llvm-6502/lib/Target/ARM/ARMISelLowering.cpp
Anton Korobeynikov b10308e440 Propagate changes from my local tree. This patch includes:
1. New parameter attribute called 'inreg'. It has meaning "place this
parameter in registers, if possible". This is some generalization of
gcc's regparm(n) attribute. It's currently used only in X86-32 backend.
2. Completely rewritten CC handling/lowering code inside X86 backend.
Merged stdcall + c CCs and fastcall + fast CC.
3. Dropped CSRET CC. We cannot add struct return variant for each
target-specific CC (e.g. stdcall + csretcc and so on).
4. Instead of CSRET CC introduced 'sret' parameter attribute. Setting in
on first attribute has meaning 'This is hidden pointer to structure
return. Handle it gently'.
5. Fixed small bug in llvm-extract + add new feature to
FunctionExtraction pass, which relinks all internal-linkaged callees
from deleted function to external linkage. This will allow further
linking everything together.

NOTEs: 1. Documentation will be updated soon.
       2. llvm-upgrade should be improved to translate csret => sret.
          Before this, there will be some unexpected test fails.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33597 91177308-0d34-0410-b5e6-96231b3b80d8
2007-01-28 13:31:35 +00:00

1414 lines
55 KiB
C++

//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/ADT/VectorExtras.h"
using namespace llvm;
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
: TargetLowering(TM), ARMPCLabelIndex(0) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
// Uses VFP for Thumb libfuncs if available.
if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
// Single-precision floating-point arithmetic.
setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
// Double-precision floating-point arithmetic.
setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
// Single-precision comparisons.
setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
// Double-precision comparisons.
setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
// Floating-point to integer conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
// Conversions between floating types.
setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
// Integer to floating-point conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
// FIXME: There appears to be some naming inconsistency in ARM libgcc: e.g.
// __floatunsidf vs. __floatunssidfvfp.
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
}
addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
if (Subtarget->hasVFP2() && !Subtarget->isThumb()) {
addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
}
// ARM does not have f32 extending load.
setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand);
// ARM supports all 4 flavors of integer indexed load / store.
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i1, Legal);
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i1, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
}
// i64 operation support.
if (Subtarget->isThumb()) {
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
} else {
setOperationAction(ISD::MUL, MVT::i64, Custom);
setOperationAction(ISD::MULHU, MVT::i32, Custom);
if (!Subtarget->hasV6Ops())
setOperationAction(ISD::MULHS, MVT::i32, Custom);
}
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL, MVT::i64, Custom);
setOperationAction(ISD::SRA, MVT::i64, Custom);
// ARM does not have ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasV5TOps())
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
// These are expanded into libcalls.
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
// Support label based line numbers.
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
// FIXME - use subtarget debug flags
if (Subtarget->isTargetDarwin())
setOperationAction(ISD::LABEL, MVT::Other, Expand);
setOperationAction(ISD::RET, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
// Expand mem operations genericly.
setOperationAction(ISD::MEMSET , MVT::Other, Expand);
setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
// Use the default implementation.
setOperationAction(ISD::VASTART , MVT::Other, Expand);
setOperationAction(ISD::VAARG , MVT::Other, Expand);
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
if (!Subtarget->hasV6Ops()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
}
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (Subtarget->hasVFP2() && !Subtarget->isThumb())
// Turn f64->i64 into FMRRD iff target supports vfp2.
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
setOperationAction(ISD::SETCC , MVT::i32, Expand);
setOperationAction(ISD::SETCC , MVT::f32, Expand);
setOperationAction(ISD::SETCC , MVT::f64, Expand);
setOperationAction(ISD::SELECT , MVT::i32, Expand);
setOperationAction(ISD::SELECT , MVT::f32, Expand);
setOperationAction(ISD::SELECT , MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND , MVT::Other, Expand);
setOperationAction(ISD::BR_CC , MVT::i32, Custom);
setOperationAction(ISD::BR_CC , MVT::f32, Custom);
setOperationAction(ISD::BR_CC , MVT::f64, Custom);
setOperationAction(ISD::BR_JT , MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
// FP Constants can't be immediates.
