mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
7c40b1a7bc
The global-merge pass was crashing because it assumes that all ConstantExprs (reached via the global variables that they use) have at least one user. I haven't worked out a way to test this, as an unused ConstantExpr cannot be represented by serialised IR, and global-merge can only be run in llc, which does not run any passes which can make a ConstantExpr dead. This (reduced to the point of silliness) C code triggers this bug when compiled for arm-none-eabi at -O1: static a = 7; static volatile b[10] = {&a}; c; main() { c = 0; for (; c < 10;) printf(b[c]); } Differential Revision: http://reviews.llvm.org/D10314 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239308 91177308-0d34-0410-b5e6-96231b3b80d8
607 lines
22 KiB
C++
607 lines
22 KiB
C++
//===-- GlobalMerge.cpp - Internal globals merging -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This pass merges globals with internal linkage into one. This way all the
|
|
// globals which were merged into a biggest one can be addressed using offsets
|
|
// from the same base pointer (no need for separate base pointer for each of the
|
|
// global). Such a transformation can significantly reduce the register pressure
|
|
// when many globals are involved.
|
|
//
|
|
// For example, consider the code which touches several global variables at
|
|
// once:
|
|
//
|
|
// static int foo[N], bar[N], baz[N];
|
|
//
|
|
// for (i = 0; i < N; ++i) {
|
|
// foo[i] = bar[i] * baz[i];
|
|
// }
|
|
//
|
|
// On ARM the addresses of 3 arrays should be kept in the registers, thus
|
|
// this code has quite large register pressure (loop body):
|
|
//
|
|
// ldr r1, [r5], #4
|
|
// ldr r2, [r6], #4
|
|
// mul r1, r2, r1
|
|
// str r1, [r0], #4
|
|
//
|
|
// Pass converts the code to something like:
|
|
//
|
|
// static struct {
|
|
// int foo[N];
|
|
// int bar[N];
|
|
// int baz[N];
|
|
// } merged;
|
|
//
|
|
// for (i = 0; i < N; ++i) {
|
|
// merged.foo[i] = merged.bar[i] * merged.baz[i];
|
|
// }
|
|
//
|
|
// and in ARM code this becomes:
|
|
//
|
|
// ldr r0, [r5, #40]
|
|
// ldr r1, [r5, #80]
|
|
// mul r0, r1, r0
|
|
// str r0, [r5], #4
|
|
//
|
|
// note that we saved 2 registers here almostly "for free".
|
|
//
|
|
// However, merging globals can have tradeoffs:
|
|
// - it confuses debuggers, tools, and users
|
|
// - it makes linker optimizations less useful (order files, LOHs, ...)
|
|
// - it forces usage of indexed addressing (which isn't necessarily "free")
|
|
// - it can increase register pressure when the uses are disparate enough.
|
|
//
|
|
// We use heuristics to discover the best global grouping we can (cf cl::opts).
|
|
// ===---------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "global-merge"
|
|
|
|
// FIXME: This is only useful as a last-resort way to disable the pass.
|
|
static cl::opt<bool>
|
|
EnableGlobalMerge("enable-global-merge", cl::Hidden,
|
|
cl::desc("Enable the global merge pass"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> GlobalMergeGroupByUse(
|
|
"global-merge-group-by-use", cl::Hidden,
|
|
cl::desc("Improve global merge pass to look at uses"), cl::init(true));
|
|
|
|
static cl::opt<bool> GlobalMergeIgnoreSingleUse(
|
|
"global-merge-ignore-single-use", cl::Hidden,
|
|
cl::desc("Improve global merge pass to ignore globals only used alone"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
|
|
cl::desc("Enable global merge pass on constants"),
|
|
cl::init(false));
|
|
|
|
// FIXME: this could be a transitional option, and we probably need to remove
|
|
// it if only we are sure this optimization could always benefit all targets.
|
|
static cl::opt<bool>
|
|
EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
|
|
cl::desc("Enable global merge pass on external linkage"),
|
|
cl::init(false));
|
|
|
|
STATISTIC(NumMerged, "Number of globals merged");
|
|
namespace {
|
|
class GlobalMerge : public FunctionPass {
|
|
const TargetMachine *TM;
|
|
const DataLayout *DL;
|
|
// FIXME: Infer the maximum possible offset depending on the actual users
|
|
// (these max offsets are different for the users inside Thumb or ARM
|
|
// functions), see the code that passes in the offset in the ARM backend
|
|
// for more information.
|
|
unsigned MaxOffset;
|
|
|
|
/// Whether we should try to optimize for size only.
