;
SavedCurBufferPtr = CurBufferPtr;
if (MemMgr->NeedsExactSize()) {
ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
}
BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
ActualSize);
BufferEnd = BufferBegin+ActualSize;
EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
uint8_t *EhStart;
uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
EhStart);
MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
FrameRegister);
uint8_t *EhEnd = CurBufferPtr;
BufferBegin = SavedBufferBegin;
BufferEnd = SavedBufferEnd;
CurBufferPtr = SavedCurBufferPtr;
if (DwarfExceptionHandling) {
TheJIT->RegisterTable(FrameRegister);
}
if (JITEmitDebugInfo) {
DebugInfo I;
I.FnStart = FnStart;
I.FnEnd = FnEnd;
I.EhStart = EhStart;
I.EhEnd = EhEnd;
DR->RegisterFunction(F.getFunction(), I);
}
}
if (MMI)
MMI->EndFunction();
return false;
}
void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
Relocations.clear(); // Clear the old relocations or we'll reapply them.
ConstPoolAddresses.clear();
++NumRetries;
deallocateMemForFunction(F.getFunction());
// Try again with at least twice as much free space.
SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
}
/// deallocateMemForFunction - Deallocate all memory for the specified
/// function body. Also drop any references the function has to stubs.
/// May be called while the Function is being destroyed inside ~Value().
void JITEmitter::deallocateMemForFunction(const Function *F) {
ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
Emitted = EmittedFunctions.find(F);
if (Emitted != EmittedFunctions.end()) {
MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
EmittedFunctions.erase(Emitted);
}
// TODO: Do we need to unregister exception handling information from libgcc
// here?
if (JITEmitDebugInfo) {
DR->UnregisterFunction(F);
}
// If the function did not reference any stubs, return.
if (CurFnStubUses.find(F) == CurFnStubUses.end())
return;
// For each referenced stub, erase the reference to this function, and then
// erase the list of referenced stubs.
SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
void *Stub = StubList[i];
// If we already invalidated this stub for this function, continue.
if (StubFnRefs.count(Stub) == 0)
continue;
SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
FnRefs.erase(F);
// If this function was the last reference to the stub, invalidate the stub
// in the JITResolver. Were there a memory manager deallocateStub routine,
// we could call that at this point too.
if (FnRefs.empty()) {
DEBUG(dbgs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
StubFnRefs.erase(Stub);
// Invalidate the stub. If it is a GV stub, update the JIT's global
// mapping for that GV to zero.
GlobalValue *GV = Resolver.invalidateStub(Stub);
if (GV) {
TheJIT->updateGlobalMapping(GV, 0);
}
}
}
CurFnStubUses.erase(F);
}
void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
if (BufferBegin)
return JITCodeEmitter::allocateSpace(Size, Alignment);
// create a new memory block if there is no active one.
// care must be taken so that BufferBegin is invalidated when a
// block is trimmed
BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
BufferEnd = BufferBegin+Size;
return CurBufferPtr;
}
void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
// Delegate this call through the memory manager.
return MemMgr->allocateGlobal(Size, Alignment);
}
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
if (TheJIT->getJITInfo().hasCustomConstantPool())
return;
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
if (Constants.empty()) return;
unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
unsigned Align = MCP->getConstantPoolAlignment();
ConstantPoolBase = allocateSpace(Size, Align);
ConstantPool = MCP;
if (ConstantPoolBase == 0) return; // Buffer overflow.
DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
<< "] (size: " << Size << ", alignment: " << Align << ")\n");
// Initialize the memory for all of the constant pool entries.
unsigned Offset = 0;
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
MachineConstantPoolEntry CPE = Constants[i];
unsigned AlignMask = CPE.getAlignment() - 1;
Offset = (Offset + AlignMask) & ~AlignMask;
uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
ConstPoolAddresses.push_back(CAddr);
if (CPE.isMachineConstantPoolEntry()) {
// FIXME: add support to lower machine constant pool values into bytes!
llvm_report_error("Initialize memory with machine specific constant pool"
"entry has not been implemented!");
}
TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
dbgs().write_hex(CAddr) << "]\n");
const Type *Ty = CPE.Val.ConstVal->getType();
Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
}
}
void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
if (TheJIT->getJITInfo().hasCustomJumpTables())
return;
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
unsigned NumEntries = 0;
for (unsigned i = 0, e = JT.size(); i != e; ++i)
NumEntries += JT[i].MBBs.size();
unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
// Just allocate space for all the jump tables now. We will fix up the actual
// MBB entries in the tables after we emit the code for each block, since then
// we will know the final locations of the MBBs in memory.