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
// We don't support sin/cos/fmod/copysign
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// int <-> fp are custom expanded into bit_convert + ARMISD ops.
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setStackPointerRegisterToSaveRestore(ARM::SP);
setSchedulingPreference(SchedulingForRegPressure);
computeRegisterProperties();
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case ARMISD::Wrapper: return "ARMISD::Wrapper";
case ARMISD::WrapperCall: return "ARMISD::WrapperCall";
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
case ARMISD::tCALL: return "ARMISD::tCALL";
case ARMISD::BRCOND: return "ARMISD::BRCOND";
case ARMISD::BR_JT: return "ARMISD::BR_JT";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::CMPFP: return "ARMISD::CMPFP";
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
case ARMISD::CMOV: return "ARMISD::CMOV";
case ARMISD::CNEG: return "ARMISD::CNEG";
case ARMISD::FTOSI: return "ARMISD::FTOSI";
case ARMISD::FTOUI: return "ARMISD::FTOUI";
case ARMISD::SITOF: return "ARMISD::SITOF";
case ARMISD::UITOF: return "ARMISD::UITOF";
case ARMISD::MULHILOU: return "ARMISD::MULHILOU";
case ARMISD::MULHILOS: return "ARMISD::MULHILOS";
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
case ARMISD::RRX: return "ARMISD::RRX";
case ARMISD::FMRRD: return "ARMISD::FMRRD";
case ARMISD::FMDRR: return "ARMISD::FMDRR";
}
}
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default: assert(0 && "Unknown condition code!");
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETUGE: return ARMCC::HS;
case ISD::SETULT: return ARMCC::LO;
case ISD::SETULE: return ARMCC::LS;
}
}
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
/// returns true if the operands should be inverted to form the proper
/// comparison.
static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
ARMCC::CondCodes &CondCode2) {
bool Invert = false;
CondCode2 = ARMCC::AL;
switch (CC) {
default: assert(0 && "Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = ARMCC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = ARMCC::GE; break;
case ISD::SETOLT: CondCode = ARMCC::MI; break;
case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
case ISD::SETO: CondCode = ARMCC::VC; break;
case ISD::SETUO: CondCode = ARMCC::VS; break;
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
case ISD::SETUGT: CondCode = ARMCC::HI; break;
case ISD::SETUGE: CondCode = ARMCC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = ARMCC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = ARMCC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = ARMCC::NE; break;
}
return Invert;
}
static void
HowToPassArgument(MVT::ValueType ObjectVT,
unsigned NumGPRs, unsigned &ObjSize, unsigned &ObjGPRs) {
ObjSize = 0;
ObjGPRs = 0;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i32:
case MVT::f32:
if (NumGPRs < 4)
ObjGPRs = 1;
else
ObjSize = 4;
break;
case MVT::i64:
case MVT::f64:
if (NumGPRs < 3)
ObjGPRs = 2;
else if (NumGPRs == 3) {
ObjGPRs = 1;
ObjSize = 4;
} else
ObjSize = 8;
}
}
// This transforms a ISD::CALL node into a
// callseq_star <- ARMISD:CALL <- callseq_end
// chain
SDOperand ARMTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType RetVT= Op.Val->getValueType(0);
SDOperand Chain = Op.getOperand(0);
unsigned CallConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
assert((CallConv == CallingConv::C ||
CallConv == CallingConv::Fast) && "unknown calling convention");
SDOperand Callee = Op.getOperand(4);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
unsigned NumGPRs = 0; // GPRs used for parameter passing.
