llvm-6502/tools/bugpoint/ToolRunner.cpp
Chandler Carruth f010c464a1 Sort the #include lines for tools/...
Again, tools are trickier to pick the main module header for than
library source files. I've started to follow the pattern of using
LLVMContext.h when it is included as a stub for program source files.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169252 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-04 10:44:52 +00:00

891 lines
33 KiB
C++

//===-- ToolRunner.cpp ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces described in the ToolRunner.h file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "toolrunner"
#include "ToolRunner.h"
#include "llvm/Config/config.h" // for HAVE_LINK_R
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <fstream>
#include <sstream>
using namespace llvm;
namespace llvm {
cl::opt<bool>
SaveTemps("save-temps", cl::init(false), cl::desc("Save temporary files"));
}
namespace {
cl::opt<std::string>
RemoteClient("remote-client",
cl::desc("Remote execution client (rsh/ssh)"));
cl::opt<std::string>
RemoteHost("remote-host",
cl::desc("Remote execution (rsh/ssh) host"));
cl::opt<std::string>
RemotePort("remote-port",
cl::desc("Remote execution (rsh/ssh) port"));
cl::opt<std::string>
RemoteUser("remote-user",
cl::desc("Remote execution (rsh/ssh) user id"));
cl::opt<std::string>
RemoteExtra("remote-extra-options",
cl::desc("Remote execution (rsh/ssh) extra options"));
}
/// RunProgramWithTimeout - This function provides an alternate interface
/// to the sys::Program::ExecuteAndWait interface.
/// @see sys::Program::ExecuteAndWait
static int RunProgramWithTimeout(const sys::Path &ProgramPath,
const char **Args,
const sys::Path &StdInFile,
const sys::Path &StdOutFile,
const sys::Path &StdErrFile,
unsigned NumSeconds = 0,
unsigned MemoryLimit = 0,
std::string *ErrMsg = 0) {
const sys::Path* redirects[3];
redirects[0] = &StdInFile;
redirects[1] = &StdOutFile;
redirects[2] = &StdErrFile;
#if 0 // For debug purposes
{
errs() << "RUN:";
for (unsigned i = 0; Args[i]; ++i)
errs() << " " << Args[i];
errs() << "\n";
}
#endif
return
sys::Program::ExecuteAndWait(ProgramPath, Args, 0, redirects,
NumSeconds, MemoryLimit, ErrMsg);
}
/// RunProgramRemotelyWithTimeout - This function runs the given program
/// remotely using the given remote client and the sys::Program::ExecuteAndWait.
/// Returns the remote program exit code or reports a remote client error if it
/// fails. Remote client is required to return 255 if it failed or program exit
/// code otherwise.
/// @see sys::Program::ExecuteAndWait
static int RunProgramRemotelyWithTimeout(const sys::Path &RemoteClientPath,
const char **Args,
const sys::Path &StdInFile,
const sys::Path &StdOutFile,
const sys::Path &StdErrFile,
unsigned NumSeconds = 0,
unsigned MemoryLimit = 0) {
const sys::Path* redirects[3];
redirects[0] = &StdInFile;
redirects[1] = &StdOutFile;
redirects[2] = &StdErrFile;
#if 0 // For debug purposes
{
errs() << "RUN:";
for (unsigned i = 0; Args[i]; ++i)
errs() << " " << Args[i];
errs() << "\n";
}
#endif
// Run the program remotely with the remote client
int ReturnCode = sys::Program::ExecuteAndWait(RemoteClientPath, Args,
0, redirects, NumSeconds, MemoryLimit);
// Has the remote client fail?
if (255 == ReturnCode) {
std::ostringstream OS;
OS << "\nError running remote client:\n ";
for (const char **Arg = Args; *Arg; ++Arg)
OS << " " << *Arg;
OS << "\n";
// The error message is in the output file, let's print it out from there.