|
|
/// Currently, this applies a dead simple heuristic: only consider globals
|
|
/// used in minsize functions for merging.
|
|
/// FIXME: This could learn about optsize, and be used in the cost model.
|
|
bool OnlyOptimizeForSize;
|
|
|
|
bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
|
|
Module &M, bool isConst, unsigned AddrSpace) const;
|
|
/// \brief Merge everything in \p Globals for which the corresponding bit
|
|
/// in \p GlobalSet is set.
|
|
bool doMerge(SmallVectorImpl<GlobalVariable *> &Globals,
|
|
const BitVector &GlobalSet, Module &M, bool isConst,
|
|
unsigned AddrSpace) const;
|
|
|
|
/// \brief Check if the given variable has been identified as must keep
|
|
/// \pre setMustKeepGlobalVariables must have been called on the Module that
|
|
/// contains GV
|
|
bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
|
|
return MustKeepGlobalVariables.count(GV);
|
|
}
|
|
|
|
/// Collect every variables marked as "used" or used in a landing pad
|
|
/// instruction for this Module.
|
|
void setMustKeepGlobalVariables(Module &M);
|
|
|
|
/// Collect every variables marked as "used"
|
|
void collectUsedGlobalVariables(Module &M);
|
|
|
|
/// Keep track of the GlobalVariable that must not be merged away
|
|
SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
explicit GlobalMerge(const TargetMachine *TM = nullptr,
|
|
unsigned MaximalOffset = 0,
|
|
bool OnlyOptimizeForSize = false)
|
|
: FunctionPass(ID), TM(TM), DL(TM->getDataLayout()),
|
|
MaxOffset(MaximalOffset), OnlyOptimizeForSize(OnlyOptimizeForSize) {
|
|
initializeGlobalMergePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool doInitialization(Module &M) override;
|
|
bool runOnFunction(Function &F) override;
|
|
bool doFinalization(Module &M) override;
|
|
|
|
const char *getPassName() const override {
|
|
return "Merge internal globals";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char GlobalMerge::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(GlobalMerge, "global-merge", "Merge global variables",
|
|
false, false)
|
|
INITIALIZE_PASS_END(GlobalMerge, "global-merge", "Merge global variables",
|
|
false, false)
|
|
|
|
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
|
|
Module &M, bool isConst, unsigned AddrSpace) const {
|
|
// FIXME: Find better heuristics
|
|
std::stable_sort(Globals.begin(), Globals.end(),
|
|
[this](const GlobalVariable *GV1, const GlobalVariable *GV2) {
|
|
Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType();
|
|
Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType();
|
|
|
|
return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2));
|
|
});
|
|
|
|
// If we want to just blindly group all globals together, do so.
|
|
if (!GlobalMergeGroupByUse) {
|
|
BitVector AllGlobals(Globals.size());
|
|
AllGlobals.set();
|
|
return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
|
|
}
|
|
|
|
// If we want to be smarter, look at all uses of each global, to try to
|
|
// discover all sets of globals used together, and how many times each of
|
|
// these sets occured.
|
|
//
|
|
// Keep this reasonably efficient, by having an append-only list of all sets
|
|
// discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of
|
|
// code (currently, a Function) to the set of globals seen so far that are
|
|
// used together in that unit (GlobalUsesByFunction).
|
|
//
|
|
// When we look at the Nth global, we now that any new set is either:
|
|
// - the singleton set {N}, containing this global only, or
|
|
// - the union of {N} and a previously-discovered set, containing some
|
|
// combination of the previous N-1 globals.
|
|
// Using that knowledge, when looking at the Nth global, we can keep:
|
|
// - a reference to the singleton set {N} (CurGVOnlySetIdx)
|
|
// - a list mapping each previous set to its union with {N} (EncounteredUGS),
|
|
// if it actually occurs.
|
|
|
|
// We keep track of the sets of globals used together "close enough".
|
|
struct UsedGlobalSet {
|
|
UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {}
|
|
BitVector Globals;
|
|
unsigned UsageCount;
|
|
};
|
|
|
|
// Each set is unique in UsedGlobalSets.
|
|
std::vector<UsedGlobalSet> UsedGlobalSets;
|
|
|
|
// Avoid repeating the create-global-set pattern.
|
|
auto CreateGlobalSet = [&]() -> UsedGlobalSet & {
|
|
UsedGlobalSets.emplace_back(Globals.size());
|
|
return UsedGlobalSets.back();
|
|
};
|
|
|
|
// The first set is the empty set.
|
|
CreateGlobalSet().UsageCount = 0;
|
|
|
|
// We define "close enough" to be "in the same function".