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
// Add up all the space actually used.
for (unsigned i = 0; i < NumOps; ++i) {
unsigned ObjSize = 0;
unsigned ObjGPRs = 0;
MVT::ValueType ObjectVT = Op.getOperand(5+2*i).getValueType();
HowToPassArgument(ObjectVT, NumGPRs, ObjSize, ObjGPRs);
NumBytes += ObjSize;
NumGPRs += ObjGPRs;
}
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getConstant(NumBytes, MVT::i32));
SDOperand StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
static const unsigned GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
NumGPRs = 0;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
MVT::ValueType ArgVT = Arg.getValueType();
unsigned ObjSize = 0;
unsigned ObjGPRs = 0;
HowToPassArgument(ArgVT, NumGPRs, ObjSize, ObjGPRs);
if (ObjGPRs > 0) {
switch (ArgVT) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i32:
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Arg));
break;
case MVT::f32:
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs],
DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg)));
break;
case MVT::i64: {
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
DAG.getConstant(0, getPointerTy()));
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
DAG.getConstant(1, getPointerTy()));
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Lo));
if (ObjGPRs == 2)
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], Hi));
else {
SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Hi, PtrOff, NULL, 0));
}
break;
}
case MVT::f64: {
SDOperand Cvt = DAG.getNode(ARMISD::FMRRD,
DAG.getVTList(MVT::i32, MVT::i32),
&Arg, 1);
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Cvt));
if (ObjGPRs == 2)
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1],
Cvt.getValue(1)));
else {
SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Cvt.getValue(1), PtrOff,
NULL, 0));
}
break;
}
}
} else {
assert(ObjSize != 0);
SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
}
NumGPRs += ObjGPRs;
ArgOffset += ObjSize;
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool isDirect = false;
bool isARMFunc = false;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
GlobalValue *GV = G->getGlobal();
Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
isDirect = true;
bool isExt = (GV->isExternal() || GV->hasWeakLinkage() ||
GV->hasLinkOnceLinkage());
bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
getTargetMachine().getRelocationModel() != Reloc::Static;
isARMFunc = !Subtarget->isThumb() || isStub;
// Wrap it since tBX takes a register source operand.
if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps())
Callee = DAG.getNode(ARMISD::WrapperCall, MVT::i32, Callee);
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
isDirect = true;
bool isStub = Subtarget->isTargetDarwin() &&
getTargetMachine().getRelocationModel() != Reloc::Static;
isARMFunc = !Subtarget->isThumb() || isStub;
// Wrap it since tBX takes a register source operand.
if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps())
Callee = DAG.getNode(ARMISD::WrapperCall, MVT::i32, Callee);
}
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// FIXME: handle tail calls differently.
unsigned CallOpc;
if (Subtarget->isThumb()) {
if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
} else {
CallOpc = (isDirect || Subtarget->hasV5TOps())
? ARMISD::CALL : ARMISD::CALL_NOLINK;
}
if (InFlag.Val)
Ops.push_back(InFlag);
Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
SDOperand CSOps[] = { Chain, DAG.getConstant(NumBytes, MVT::i32), InFlag };
Chain = DAG.getNode(ISD::CALLSEQ_END,
DAG.getNodeValueTypes(MVT::Other, MVT::Flag),
((RetVT != MVT::Other) ? 2 : 1), CSOps, 3);
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
// If the call has results, copy the values out of the ret val registers.
switch (RetVT) {
default: assert(0 && "Unexpected ret value!");
case MVT::Other:
break;
case MVT::i32:
Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
if (Op.Val->getValueType(1) == MVT::i32) {
// Returns a i64 value.