std::ifstream ErrorFile(StdOutFile.c_str());
if (ErrorFile) {
std::copy(std::istreambuf_iterator<char>(ErrorFile),
std::istreambuf_iterator<char>(),
std::ostreambuf_iterator<char>(OS));
ErrorFile.close();
}
errs() << OS.str();
}
return ReturnCode;
}
static std::string ProcessFailure(sys::Path ProgPath, const char** Args,
unsigned Timeout = 0,
unsigned MemoryLimit = 0) {
std::ostringstream OS;
OS << "\nError running tool:\n ";
for (const char **Arg = Args; *Arg; ++Arg)
OS << " " << *Arg;
OS << "\n";
// Rerun the compiler, capturing any error messages to print them.
sys::Path ErrorFilename("bugpoint.program_error_messages");
std::string ErrMsg;
if (ErrorFilename.makeUnique(true, &ErrMsg)) {
errs() << "Error making unique filename: " << ErrMsg << "\n";
exit(1);
}
RunProgramWithTimeout(ProgPath, Args, sys::Path(""), ErrorFilename,
ErrorFilename, Timeout, MemoryLimit);
// FIXME: check return code ?
// Print out the error messages generated by GCC if possible...
std::ifstream ErrorFile(ErrorFilename.c_str());
if (ErrorFile) {
std::copy(std::istreambuf_iterator<char>(ErrorFile),
std::istreambuf_iterator<char>(),
std::ostreambuf_iterator<char>(OS));
ErrorFile.close();
}
ErrorFilename.eraseFromDisk();
return OS.str();
}
//===---------------------------------------------------------------------===//
// LLI Implementation of AbstractIntepreter interface
//
namespace {
class LLI : public AbstractInterpreter {
std::string LLIPath; // The path to the LLI executable
std::vector<std::string> ToolArgs; // Args to pass to LLI
public:
LLI(const std::string &Path, const std::vector<std::string> *Args)
: LLIPath(Path) {
ToolArgs.clear ();
if (Args) { ToolArgs = *Args; }
}
virtual int ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &GCCArgs,
const std::vector<std::string> &SharedLibs =
std::vector<std::string>(),
unsigned Timeout = 0,
unsigned MemoryLimit = 0);
};
}
int LLI::ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &GCCArgs,
const std::vector<std::string> &SharedLibs,
unsigned Timeout,
unsigned MemoryLimit) {
std::vector<const char*> LLIArgs;
LLIArgs.push_back(LLIPath.c_str());
LLIArgs.push_back("-force-interpreter=true");
for (std::vector<std::string>::const_iterator i = SharedLibs.begin(),
e = SharedLibs.end(); i != e; ++i) {
LLIArgs.push_back("-load");
LLIArgs.push_back((*i).c_str());
}
// Add any extra LLI args.
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
LLIArgs.push_back(ToolArgs[i].c_str());
LLIArgs.push_back(Bitcode.c_str());
// Add optional parameters to the running program from Argv
for (unsigned i=0, e = Args.size(); i != e; ++i)
LLIArgs.push_back(Args[i].c_str());
LLIArgs.push_back(0);
outs() << "<lli>"; outs().flush();
DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i)
errs() << " " << LLIArgs[i];
errs() << "\n";
);
return RunProgramWithTimeout(sys::Path(LLIPath), &LLIArgs[0],
sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
Timeout, MemoryLimit, Error);
}
void AbstractInterpreter::anchor() { }
// LLI create method - Try to find the LLI executable
AbstractInterpreter *AbstractInterpreter::createLLI(const char *Argv0,
std::string &Message,
const std::vector<std::string> *ToolArgs) {
std::string LLIPath =
PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t)&createLLI).str();
if (!LLIPath.empty()) {
Message = "Found lli: " + LLIPath + "\n";
return new LLI(LLIPath, ToolArgs);
}
Message = "Cannot find `lli' in executable directory!\n";
return 0;
}
//===---------------------------------------------------------------------===//
// Custom compiler command implementation of AbstractIntepreter interface
//
// Allows using a custom command for compiling the bitcode, thus allows, for
// example, to compile a bitcode fragment without linking or executing, then
// using a custom wrapper script to check for compiler errors.