JumpTable = MJTI;
JumpTableBase = allocateSpace(NumEntries * EntrySize,
MJTI->getEntryAlignment(*TheJIT->getTargetData()));
}
void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
if (TheJIT->getJITInfo().hasCustomJumpTables())
return;
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty() || JumpTableBase == 0) return;
switch (MJTI->getEntryKind()) {
case MachineJumpTableInfo::EK_BlockAddress: {
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
// .word LBB123
assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
"Cross JIT'ing?");
// For each jump table, map each target in the jump table to the address of
// an emitted MachineBasicBlock.
intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
// Store the address of the basic block for this jump table slot in the
// memory we allocated for the jump table in 'initJumpTableInfo'
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
*SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
}
break;
}
case MachineJumpTableInfo::EK_Custom32:
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32: {
assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
// For each jump table, place the offset from the beginning of the table
// to the target address.
int *SlotPtr = (int*)JumpTableBase;
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
// Store the offset of the basic block for this jump table slot in the
// memory we allocated for the jump table in 'initJumpTableInfo'
uintptr_t Base = (uintptr_t)SlotPtr;
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
/// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
*SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
}
}
break;
}
}
}
void JITEmitter::startGVStub(const GlobalValue* GV,
unsigned StubSize, unsigned Alignment) {
SavedBufferBegin = BufferBegin;
SavedBufferEnd = BufferEnd;
SavedCurBufferPtr = CurBufferPtr;
BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
BufferEnd = BufferBegin+StubSize+1;
}
void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
SavedBufferBegin = BufferBegin;
SavedBufferEnd = BufferEnd;
SavedCurBufferPtr = CurBufferPtr;
BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
BufferEnd = BufferBegin+StubSize+1;
}
void JITEmitter::finishGVStub() {
assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
NumBytes += getCurrentPCOffset();
BufferBegin = SavedBufferBegin;
BufferEnd = SavedBufferEnd;
CurBufferPtr = SavedCurBufferPtr;
}
void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
const uint8_t *Buffer, size_t Size,
unsigned Alignment) {
uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
memcpy(IndGV, Buffer, Size);
return IndGV;
}
// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
// in the constant pool that was last emitted with the 'emitConstantPool'
// method.
//
uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
assert(ConstantNum < ConstantPool->getConstants().size() &&
"Invalid ConstantPoolIndex!");
return ConstPoolAddresses[ConstantNum];
}
// getJumpTableEntryAddress - Return the address of the JumpTable with index
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
//
uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
assert(Index < JT.size() && "Invalid jump table index!");
unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
unsigned Offset = 0;
for (unsigned i = 0; i < Index; ++i)
Offset += JT[i].MBBs.size();
Offset *= EntrySize;
return (uintptr_t)((char *)JumpTableBase + Offset);
}
void JITEmitter::EmittedFunctionConfig::onDelete(
JITEmitter *Emitter, const Function *F) {
Emitter->deallocateMemForFunction(F);
}
void JITEmitter::EmittedFunctionConfig::onRAUW(
JITEmitter *, const Function*, const Function*) {
llvm_unreachable("The JIT doesn't know how to handle a"
" RAUW on a value it has emitted.");
}
//===----------------------------------------------------------------------===//
// Public interface to this file
//===----------------------------------------------------------------------===//
JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
TargetMachine &tm) {
return new JITEmitter(jit, JMM, tm);
}
// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function. If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
// If we have already code generated the function, just return the address.
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr;
// Get a stub if the target supports it.
assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
return JE->getJITResolver().getLazyFunctionStub(F);
}
void JIT::updateFunctionStub(Function *F) {
// Get the empty stub we generated earlier.
assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr != Stub && "Function must have non-stub address to be updated.");
// Tell the target jit info to rewrite the stub at the specified address,
// rather than creating a new one.
TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
JE->startGVStub(Stub, layout.Size);
getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
JE->finishGVStub();
}
/// freeMachineCodeForFunction - release machine code memory for given Function.
///
void JIT::freeMachineCodeForFunction(Function *F) {
// Delete translation for this from the ExecutionEngine, so it will get
// retranslated next time it is used.
updateGlobalMapping(F, 0);
// Free the actual memory for the function body and related stuff.
assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
}