Chain = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
}
NodeTys.push_back(MVT::i32);
break;
case MVT::f32:
Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(DAG.getNode(ISD::BIT_CONVERT, MVT::f32,
Chain.getValue(0)));
NodeTys.push_back(MVT::f32);
break;
case MVT::f64: {
SDOperand Lo = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag);
SDOperand Hi = DAG.getCopyFromReg(Lo, ARM::R1, MVT::i32, Lo.getValue(2));
ResultVals.push_back(DAG.getNode(ARMISD::FMDRR, MVT::f64, Lo, Hi));
NodeTys.push_back(MVT::f64);
break;
}
}
NodeTys.push_back(MVT::Other);
if (ResultVals.empty())
return Chain;
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0],
ResultVals.size());
return Res.getValue(Op.ResNo);
}
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
SDOperand Copy;
SDOperand Chain = Op.getOperand(0);
switch(Op.getNumOperands()) {
default:
assert(0 && "Do not know how to return this many arguments!");
abort();
case 1: {
SDOperand LR = DAG.getRegister(ARM::LR, MVT::i32);
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain);
}
case 3:
Op = Op.getOperand(1);
if (Op.getValueType() == MVT::f32) {
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
} else if (Op.getValueType() == MVT::f64) {
// Recursively legalize f64 -> i64.
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Op);
return DAG.getNode(ISD::RET, MVT::Other, Chain, Op,
DAG.getConstant(0, MVT::i32));
}
Copy = DAG.getCopyToReg(Chain, ARM::R0, Op, SDOperand());
if (DAG.getMachineFunction().liveout_empty())
DAG.getMachineFunction().addLiveOut(ARM::R0);
break;
case 5:
Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand());
Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1));
// If we haven't noted the R0+R1 are live out, do so now.
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(ARM::R0);
DAG.getMachineFunction().addLiveOut(ARM::R1);
}
break;
}
//We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVri.
static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDOperand Res;
if (CP->isMachineConstantPoolEntry())
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
else
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment());
return DAG.getNode(ARMISD::Wrapper, MVT::i32, Res);
}
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
/// even in dynamic-no-pic mode.
static bool GVIsIndirectSymbol(GlobalValue *GV) {
return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
(GV->isExternal() && !GV->hasNotBeenReadFromBytecode()));
}
SDOperand ARMTargetLowering::LowerGlobalAddress(SDOperand Op,
SelectionDAG &DAG) {
MVT::ValueType PtrVT = getPointerTy();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
bool IsIndirect = Subtarget->isTargetDarwin() && GVIsIndirectSymbol(GV);
SDOperand CPAddr;
if (RelocM == Reloc::Static)
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2);
else {
unsigned PCAdj = (RelocM != Reloc::PIC_)
? 0 : (Subtarget->isThumb() ? 4 : 8);
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
IsIndirect, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
}
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
SDOperand Chain = Result.getValue(1);
if (RelocM == Reloc::PIC_) {
SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel);
}
if (IsIndirect)
Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0);
return Result;
}
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
unsigned VarArgsFrameIndex) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
SV->getOffset());
}
static SDOperand LowerFORMAL_ARGUMENT(SDOperand Op, SelectionDAG &DAG,
unsigned *vRegs, unsigned ArgNo,
unsigned &NumGPRs, unsigned &ArgOffset) {
MachineFunction &MF = DAG.getMachineFunction();
MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
SSARegMap *RegMap = MF.getSSARegMap();
static const unsigned GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
unsigned ObjSize = 0;
unsigned ObjGPRs = 0;
HowToPassArgument(ObjectVT, NumGPRs, ObjSize, ObjGPRs);
SDOperand ArgValue;
if (ObjGPRs == 1) {
unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
vRegs[NumGPRs] = VReg;
ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
if (ObjectVT == MVT::f32)
ArgValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, ArgValue);
} else if (ObjGPRs == 2) {
unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
vRegs[NumGPRs] = VReg;
ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs+1], VReg);
vRegs[NumGPRs+1] = VReg;
SDOperand ArgValue2 = DAG.getCopyFromReg(Root, VReg, MVT::i32);
if (ObjectVT == MVT::i64)
ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
else
ArgValue = DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
}
NumGPRs += ObjGPRs;
if (ObjSize) {
// If the argument is actually used, emit a load from the right stack
// slot.
if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
MachineFrameInfo *MFI = MF.getFrameInfo();
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
if (ObjGPRs == 0)
ArgValue = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
else {
SDOperand ArgValue2 =
DAG.getLoad(MVT::i32, Root, FIN, NULL, 0);
if (ObjectVT == MVT::i64)
ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
else
ArgValue= DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
}
} else {
// Don't emit a dead load.