namespace {
class CustomCompiler : public AbstractInterpreter {
std::string CompilerCommand;
std::vector<std::string> CompilerArgs;
public:
CustomCompiler(
const std::string &CompilerCmd, std::vector<std::string> CompArgs) :
CompilerCommand(CompilerCmd), CompilerArgs(CompArgs) {}
virtual void compileProgram(const std::string &Bitcode,
std::string *Error,
unsigned Timeout = 0,
unsigned MemoryLimit = 0);
virtual int ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &GCCArgs =
std::vector<std::string>(),
const std::vector<std::string> &SharedLibs =
std::vector<std::string>(),
unsigned Timeout = 0,
unsigned MemoryLimit = 0) {
*Error = "Execution not supported with -compile-custom";
return -1;
}
};
}
void CustomCompiler::compileProgram(const std::string &Bitcode,
std::string *Error,
unsigned Timeout,
unsigned MemoryLimit) {
std::vector<const char*> ProgramArgs;
ProgramArgs.push_back(CompilerCommand.c_str());
for (std::size_t i = 0; i < CompilerArgs.size(); ++i)
ProgramArgs.push_back(CompilerArgs.at(i).c_str());
ProgramArgs.push_back(Bitcode.c_str());
ProgramArgs.push_back(0);
// Add optional parameters to the running program from Argv
for (unsigned i = 0, e = CompilerArgs.size(); i != e; ++i)
ProgramArgs.push_back(CompilerArgs[i].c_str());
if (RunProgramWithTimeout( sys::Path(CompilerCommand), &ProgramArgs[0],
sys::Path(), sys::Path(), sys::Path(),
Timeout, MemoryLimit, Error))
*Error = ProcessFailure(sys::Path(CompilerCommand), &ProgramArgs[0],
Timeout, MemoryLimit);
}
//===---------------------------------------------------------------------===//
// Custom execution command implementation of AbstractIntepreter interface
//
// Allows using a custom command for executing the bitcode, thus allows,
// for example, to invoke a cross compiler for code generation followed by
// a simulator that executes the generated binary.
namespace {
class CustomExecutor : public AbstractInterpreter {
std::string ExecutionCommand;
std::vector<std::string> ExecutorArgs;
public:
CustomExecutor(
const std::string &ExecutionCmd, std::vector<std::string> ExecArgs) :
ExecutionCommand(ExecutionCmd), ExecutorArgs(ExecArgs) {}
virtual int ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &GCCArgs,
const std::vector<std::string> &SharedLibs =
std::vector<std::string>(),
unsigned Timeout = 0,
unsigned MemoryLimit = 0);
};
}
int CustomExecutor::ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &GCCArgs,
const std::vector<std::string> &SharedLibs,
unsigned Timeout,
unsigned MemoryLimit) {
std::vector<const char*> ProgramArgs;
ProgramArgs.push_back(ExecutionCommand.c_str());
for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
ProgramArgs.push_back(ExecutorArgs.at(i).c_str());
ProgramArgs.push_back(Bitcode.c_str());
ProgramArgs.push_back(0);
// Add optional parameters to the running program from Argv
for (unsigned i = 0, e = Args.size(); i != e; ++i)
ProgramArgs.push_back(Args[i].c_str());
return RunProgramWithTimeout(
sys::Path(ExecutionCommand),
&ProgramArgs[0], sys::Path(InputFile), sys::Path(OutputFile),
sys::Path(OutputFile), Timeout, MemoryLimit, Error);
}
// Tokenize the CommandLine to the command and the args to allow
// defining a full command line as the command instead of just the
// executed program. We cannot just pass the whole string after the command
// as a single argument because then program sees only a single
// command line argument (with spaces in it: "foo bar" instead
// of "foo" and "bar").
