llvm-6502/lib/Target/SparcV9/SparcV9PrologEpilogInserter.cpp
Misha Brukman b5f662fa03 Remove trailing whitespace
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21425 91177308-0d34-0410-b5e6-96231b3b80d8
2005-04-21 23:30:14 +00:00

185 lines
7.0 KiB
C++

//===-- SparcV9PrologEpilogCodeInserter.cpp - Insert Fn Prolog & Epilog ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the SparcV9 target's own PrologEpilogInserter. It creates prolog and
// epilog instructions for functions which have not been compiled using "leaf
// function optimizations". These instructions include the SAVE and RESTORE
// instructions used to rotate the SPARC register windows. Prologs are
// attached to the unique function entry, and epilogs are attached to each
// function exit.
//
//===----------------------------------------------------------------------===//
#include "SparcV9Internals.h"
#include "SparcV9RegClassInfo.h"
#include "SparcV9RegisterInfo.h"
#include "SparcV9FrameInfo.h"
#include "MachineFunctionInfo.h"
#include "MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Intrinsics.h"
namespace llvm {
namespace {
struct InsertPrologEpilogCode : public MachineFunctionPass {
const char *getPassName() const { return "SparcV9 Prolog/Epilog Inserter"; }
bool runOnMachineFunction(MachineFunction &F) {
if (!F.getInfo<SparcV9FunctionInfo>()->isCompiledAsLeafMethod()) {
InsertPrologCode(F);
InsertEpilogCode(F);
}
return false;
}
void InsertPrologCode(MachineFunction &F);
void InsertEpilogCode(MachineFunction &F);
};
} // End anonymous namespace
static unsigned getStaticStackSize (MachineFunction &MF) {
const TargetFrameInfo& frameInfo = *MF.getTarget().getFrameInfo();
unsigned staticStackSize = MF.getInfo<SparcV9FunctionInfo>()->getStaticStackSize();
if (staticStackSize < (unsigned)SparcV9FrameInfo::MinStackFrameSize)
staticStackSize = SparcV9FrameInfo::MinStackFrameSize;
if (unsigned padsz = staticStackSize %
SparcV9FrameInfo::StackFrameSizeAlignment)
staticStackSize += SparcV9FrameInfo::StackFrameSizeAlignment - padsz;
return staticStackSize;
}
void InsertPrologEpilogCode::InsertPrologCode(MachineFunction &MF)
{
std::vector<MachineInstr*> mvec;
const TargetMachine &TM = MF.getTarget();
const TargetFrameInfo& frameInfo = *TM.getFrameInfo();
// The second operand is the stack size. If it does not fit in the
// immediate field, we have to use a free register to hold the size.
// See the comments below for the choice of this register.
unsigned staticStackSize = getStaticStackSize (MF);
int32_t C = - (int) staticStackSize;
int SP = TM.getRegInfo()->getStackPointer();
if (TM.getInstrInfo()->constantFitsInImmedField(V9::SAVEi,staticStackSize)) {
mvec.push_back(BuildMI(V9::SAVEi, 3).addMReg(SP).addSImm(C)
.addMReg(SP, MachineOperand::Def));
} else {
// We have to put the stack size value into a register before SAVE.
// Use register %g1 since it is volatile across calls. Note that the
// local (%l) and in (%i) registers cannot be used before the SAVE!
// Do this by creating a code sequence equivalent to:
// SETSW -(stackSize), %g1
int uregNum = TM.getRegInfo()->getUnifiedRegNum(
TM.getRegInfo()->getRegClassIDOfType(Type::IntTy),
SparcV9IntRegClass::g1);
MachineInstr* M = BuildMI(V9::SETHI, 2).addSImm(C)
.addMReg(uregNum, MachineOperand::Def);
M->getOperand(0).markHi32();
mvec.push_back(M);
M = BuildMI(V9::ORi, 3).addMReg(uregNum).addSImm(C)
.addMReg(uregNum, MachineOperand::Def);
M->getOperand(1).markLo32();
mvec.push_back(M);
M = BuildMI(V9::SRAi5, 3).addMReg(uregNum).addZImm(0)
.addMReg(uregNum, MachineOperand::Def);
mvec.push_back(M);
// Now generate the SAVE using the value in register %g1
M = BuildMI(V9::SAVEr,3).addMReg(SP).addMReg(uregNum)
.addMReg(SP,MachineOperand::Def);
mvec.push_back(M);
}
// For varargs function bodies, insert instructions to copy incoming
// register arguments for the ... list to the stack.
// The first K=6 arguments are always received via int arg regs
// (%i0 ... %i5 if K=6) .
// By copying the varargs arguments to the stack, va_arg() then can
// simply assume that all vararg arguments are in an array on the stack.
if (MF.getFunction()->getFunctionType()->isVarArg()) {
int numFixedArgs = MF.getFunction()->getFunctionType()->getNumParams();
int numArgRegs = TM.getRegInfo()->getNumOfIntArgRegs();
if (numFixedArgs < numArgRegs) {
const TargetFrameInfo &FI = *TM.getFrameInfo();
int firstArgReg = TM.getRegInfo()->getUnifiedRegNum(
TM.getRegInfo()->getRegClassIDOfType(Type::IntTy),
SparcV9IntRegClass::i0);
int fpReg = SparcV9::i6;
int argSize = 8;
int firstArgOffset= SparcV9FrameInfo::FirstIncomingArgOffsetFromFP;
int nextArgOffset = firstArgOffset + numFixedArgs * argSize;
for (int i=numFixedArgs; i < numArgRegs; ++i) {
mvec.push_back(BuildMI(V9::STXi, 3).addMReg(firstArgReg+i).
addMReg(fpReg).addSImm(nextArgOffset));
nextArgOffset += argSize;
}
}
}
MF.front().insert(MF.front().begin(), mvec.begin(), mvec.end());
}
void InsertPrologEpilogCode::InsertEpilogCode(MachineFunction &MF)
{
const TargetMachine &TM = MF.getTarget();
const TargetInstrInfo &MII = *TM.getInstrInfo();
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock &MBB = *I;
const BasicBlock &BB = *I->getBasicBlock();
const Instruction *TermInst = (Instruction*)BB.getTerminator();
if (TermInst->getOpcode() == Instruction::Ret)
{
int ZR = TM.getRegInfo()->getZeroRegNum();
MachineInstr *Restore =
BuildMI(V9::RESTOREi, 3).addMReg(ZR).addSImm(0)
.addMReg(ZR, MachineOperand::Def);
MachineCodeForInstruction &termMvec =
MachineCodeForInstruction::get(TermInst);
// Remove the NOPs in the delay slots of the return instruction
unsigned numNOPs = 0;
while (termMvec.back()->getOpcode() == V9::NOP)
{
assert( termMvec.back() == &MBB.back());
termMvec.pop_back();
MBB.erase(&MBB.back());
++numNOPs;
}
assert(termMvec.back() == &MBB.back());
// Check that we found the right number of NOPs and have the right
// number of instructions to replace them.
unsigned ndelays = MII.getNumDelaySlots(termMvec.back()->getOpcode());
assert(numNOPs == ndelays && "Missing NOPs in delay slots?");
assert(ndelays == 1 && "Cannot use epilog code for delay slots?");
// Append the epilog code to the end of the basic block.
MBB.push_back(Restore);
}
}
}
FunctionPass *createPrologEpilogInsertionPass() {
return new InsertPrologEpilogCode();
}
} // End llvm namespace