ArgValue = DAG.getNode(ISD::UNDEF, ObjectVT);
}
ArgOffset += ObjSize; // Move on to the next argument.
}
return ArgValue;
}
SDOperand
ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
std::vector<SDOperand> ArgValues;
SDOperand Root = Op.getOperand(0);
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
unsigned NumGPRs = 0; // GPRs used for parameter passing.
unsigned VRegs[4];
unsigned NumArgs = Op.Val->getNumValues()-1;
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
ArgValues.push_back(LowerFORMAL_ARGUMENT(Op, DAG, VRegs, ArgNo,
NumGPRs, ArgOffset));
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
if (isVarArg) {
static const unsigned GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
MachineFunction &MF = DAG.getMachineFunction();
SSARegMap *RegMap = MF.getSSARegMap();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned VARegSaveSize = (4 - NumGPRs) * 4;
if (VARegSaveSize) {
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing
// the result of va_next.
AFI->setVarArgsRegSaveSize(VARegSaveSize);
VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
SmallVector<SDOperand, 4> MemOps;
for (; NumGPRs < 4; ++NumGPRs) {
unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(4, getPointerTy()));
}
if (!MemOps.empty())
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOps[0], MemOps.size());
} else
// This will point to the next argument passed via stack.
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
}
ArgValues.push_back(Root);
// Return the new list of results.
std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
}
/// isFloatingPointZero - Return true if this is +0.0.
static bool isFloatingPointZero(SDOperand Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->isExactlyValue(0.0);
else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
// Maybe this has already been legalized into the constant pool?
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
SDOperand WrapperOp = Op.getOperand(1).getOperand(0);
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->isExactlyValue(0.0);
}
}
return false;
}
static bool isLegalCmpImmediate(int C, bool isThumb) {
return ( isThumb && (C & ~255U) == 0) ||
(!isThumb && ARM_AM::getSOImmVal(C) != -1);
}
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
static SDOperand getARMCmp(SDOperand LHS, SDOperand RHS, ISD::CondCode CC,
SDOperand &ARMCC, SelectionDAG &DAG, bool isThumb) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.Val)) {
int C = (int)RHSC->getValue();
if (!isLegalCmpImmediate(C, isThumb)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETULT:
case ISD::SETGE:
case ISD::SETUGE:
if (isLegalCmpImmediate(C-1, isThumb)) {
switch (CC) {
default: break;
case ISD::SETLT: CC = ISD::SETLE; break;
case ISD::SETULT: CC = ISD::SETULE; break;
case ISD::SETGE: CC = ISD::SETGT; break;
case ISD::SETUGE: CC = ISD::SETUGT; break;
}
RHS = DAG.getConstant(C-1, MVT::i32);
}
break;
case ISD::SETLE:
case ISD::SETULE:
case ISD::SETGT:
case ISD::SETUGT:
if (isLegalCmpImmediate(C+1, isThumb)) {
switch (CC) {
default: break;
case ISD::SETLE: CC = ISD::SETLT; break;
case ISD::SETULE: CC = ISD::SETULT; break;
case ISD::SETGT: CC = ISD::SETGE; break;
case ISD::SETUGT: CC = ISD::SETUGE; break;
}
RHS = DAG.getConstant(C+1, MVT::i32);
}
break;
}
}
}
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMCC = DAG.getConstant(CondCode, MVT::i32);
return DAG.getNode(ARMISD::CMP, MVT::Flag, LHS, RHS);
}
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
static SDOperand getVFPCmp(SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) {
SDOperand Cmp;
if (!isFloatingPointZero(RHS))
Cmp = DAG.getNode(ARMISD::CMPFP, MVT::Flag, LHS, RHS);
else
Cmp = DAG.getNode(ARMISD::CMPFPw0, MVT::Flag, LHS);
return DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp);
}
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
MVT::ValueType VT = Op.getValueType();
SDOperand LHS = Op.getOperand(0);
SDOperand RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDOperand TrueVal = Op.getOperand(2);
SDOperand FalseVal = Op.getOperand(3);
if (LHS.getValueType() == MVT::i32) {
SDOperand ARMCC;
SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
return DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, ARMCC, Cmp);
}
ARMCC::CondCodes CondCode, CondCode2;
if (FPCCToARMCC(CC, CondCode, CondCode2))
std::swap(TrueVal, FalseVal);
SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32);
SDOperand Cmp = getVFPCmp(LHS, RHS, DAG);
SDOperand Result = DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal,
ARMCC, Cmp);
if (CondCode2 != ARMCC::AL) {
SDOperand ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
// FIXME: Needs another CMP because flag can have but one use.