//
// code borrowed from:
// http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html
static void lexCommand(std::string &Message, const std::string &CommandLine,
std::string &CmdPath, std::vector<std::string> Args) {
std::string Command = "";
std::string delimiters = " ";
std::string::size_type lastPos = CommandLine.find_first_not_of(delimiters, 0);
std::string::size_type pos = CommandLine.find_first_of(delimiters, lastPos);
while (std::string::npos != pos || std::string::npos != lastPos) {
std::string token = CommandLine.substr(lastPos, pos - lastPos);
if (Command == "")
Command = token;
else
Args.push_back(token);
// Skip delimiters. Note the "not_of"
lastPos = CommandLine.find_first_not_of(delimiters, pos);
// Find next "non-delimiter"
pos = CommandLine.find_first_of(delimiters, lastPos);
}
CmdPath = sys::Program::FindProgramByName(Command).str();
if (CmdPath.empty()) {
Message =
std::string("Cannot find '") + Command +
"' in PATH!\n";
return;
}
Message = "Found command in: " + CmdPath + "\n";
}
// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *AbstractInterpreter::createCustomCompiler(
std::string &Message,
const std::string &CompileCommandLine) {
std::string CmdPath;
std::vector<std::string> Args;
lexCommand(Message, CompileCommandLine, CmdPath, Args);
if (CmdPath.empty())
return 0;
return new CustomCompiler(CmdPath, Args);
}
// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *AbstractInterpreter::createCustomExecutor(
std::string &Message,
const std::string &ExecCommandLine) {
std::string CmdPath;
std::vector<std::string> Args;
lexCommand(Message, ExecCommandLine, CmdPath, Args);
if (CmdPath.empty())
return 0;
return new CustomExecutor(CmdPath, Args);
}
//===----------------------------------------------------------------------===//
// LLC Implementation of AbstractIntepreter interface
//
GCC::FileType LLC::OutputCode(const std::string &Bitcode,
sys::Path &OutputAsmFile, std::string &Error,
unsigned Timeout, unsigned MemoryLimit) {
const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s");
sys::Path uniqueFile(Bitcode + Suffix);
std::string ErrMsg;
if (uniqueFile.makeUnique(true, &ErrMsg)) {
errs() << "Error making unique filename: " << ErrMsg << "\n";
exit(1);
}
OutputAsmFile = uniqueFile;
std::vector<const char *> LLCArgs;
LLCArgs.push_back(LLCPath.c_str());
// Add any extra LLC args.
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
LLCArgs.push_back(ToolArgs[i].c_str());
LLCArgs.push_back("-o");
LLCArgs.push_back(OutputAsmFile.c_str()); // Output to the Asm file
LLCArgs.push_back(Bitcode.c_str()); // This is the input bitcode
if (UseIntegratedAssembler)
LLCArgs.push_back("-filetype=obj");
LLCArgs.push_back (0);
outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>");
outs().flush();
DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i)
errs() << " " << LLCArgs[i];
errs() << "\n";
);
if (RunProgramWithTimeout(sys::Path(LLCPath), &LLCArgs[0],
sys::Path(), sys::Path(), sys::Path(),
Timeout, MemoryLimit))
Error = ProcessFailure(sys::Path(LLCPath), &LLCArgs[0],
Timeout, MemoryLimit);
return UseIntegratedAssembler ? GCC::ObjectFile : GCC::AsmFile;
}
void LLC::compileProgram(const std::string &Bitcode, std::string *Error,
unsigned Timeout, unsigned MemoryLimit) {
sys::Path OutputAsmFile;
OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit);
OutputAsmFile.eraseFromDisk();
}
int LLC::ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &ArgsForGCC,
const std::vector<std::string> &SharedLibs,
unsigned Timeout,
unsigned MemoryLimit) {
sys::Path OutputAsmFile;
GCC::FileType FileKind = OutputCode(Bitcode, OutputAsmFile, *Error, Timeout,
MemoryLimit);
FileRemover OutFileRemover(OutputAsmFile.str(), !SaveTemps);
std::vector<std::string> GCCArgs(ArgsForGCC);
GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end());
// Assuming LLC worked, compile the result with GCC and run it.