|
|
// FIXME: Grouping uses by function is way too aggressive, so we should have
|
|
// a better metric for distance between uses.
|
|
// The obvious alternative would be to group by BasicBlock, but that's in
|
|
// turn too conservative..
|
|
// Anything in between wouldn't be trivial to compute, so just stick with
|
|
// per-function grouping.
|
|
|
|
// The value type is an index into UsedGlobalSets.
|
|
// The default (0) conveniently points to the empty set.
|
|
DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction;
|
|
|
|
// Now, look at each merge-eligible global in turn.
|
|
|
|
// Keep track of the sets we already encountered to which we added the
|
|
// current global.
|
|
// Each element matches the same-index element in UsedGlobalSets.
|
|
// This lets us efficiently tell whether a set has already been expanded to
|
|
// include the current global.
|
|
std::vector<size_t> EncounteredUGS;
|
|
|
|
for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) {
|
|
GlobalVariable *GV = Globals[GI];
|
|
|
|
// Reset the encountered sets for this global...
|
|
std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0);
|
|
// ...and grow it in case we created new sets for the previous global.
|
|
EncounteredUGS.resize(UsedGlobalSets.size());
|
|
|
|
// We might need to create a set that only consists of the current global.
|
|
// Keep track of its index into UsedGlobalSets.
|
|
size_t CurGVOnlySetIdx = 0;
|
|
|
|
// For each global, look at all its Uses.
|
|
for (auto &U : GV->uses()) {
|
|
// This Use might be a ConstantExpr. We're interested in Instruction
|
|
// users, so look through ConstantExpr...
|
|
Use *UI, *UE;
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
|
|
if (CE->use_empty())
|
|
continue;
|
|
UI = &*CE->use_begin();
|
|
UE = nullptr;
|
|
} else if (isa<Instruction>(U.getUser())) {
|
|
UI = &U;
|
|
UE = UI->getNext();
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
// ...to iterate on all the instruction users of the global.
|
|
// Note that we iterate on Uses and not on Users to be able to getNext().
|
|
for (; UI != UE; UI = UI->getNext()) {
|
|
Instruction *I = dyn_cast<Instruction>(UI->getUser());
|
|
if (!I)
|
|
continue;
|
|
|
|
Function *ParentFn = I->getParent()->getParent();
|
|
|
|
// If we're only optimizing for size, ignore non-minsize functions.
|
|
if (OnlyOptimizeForSize &&
|
|
!ParentFn->hasFnAttribute(Attribute::MinSize))
|
|
continue;
|
|
|
|
size_t UGSIdx = GlobalUsesByFunction[ParentFn];
|
|
|
|
// If this is the first global the basic block uses, map it to the set
|
|
// consisting of this global only.
|
|
if (!UGSIdx) {
|
|
// If that set doesn't exist yet, create it.
|
|
if (!CurGVOnlySetIdx) {
|
|
CurGVOnlySetIdx = UsedGlobalSets.size();
|
|
CreateGlobalSet().Globals.set(GI);
|
|
} else {
|
|
++UsedGlobalSets[CurGVOnlySetIdx].UsageCount;
|
|
}
|
|
|
|
GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx;
|
|
continue;
|
|
}
|
|
|
|
// If we already encountered this BB, just increment the counter.
|
|
if (UsedGlobalSets[UGSIdx].Globals.test(GI)) {
|
|
++UsedGlobalSets[UGSIdx].UsageCount;
|
|
continue;
|
|
}
|
|
|
|
// If not, the previous set wasn't actually used in this function.
|
|
--UsedGlobalSets[UGSIdx].UsageCount;
|
|
|
|
// If we already expanded the previous set to include this global, just
|
|
// reuse that expanded set.
|
|
if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) {
|
|
++UsedGlobalSets[ExpandedIdx].UsageCount;
|
|
GlobalUsesByFunction[ParentFn] = ExpandedIdx;
|
|
continue;
|
|
}
|
|
|
|
// If not, create a new set consisting of the union of the previous set
|
|
// and this global. Mark it as encountered, so we can reuse it later.
|
|
GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] =
|
|
UsedGlobalSets.size();
|
|
|
|
UsedGlobalSet &NewUGS = CreateGlobalSet();
|
|
NewUGS.Globals.set(GI);
|
|
NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we found a bunch of sets of globals used together. We accumulated
|
|
// the number of times we encountered the sets (i.e., the number of blocks
|
|
// that use that exact set of globals).
|
|
//
|
|
// Multiply that by the size of the set to give us a crude profitability
|
|
// metric.
