llvm-6502/include/llvm/CodeGen/LiveInterval.h
David Blaikie 41cf463348 Recommit r231168: unique_ptrify LiveRange::segmentSet
GCC 4.7's libstdc++ doesn't have std::map::emplace, but it does have
std::unordered_map::emplace, and the use case here doesn't appear to
need ordering. The container has been changed in a separate/precursor
patch, and now this patch should hopefully build cleanly even with
GCC 4.7.

& then I realized the order of the container did matter, so extra
handling of ordering was added in r231189.

Original commit message:
This makes LiveRange non-copyable, and LiveInterval is already
non-movable (due to the explicit dtor), so now it's non-copyable and
non-movable.

Fix the one case where we were relying on the (deprecated in C++11)
implicit copy ctor of LiveInterval (which happened to work because the
ctor created an object with a null segmentSet, so double-deleting the
null pointer was fine).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231192 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 01:20:33 +00:00

871 lines
30 KiB
C++

//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live range for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation ranges can have holes,
// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
// individual segment is represented as an instance of LiveRange::Segment,
// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <climits>
#include <set>
namespace llvm {
class CoalescerPair;
class LiveIntervals;
class MachineInstr;
class MachineRegisterInfo;
class TargetRegisterInfo;
class raw_ostream;
template <typename T, unsigned Small> class SmallPtrSet;
/// VNInfo - Value Number Information.
/// This class holds information about a machine level values, including
/// definition and use points.
///
class VNInfo {
public:
typedef BumpPtrAllocator Allocator;
/// The ID number of this value.
unsigned id;
/// The index of the defining instruction.
SlotIndex def;
/// VNInfo constructor.
VNInfo(unsigned i, SlotIndex d)
: id(i), def(d)
{ }
/// VNInfo construtor, copies values from orig, except for the value number.
VNInfo(unsigned i, const VNInfo &orig)
: id(i), def(orig.def)
{ }
/// Copy from the parameter into this VNInfo.
void copyFrom(VNInfo &src) {
def = src.def;
}
/// Returns true if this value is defined by a PHI instruction (or was,
/// PHI instructions may have been eliminated).
/// PHI-defs begin at a block boundary, all other defs begin at register or
/// EC slots.
bool isPHIDef() const { return def.isBlock(); }
/// Returns true if this value is unused.
bool isUnused() const { return !def.isValid(); }
/// Mark this value as unused.
void markUnused() { def = SlotIndex(); }
};
/// Result of a LiveRange query. This class hides the implementation details
/// of live ranges, and it should be used as the primary interface for
/// examining live ranges around instructions.
class LiveQueryResult {
VNInfo *const EarlyVal;
VNInfo *const LateVal;
const SlotIndex EndPoint;
const bool Kill;
public:
LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
bool Kill)
: EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
{}
/// Return the value that is live-in to the instruction. This is the value
/// that will be read by the instruction's use operands. Return NULL if no
/// value is live-in.
VNInfo *valueIn() const {
return EarlyVal;
}
/// Return true if the live-in value is killed by this instruction. This
/// means that either the live range ends at the instruction, or it changes
/// value.
bool isKill() const {
return Kill;
}
/// Return true if this instruction has a dead def.
bool isDeadDef() const {
return EndPoint.isDead();
}
/// Return the value leaving the instruction, if any. This can be a
/// live-through value, or a live def. A dead def returns NULL.
VNInfo *valueOut() const {
return isDeadDef() ? nullptr : LateVal;
}
/// Returns the value alive at the end of the instruction, if any. This can
/// be a live-through value, a live def or a dead def.
VNInfo *valueOutOrDead() const {
return LateVal;
}
/// Return the value defined by this instruction, if any. This includes
/// dead defs, it is the value created by the instruction's def operands.
VNInfo *valueDefined() const {
return EarlyVal == LateVal ? nullptr : LateVal;
}
/// Return the end point of the last live range segment to interact with
/// the instruction, if any.
///
/// The end point is an invalid SlotIndex only if the live range doesn't
/// intersect the instruction at all.
///