return gcc->ExecuteProgram(OutputAsmFile.str(), Args, FileKind,
InputFile, OutputFile, Error, GCCArgs,
Timeout, MemoryLimit);
}
/// createLLC - Try to find the LLC executable
///
LLC *AbstractInterpreter::createLLC(const char *Argv0,
std::string &Message,
const std::string &GCCBinary,
const std::vector<std::string> *Args,
const std::vector<std::string> *GCCArgs,
bool UseIntegratedAssembler) {
std::string LLCPath =
PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t)&createLLC).str();
if (LLCPath.empty()) {
Message = "Cannot find `llc' in executable directory!\n";
return 0;
}
Message = "Found llc: " + LLCPath + "\n";
GCC *gcc = GCC::create(Message, GCCBinary, GCCArgs);
if (!gcc) {
errs() << Message << "\n";
exit(1);
}
return new LLC(LLCPath, gcc, Args, UseIntegratedAssembler);
}
//===---------------------------------------------------------------------===//
// JIT Implementation of AbstractIntepreter interface
//
namespace {
class JIT : public AbstractInterpreter {
std::string LLIPath; // The path to the LLI executable
std::vector<std::string> ToolArgs; // Args to pass to LLI
public:
JIT(const std::string &Path, const std::vector<std::string> *Args)
: LLIPath(Path) {
ToolArgs.clear ();
if (Args) { ToolArgs = *Args; }
}
virtual int ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &GCCArgs =
std::vector<std::string>(),
const std::vector<std::string> &SharedLibs =
std::vector<std::string>(),
unsigned Timeout = 0,
unsigned MemoryLimit = 0);
};
}
int JIT::ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &GCCArgs,
const std::vector<std::string> &SharedLibs,
unsigned Timeout,
unsigned MemoryLimit) {
// Construct a vector of parameters, incorporating those from the command-line
std::vector<const char*> JITArgs;
JITArgs.push_back(LLIPath.c_str());
JITArgs.push_back("-force-interpreter=false");
// Add any extra LLI args.
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
JITArgs.push_back(ToolArgs[i].c_str());
for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
JITArgs.push_back("-load");
JITArgs.push_back(SharedLibs[i].c_str());
}
JITArgs.push_back(Bitcode.c_str());
// Add optional parameters to the running program from Argv
for (unsigned i=0, e = Args.size(); i != e; ++i)
JITArgs.push_back(Args[i].c_str());
JITArgs.push_back(0);
outs() << "<jit>"; outs().flush();
DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i)
errs() << " " << JITArgs[i];
errs() << "\n";
);
DEBUG(errs() << "\nSending output to " << OutputFile << "\n");
return RunProgramWithTimeout(sys::Path(LLIPath), &JITArgs[0],
sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
Timeout, MemoryLimit, Error);
}
/// createJIT - Try to find the LLI executable
///
AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0,
std::string &Message, const std::vector<std::string> *Args) {
std::string LLIPath =
PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t)&createJIT).str();
if (!LLIPath.empty()) {
Message = "Found lli: " + LLIPath + "\n";
return new JIT(LLIPath, Args);
}
Message = "Cannot find `lli' in executable directory!\n";
return 0;
}
//===---------------------------------------------------------------------===//
// GCC abstraction
//
static bool IsARMArchitecture(std::vector<const char*> Args) {
for (std::vector<const char*>::const_iterator
I = Args.begin(), E = Args.end(); I != E; ++I) {
if (StringRef(*I).equals_lower("-arch")) {
++I;
if (I != E && StringRef(*I).substr(0, strlen("arm")).equals_lower("arm"))
return true;
}
}
return false;
}
int GCC::ExecuteProgram(const std::string &ProgramFile,
const std::vector<std::string> &Args,
FileType fileType,
const std::string &InputFile,
const std::string &OutputFile,
std::string *Error,
const std::vector<std::string> &ArgsForGCC,
unsigned Timeout,
unsigned MemoryLimit) {
std::vector<const char*> GCCArgs;
GCCArgs.push_back(GCCPath.c_str());
if (TargetTriple.getArch() == Triple::x86)
GCCArgs.push_back("-m32");
for (std::vector<std::string>::const_iterator
I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
GCCArgs.push_back(I->c_str());
// Specify -x explicitly in case the extension is wonky
if (fileType != ObjectFile) {
GCCArgs.push_back("-x");
if (fileType == CFile) {
GCCArgs.push_back("c");
GCCArgs.push_back("-fno-strict-aliasing");
} else {
GCCArgs.push_back("assembler");
// For ARM architectures we don't want this flag. bugpoint isn't
// explicitly told what architecture it is working on, so we get
// it from gcc flags
if (TargetTriple.isOSDarwin() && !IsARMArchitecture(GCCArgs))
GCCArgs.push_back("-force_cpusubtype_ALL");
}
}
GCCArgs.push_back(ProgramFile.c_str()); // Specify the input filename.