SDOperand Cmp2 = getVFPCmp(LHS, RHS, DAG);
Result = DAG.getNode(ARMISD::CMOV, VT, Result, TrueVal, ARMCC2, Cmp2);
}
return Result;
}
static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDOperand Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDOperand LHS = Op.getOperand(2);
SDOperand RHS = Op.getOperand(3);
SDOperand Dest = Op.getOperand(4);
if (LHS.getValueType() == MVT::i32) {
SDOperand ARMCC;
SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
return DAG.getNode(ARMISD::BRCOND, MVT::Other, Chain, Dest, ARMCC, Cmp);
}
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
ARMCC::CondCodes CondCode, CondCode2;
if (FPCCToARMCC(CC, CondCode, CondCode2))
// Swap the LHS/RHS of the comparison if needed.
std::swap(LHS, RHS);
SDOperand Cmp = getVFPCmp(LHS, RHS, DAG);
SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
SDOperand Ops[] = { Chain, Dest, ARMCC, Cmp };
SDOperand Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 4);
if (CondCode2 != ARMCC::AL) {
ARMCC = DAG.getConstant(CondCode2, MVT::i32);
SDOperand Ops[] = { Res, Dest, ARMCC, Res.getValue(1) };
Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 4);
}
return Res;
}
SDOperand ARMTargetLowering::LowerBR_JT(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
SDOperand Table = Op.getOperand(1);
SDOperand Index = Op.getOperand(2);
MVT::ValueType PTy = getPointerTy();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
SDOperand UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
Table = DAG.getNode(ARMISD::WrapperJT, MVT::i32, JTI, UId);
Index = DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(4, PTy));
SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table);
bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
Addr = DAG.getLoad(isPIC ? MVT::i32 : PTy, Chain, Addr, NULL, 0);
Chain = Addr.getValue(1);
if (isPIC)
Addr = DAG.getNode(ISD::ADD, PTy, Addr, Table);
return DAG.getNode(ARMISD::BR_JT, MVT::Other, Chain, Addr, JTI, UId);
}
static SDOperand LowerFP_TO_INT(SDOperand Op, SelectionDAG &DAG) {
unsigned Opc =
Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
Op = DAG.getNode(Opc, MVT::f32, Op.getOperand(0));
return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
}
static SDOperand LowerINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType VT = Op.getValueType();
unsigned Opc =
Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0));
return DAG.getNode(Opc, VT, Op);
}
static SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
// Implement fcopysign with a fabs and a conditional fneg.
SDOperand Tmp0 = Op.getOperand(0);
SDOperand Tmp1 = Op.getOperand(1);
MVT::ValueType VT = Op.getValueType();
MVT::ValueType SrcVT = Tmp1.getValueType();
SDOperand AbsVal = DAG.getNode(ISD::FABS, VT, Tmp0);
SDOperand Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG);
SDOperand ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
return DAG.getNode(ARMISD::CNEG, VT, AbsVal, AbsVal, ARMCC, Cmp);
}
static SDOperand LowerBIT_CONVERT(SDOperand Op, SelectionDAG &DAG) {
// Turn f64->i64 into FMRRD.
assert(Op.getValueType() == MVT::i64 &&
Op.getOperand(0).getValueType() == MVT::f64);
Op = Op.getOperand(0);
SDOperand Cvt = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32),
&Op, 1);
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Cvt, Cvt.getValue(1));
}
static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
// FIXME: All this code is target-independent. Create a new target-indep
// MULHILO node and move this code to the legalizer.