|
|
std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(),
|
|
[](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) {
|
|
return UGS1.Globals.count() * UGS1.UsageCount <
|
|
UGS2.Globals.count() * UGS2.UsageCount;
|
|
});
|
|
|
|
// We can choose to merge all globals together, but ignore globals never used
|
|
// with another global. This catches the obviously non-profitable cases of
|
|
// having a single global, but is aggressive enough for any other case.
|
|
if (GlobalMergeIgnoreSingleUse) {
|
|
BitVector AllGlobals(Globals.size());
|
|
for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
|
|
const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
|
|
if (UGS.UsageCount == 0)
|
|
continue;
|
|
if (UGS.Globals.count() > 1)
|
|
AllGlobals |= UGS.Globals;
|
|
}
|
|
return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
|
|
}
|
|
|
|
// Starting from the sets with the best (=biggest) profitability, find a
|
|
// good combination.
|
|
// The ideal (and expensive) solution can only be found by trying all
|
|
// combinations, looking for the one with the best profitability.
|
|
// Don't be smart about it, and just pick the first compatible combination,
|
|
// starting with the sets with the best profitability.
|
|
BitVector PickedGlobals(Globals.size());
|
|
bool Changed = false;
|
|
|
|
for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
|
|
const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
|
|
if (UGS.UsageCount == 0)
|
|
continue;
|
|
if (PickedGlobals.anyCommon(UGS.Globals))
|
|
continue;
|
|
PickedGlobals |= UGS.Globals;
|
|
// If the set only contains one global, there's no point in merging.
|
|
// Ignore the global for inclusion in other sets though, so keep it in
|
|
// PickedGlobals.
|
|
if (UGS.Globals.count() < 2)
|
|
continue;
|
|
Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable *> &Globals,
|
|
const BitVector &GlobalSet, Module &M, bool isConst,
|
|
unsigned AddrSpace) const {
|
|
|
|
Type *Int32Ty = Type::getInt32Ty(M.getContext());
|
|
|
|
assert(Globals.size() > 1);
|
|
|
|
DEBUG(dbgs() << " Trying to merge set, starts with #"
|
|
<< GlobalSet.find_first() << "\n");
|
|
|
|
ssize_t i = GlobalSet.find_first();
|
|
while (i != -1) {
|
|
ssize_t j = 0;
|
|
uint64_t MergedSize = 0;
|
|
std::vector<Type*> Tys;
|
|
std::vector<Constant*> Inits;
|
|
|
|
bool HasExternal = false;
|
|
GlobalVariable *TheFirstExternal = 0;
|
|
for (j = i; j != -1; j = GlobalSet.find_next(j)) {
|
|
Type *Ty = Globals[j]->getType()->getElementType();
|
|
MergedSize += DL->getTypeAllocSize(Ty);
|
|
if (MergedSize > MaxOffset) {
|
|
break;
|
|
}
|
|
Tys.push_back(Ty);
|
|
Inits.push_back(Globals[j]->getInitializer());
|
|
|
|
if (Globals[j]->hasExternalLinkage() && !HasExternal) {
|
|
HasExternal = true;
|
|
TheFirstExternal = Globals[j];
|
|
}
|
|
}
|
|
|
|
// If merged variables doesn't have external linkage, we needn't to expose
|
|
// the symbol after merging.
|
|
GlobalValue::LinkageTypes Linkage = HasExternal
|
|
? GlobalValue::ExternalLinkage
|
|
: GlobalValue::InternalLinkage;
|
|
|
|
StructType *MergedTy = StructType::get(M.getContext(), Tys);
|
|
Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
|
|
|
|
// If merged variables have external linkage, we use symbol name of the
|
|
// first variable merged as the suffix of global symbol name. This would
|
|
// be able to avoid the link-time naming conflict for globalm symbols.
|
|
GlobalVariable *MergedGV = new GlobalVariable(
|
|
M, MergedTy, isConst, Linkage, MergedInit,
|
|
HasExternal ? "_MergedGlobals_" + TheFirstExternal->getName()
|
|
: "_MergedGlobals",
|
|
nullptr, GlobalVariable::NotThreadLocal, AddrSpace);
|
|
|
|
for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k)) {
|
|
GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
|
|
std::string Name = Globals[k]->getName();
|
|
|
|
Constant *Idx[2] = {
|
|
ConstantInt::get(Int32Ty, 0),
|
|
ConstantInt::get(Int32Ty, idx++)
|
|
};
|
|
Constant *GEP =
|
|
ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx);
|
|
Globals[k]->replaceAllUsesWith(GEP);
|
|
Globals[k]->eraseFromParent();
|
|
|
|
if (Linkage != GlobalValue::InternalLinkage) {
|
|
// Generate a new alias...