GCCArgs.push_back("-x");
GCCArgs.push_back("none");
GCCArgs.push_back("-o");
sys::Path OutputBinary (ProgramFile+".gcc.exe");
std::string ErrMsg;
if (OutputBinary.makeUnique(true, &ErrMsg)) {
errs() << "Error making unique filename: " << ErrMsg << "\n";
exit(1);
}
GCCArgs.push_back(OutputBinary.c_str()); // Output to the right file...
// Add any arguments intended for GCC. We locate them here because this is
// most likely -L and -l options that need to come before other libraries but
// after the source. Other options won't be sensitive to placement on the
// command line, so this should be safe.
for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
GCCArgs.push_back(ArgsForGCC[i].c_str());
GCCArgs.push_back("-lm"); // Hard-code the math library...
GCCArgs.push_back("-O2"); // Optimize the program a bit...
#if defined (HAVE_LINK_R)
GCCArgs.push_back("-Wl,-R."); // Search this dir for .so files
#endif
if (TargetTriple.getArch() == Triple::sparc)
GCCArgs.push_back("-mcpu=v9");
GCCArgs.push_back(0); // NULL terminator
outs() << "<gcc>"; outs().flush();
DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
errs() << " " << GCCArgs[i];
errs() << "\n";
);
if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], sys::Path(), sys::Path(),
sys::Path())) {
*Error = ProcessFailure(GCCPath, &GCCArgs[0]);
return -1;
}
std::vector<const char*> ProgramArgs;
// Declared here so that the destructor only runs after
// ProgramArgs is used.
std::string Exec;
if (RemoteClientPath.isEmpty())
ProgramArgs.push_back(OutputBinary.c_str());
else {
ProgramArgs.push_back(RemoteClientPath.c_str());
ProgramArgs.push_back(RemoteHost.c_str());
if (!RemoteUser.empty()) {
ProgramArgs.push_back("-l");
ProgramArgs.push_back(RemoteUser.c_str());
}
if (!RemotePort.empty()) {
ProgramArgs.push_back("-p");
ProgramArgs.push_back(RemotePort.c_str());
}
if (!RemoteExtra.empty()) {
ProgramArgs.push_back(RemoteExtra.c_str());
}
// Full path to the binary. We need to cd to the exec directory because
// there is a dylib there that the exec expects to find in the CWD
char* env_pwd = getenv("PWD");
Exec = "cd ";
Exec += env_pwd;
Exec += "; ./";
Exec += OutputBinary.c_str();
ProgramArgs.push_back(Exec.c_str());
}
// Add optional parameters to the running program from Argv
for (unsigned i = 0, e = Args.size(); i != e; ++i)
ProgramArgs.push_back(Args[i].c_str());
ProgramArgs.push_back(0); // NULL terminator
// Now that we have a binary, run it!
outs() << "<program>"; outs().flush();
DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = ProgramArgs.size()-1; i != e; ++i)
errs() << " " << ProgramArgs[i];
errs() << "\n";
);
FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps);
if (RemoteClientPath.isEmpty()) {
DEBUG(errs() << "<run locally>");
int ExitCode = RunProgramWithTimeout(OutputBinary, &ProgramArgs[0],
sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
Timeout, MemoryLimit, Error);
// Treat a signal (usually SIGSEGV) or timeout as part of the program output
// so that crash-causing miscompilation is handled seamlessly.