//
assert(Op.getValueType() == MVT::i64 && "Only handles i64 expand right now!");
SDOperand LL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
SDOperand RL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1),
DAG.getConstant(0, MVT::i32));
const TargetLowering &TL = DAG.getTargetLoweringInfo();
unsigned LHSSB = TL.ComputeNumSignBits(Op.getOperand(0));
unsigned RHSSB = TL.ComputeNumSignBits(Op.getOperand(1));
SDOperand Lo, Hi;
// Figure out how to lower this multiply.
if (LHSSB >= 33 && RHSSB >= 33) {
// If the input values are both sign extended, we can emit a mulhs+mul.
Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL);
Hi = DAG.getNode(ISD::MULHS, MVT::i32, LL, RL);
} else if (LHSSB == 32 && RHSSB == 32 &&
TL.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) &&
TL.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) {
// If the inputs are zero extended, use mulhu.
Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL);
Hi = DAG.getNode(ISD::MULHU, MVT::i32, LL, RL);
} else {
SDOperand LH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(1, MVT::i32));
SDOperand RH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1),
DAG.getConstant(1, MVT::i32));
// Lo,Hi = umul LHS, RHS.
SDOperand Ops[] = { LL, RL };
SDOperand UMul64 = DAG.getNode(ARMISD::MULHILOU,
DAG.getVTList(MVT::i32, MVT::i32), Ops, 2);
Lo = UMul64;
Hi = UMul64.getValue(1);
RH = DAG.getNode(ISD::MUL, MVT::i32, LL, RH);
LH = DAG.getNode(ISD::MUL, MVT::i32, LH, RL);
Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, RH);
Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, LH);
}
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
}
static SDOperand LowerMULHU(SDOperand Op, SelectionDAG &DAG) {
SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
return DAG.getNode(ARMISD::MULHILOU,
DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1);
}
static SDOperand LowerMULHS(SDOperand Op, SelectionDAG &DAG) {
SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
return DAG.getNode(ARMISD::MULHILOS,
DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1);
}
static SDOperand LowerSRx(SDOperand Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
assert(Op.getValueType() == MVT::i64 &&
(Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
"Unknown shift to lower!");
// We only lower SRA, SRL of 1 here, all others use generic lowering.
if (!isa<ConstantSDNode>(Op.getOperand(1)) ||
cast<ConstantSDNode>(Op.getOperand(1))->getValue() != 1)
return SDOperand();
// If we are in thumb mode, we don't have RRX.
if (ST->isThumb()) return SDOperand();
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(1, MVT::i32));
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
// captures the result into a carry flag.
unsigned Opc = Op.getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
Hi = DAG.getNode(Opc, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
// The low part is an ARMISD::RRX operand, which shifts the carry in.
Lo = DAG.getNode(ARMISD::RRX, MVT::i32, Lo, Hi.getValue(1));
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
}
SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: assert(0 && "Don't know how to custom lower this!"); abort();
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::RET: return LowerRET(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget);
case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
case ISD::MULHU: return LowerMULHU(Op, DAG);
case ISD::MULHS: return LowerMULHS(Op, DAG);
case ISD::SRL:
case ISD::SRA: return LowerSRx(Op, DAG, Subtarget);
case ISD::FORMAL_ARGUMENTS:
return LowerFORMAL_ARGUMENTS(Op, DAG);
}
}
//===----------------------------------------------------------------------===//
// ARM Scheduler Hooks
//===----------------------------------------------------------------------===//
MachineBasicBlock *
ARMTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
MachineBasicBlock *BB) {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
switch (MI->getOpcode()) {
default: assert(false && "Unexpected instr type to insert");
case ARM::tMOVCCr: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, TII->get(ARM::tBcc)).addMBB(sinkMBB)
.addImm(MI->getOperand(3).getImm());
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
e = BB->succ_end(); i != e; ++i)
sinkMBB->addSuccessor(*i);
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
while(!BB->succ_empty())
BB->removeSuccessor(BB->succ_begin());
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, TII->get(ARM::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
delete MI; // The pseudo instruction is gone now.