|
|
auto *PTy = cast<PointerType>(GEP->getType());
|
|
GlobalAlias::create(PTy, Linkage, Name, GEP, &M);
|
|
}
|
|
|
|
NumMerged++;
|
|
}
|
|
i = j;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void GlobalMerge::collectUsedGlobalVariables(Module &M) {
|
|
// Extract global variables from llvm.used array
|
|
const GlobalVariable *GV = M.getGlobalVariable("llvm.used");
|
|
if (!GV || !GV->hasInitializer()) return;
|
|
|
|
// Should be an array of 'i8*'.
|
|
const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
|
|
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
|
|
if (const GlobalVariable *G =
|
|
dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
|
|
MustKeepGlobalVariables.insert(G);
|
|
}
|
|
|
|
void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
|
|
collectUsedGlobalVariables(M);
|
|
|
|
for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn;
|
|
++IFn) {
|
|
for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end();
|
|
IBB != IEndBB; ++IBB) {
|
|
// Follow the invoke link to find the landing pad instruction
|
|
const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator());
|
|
if (!II) continue;
|
|
|
|
const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst();
|
|
// Look for globals in the clauses of the landing pad instruction
|
|
for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses();
|
|
Idx != NumClauses; ++Idx)
|
|
if (const GlobalVariable *GV =
|
|
dyn_cast<GlobalVariable>(LPInst->getClause(Idx)
|
|
->stripPointerCasts()))
|
|
MustKeepGlobalVariables.insert(GV);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool GlobalMerge::doInitialization(Module &M) {
|
|
if (!EnableGlobalMerge)
|
|
return false;
|
|
|
|
DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
|
|
BSSGlobals;
|
|
bool Changed = false;
|
|
setMustKeepGlobalVariables(M);
|
|
|
|
// Grab all non-const globals.
|
|
for (Module::global_iterator I = M.global_begin(),
|
|
E = M.global_end(); I != E; ++I) {
|
|
// Merge is safe for "normal" internal or external globals only
|
|
if (I->isDeclaration() || I->isThreadLocal() || I->hasSection())
|
|
continue;
|
|
|
|
if (!(EnableGlobalMergeOnExternal && I->hasExternalLinkage()) &&
|
|
!I->hasInternalLinkage())
|
|
continue;
|
|
|
|
PointerType *PT = dyn_cast<PointerType>(I->getType());
|
|
assert(PT && "Global variable is not a pointer!");
|
|
|
|
unsigned AddressSpace = PT->getAddressSpace();
|
|
|
|
// Ignore fancy-aligned globals for now.
|
|
unsigned Alignment = DL->getPreferredAlignment(I);
|
|
Type *Ty = I->getType()->getElementType();
|
|
if (Alignment > DL->getABITypeAlignment(Ty))
|
|
continue;
|
|
|
|
// Ignore all 'special' globals.
|
|
if (I->getName().startswith("llvm.") ||
|
|
I->getName().startswith(".llvm."))
|
|
continue;
|
|
|
|
// Ignore all "required" globals:
|
|
if (isMustKeepGlobalVariable(I))
|
|
continue;
|
|
|
|
if (DL->getTypeAllocSize(Ty) < MaxOffset) {
|
|
if (TargetLoweringObjectFile::getKindForGlobal(I, *TM).isBSSLocal())
|
|
BSSGlobals[AddressSpace].push_back(I);
|
|
else if (I->isConstant())
|
|
ConstGlobals[AddressSpace].push_back(I);
|
|
else
|
|
Globals[AddressSpace].push_back(I);
|
|
}
|
|
}
|
|
|
|
for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
|
|
I = Globals.begin(), E = Globals.end(); I != E; ++I)
|
|
if (I->second.size() > 1)
|
|
Changed |= doMerge(I->second, M, false, I->first);
|
|
|
|
for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
|
|
I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
|
|
if (I->second.size() > 1)
|
|
Changed |= doMerge(I->second, M, false, I->first);
|
|
|
|
if (EnableGlobalMergeOnConst)
|
|
for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
|
|
I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I)
|
|
if (I->second.size() > 1)
|
|
Changed |= doMerge(I->second, M, true, I->first);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool GlobalMerge::runOnFunction(Function &F) {
|
|
return false;
|
|
}
|
|
|
|
bool GlobalMerge::doFinalization(Module &M) {
|
|
MustKeepGlobalVariables.clear();
|
|
return false;
|
|
}
|
|
|
|
Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset,
|
|
bool OnlyOptimizeForSize) {
|
|
return new GlobalMerge(TM, Offset, OnlyOptimizeForSize);
|
|
}
|