if (ExitCode < -1) {
std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
outFile << *Error << '\n';
outFile.close();
Error->clear();
}
return ExitCode;
} else {
outs() << "<run remotely>"; outs().flush();
return RunProgramRemotelyWithTimeout(sys::Path(RemoteClientPath),
&ProgramArgs[0], sys::Path(InputFile), sys::Path(OutputFile),
sys::Path(OutputFile), Timeout, MemoryLimit);
}
}
int GCC::MakeSharedObject(const std::string &InputFile, FileType fileType,
std::string &OutputFile,
const std::vector<std::string> &ArgsForGCC,
std::string &Error) {
sys::Path uniqueFilename(InputFile+LTDL_SHLIB_EXT);
std::string ErrMsg;
if (uniqueFilename.makeUnique(true, &ErrMsg)) {
errs() << "Error making unique filename: " << ErrMsg << "\n";
exit(1);
}
OutputFile = uniqueFilename.str();
std::vector<const char*> GCCArgs;
GCCArgs.push_back(GCCPath.c_str());
if (TargetTriple.getArch() == Triple::x86)
GCCArgs.push_back("-m32");
for (std::vector<std::string>::const_iterator
I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
GCCArgs.push_back(I->c_str());
// Compile the C/asm file into a shared object
if (fileType != ObjectFile) {
GCCArgs.push_back("-x");
GCCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
}
GCCArgs.push_back("-fno-strict-aliasing");
GCCArgs.push_back(InputFile.c_str()); // Specify the input filename.
GCCArgs.push_back("-x");
GCCArgs.push_back("none");
if (TargetTriple.getArch() == Triple::sparc)
GCCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc
else if (TargetTriple.isOSDarwin()) {
// link all source files into a single module in data segment, rather than
// generating blocks. dynamic_lookup requires that you set
// MACOSX_DEPLOYMENT_TARGET=10.3 in your env. FIXME: it would be better for
// bugpoint to just pass that in the environment of GCC.
GCCArgs.push_back("-single_module");
GCCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC
GCCArgs.push_back("-undefined");
GCCArgs.push_back("dynamic_lookup");
} else
GCCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others
if (TargetTriple.getArch() == Triple::x86_64)
GCCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC
if (TargetTriple.getArch() == Triple::sparc)
GCCArgs.push_back("-mcpu=v9");
GCCArgs.push_back("-o");
GCCArgs.push_back(OutputFile.c_str()); // Output to the right filename.
GCCArgs.push_back("-O2"); // Optimize the program a bit.
// Add any arguments intended for GCC. We locate them here because this is
// most likely -L and -l options that need to come before other libraries but
// after the source. Other options won't be sensitive to placement on the
// command line, so this should be safe.
for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
GCCArgs.push_back(ArgsForGCC[i].c_str());
GCCArgs.push_back(0); // NULL terminator
outs() << "<gcc>"; outs().flush();
DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
errs() << " " << GCCArgs[i];
errs() << "\n";
);
if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], sys::Path(), sys::Path(),
sys::Path())) {
Error = ProcessFailure(GCCPath, &GCCArgs[0]);
return 1;
}
return 0;
}
/// create - Try to find the `gcc' executable
///
GCC *GCC::create(std::string &Message,
const std::string &GCCBinary,
const std::vector<std::string> *Args) {
sys::Path GCCPath = sys::Program::FindProgramByName(GCCBinary);
if (GCCPath.isEmpty()) {
Message = "Cannot find `"+ GCCBinary +"' in PATH!\n";
return 0;
}
sys::Path RemoteClientPath;
if (!RemoteClient.empty())
RemoteClientPath = sys::Program::FindProgramByName(RemoteClient);
Message = "Found gcc: " + GCCPath.str() + "\n";
return new GCC(GCCPath, RemoteClientPath, Args);
}