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// ARM Optimization Hooks
//===----------------------------------------------------------------------===//
/// isLegalAddressImmediate - Return true if the integer value or
/// GlobalValue can be used as the offset of the target addressing mode.
bool ARMTargetLowering::isLegalAddressImmediate(int64_t V) const {
// ARM allows a 12-bit immediate field.
return V == V & ((1LL << 12) - 1);
}
bool ARMTargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
return false;
}
static bool getIndexedAddressParts(SDNode *Ptr, MVT::ValueType VT,
bool isSEXTLoad, SDOperand &Base,
SDOperand &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
// AddressingMode 3
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getValue();
if (RHSC < 0 && RHSC > -256) {
isInc = false;
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
return true;
}
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Offset = Ptr->getOperand(1);
return true;
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
// AddressingMode 2
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getValue();
if (RHSC < 0 && RHSC > -0x1000) {
isInc = false;
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
Base = Ptr->getOperand(0);
return true;
}
}
if (Ptr->getOpcode() == ISD::ADD) {
isInc = true;
ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
if (ShOpcVal != ARM_AM::no_shift) {
Base = Ptr->getOperand(1);
Offset = Ptr->getOperand(0);
} else {
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
}
return true;
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
return true;
}
// FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
return false;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
SDOperand &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) {
if (Subtarget->isThumb())
return false;
MVT::ValueType VT;
SDOperand Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getLoadedVT();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getStoredVT();
} else
return false;
bool isInc;
bool isLegal = getIndexedAddressParts(Ptr.Val, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
if (isLegal) {
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
return true;
}
return false;
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDOperand &Base,
SDOperand &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) {
if (Subtarget->isThumb())
return false;
MVT::ValueType VT;
SDOperand Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getLoadedVT();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getStoredVT();
} else
return false;
bool isInc;
bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
if (isLegal) {
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
return true;
}
return false;
}
void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth) const {
KnownZero = 0;
KnownOne = 0;
switch (Op.getOpcode()) {
default: break;
case ARMISD::CMOV: {
// Bits are known zero/one if known on the LHS and RHS.
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
if (KnownZero == 0 && KnownOne == 0) return;
uint64_t KnownZeroRHS, KnownOneRHS;
ComputeMaskedBits(Op.getOperand(1), Mask,
KnownZeroRHS, KnownOneRHS, Depth+1);
KnownZero &= KnownZeroRHS;
KnownOne &= KnownOneRHS;
return;
}
}
}
//===----------------------------------------------------------------------===//
// ARM Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
ARMTargetLowering::ConstraintType
ARMTargetLowering::getConstraintType(char ConstraintLetter) const {
switch (ConstraintLetter) {
case 'l':
return C_RegisterClass;
default: return TargetLowering::getConstraintType(ConstraintLetter);
}
}
std::pair<unsigned, const TargetRegisterClass*>
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const {
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
case 'l':
// FIXME: in thumb mode, 'l' is only low-regs.
// FALL THROUGH.
case 'r':
return std::make_pair(0U, ARM::GPRRegisterClass);
break;
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
std::vector<unsigned> ARMTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const {
if (Constraint.size() != 1)
return std::vector<unsigned>();
switch (Constraint[0]) { // GCC ARM Constraint Letters
default: break;
case 'l':
case 'r':
return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
ARM::R8, ARM::R9, ARM::R10, ARM::R11,
ARM::R12, ARM::LR, 0);
}
return std::vector<unsigned>();
}