/// The end point may be at or past the end of the instruction's basic
/// block. That means the value was live out of the block.
SlotIndex endPoint() const {
return EndPoint;
}
};
/// This class represents the liveness of a register, stack slot, etc.
/// It manages an ordered list of Segment objects.
/// The Segments are organized in a static single assignment form: At places
/// where a new value is defined or different values reach a CFG join a new
/// segment with a new value number is used.
class LiveRange {
public:
/// This represents a simple continuous liveness interval for a value.
/// The start point is inclusive, the end point exclusive. These intervals
/// are rendered as [start,end).
struct Segment {
SlotIndex start; // Start point of the interval (inclusive)
SlotIndex end; // End point of the interval (exclusive)
VNInfo *valno; // identifier for the value contained in this segment.
Segment() : valno(nullptr) {}
Segment(SlotIndex S, SlotIndex E, VNInfo *V)
: start(S), end(E), valno(V) {
assert(S < E && "Cannot create empty or backwards segment");
}
/// Return true if the index is covered by this segment.
bool contains(SlotIndex I) const {
return start <= I && I < end;
}
/// Return true if the given interval, [S, E), is covered by this segment.
bool containsInterval(SlotIndex S, SlotIndex E) const {
assert((S < E) && "Backwards interval?");
return (start <= S && S < end) && (start < E && E <= end);
}
bool operator<(const Segment &Other) const {
return std::tie(start, end) < std::tie(Other.start, Other.end);
}
bool operator==(const Segment &Other) const {
return start == Other.start && end == Other.end;
}
void dump() const;
};
typedef SmallVector<Segment,4> Segments;
typedef SmallVector<VNInfo*,4> VNInfoList;
Segments segments; // the liveness segments
VNInfoList valnos; // value#'s
// The segment set is used temporarily to accelerate initial computation
// of live ranges of physical registers in computeRegUnitRange.
// After that the set is flushed to the segment vector and deleted.
typedef std::set<Segment> SegmentSet;
std::unique_ptr<SegmentSet> segmentSet;
typedef Segments::iterator iterator;
iterator begin() { return segments.begin(); }
iterator end() { return segments.end(); }
typedef Segments::const_iterator const_iterator;
const_iterator begin() const { return segments.begin(); }
const_iterator end() const { return segments.end(); }
typedef VNInfoList::iterator vni_iterator;
vni_iterator vni_begin() { return valnos.begin(); }
vni_iterator vni_end() { return valnos.end(); }
typedef VNInfoList::const_iterator const_vni_iterator;
const_vni_iterator vni_begin() const { return valnos.begin(); }
const_vni_iterator vni_end() const { return valnos.end(); }
/// Constructs a new LiveRange object.
LiveRange(bool UseSegmentSet = false)
: segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>()
: nullptr) {}
/// Constructs a new LiveRange object by copying segments and valnos from
/// another LiveRange.
LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
assert(Other.segmentSet == nullptr &&
"Copying of LiveRanges with active SegmentSets is not supported");
// Duplicate valnos.
for (const VNInfo *VNI : Other.valnos) {
createValueCopy(VNI, Allocator);
}
// Now we can copy segments and remap their valnos.
for (const Segment &S : Other.segments) {
segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
}
}
/// advanceTo - Advance the specified iterator to point to the Segment
/// containing the specified position, or end() if the position is past the
/// end of the range. If no Segment contains this position, but the
/// position is in a hole, this method returns an iterator pointing to the
/// Segment immediately after the hole.
iterator advanceTo(iterator I, SlotIndex Pos) {
assert(I != end());
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
}
const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
assert(I != end());
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
}
/// find - Return an iterator pointing to the first segment that ends after
/// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
/// when searching large ranges.
///
/// If Pos is contained in a Segment, that segment is returned.
/// If Pos is in a hole, the following Segment is returned.
/// If Pos is beyond endIndex, end() is returned.
iterator find(SlotIndex Pos);
const_iterator find(SlotIndex Pos) const {
return const_cast<LiveRange*>(this)->find(Pos);
}
void clear() {
valnos.clear();
segments.clear();
}
size_t size() const {
return segments.size();
}
bool hasAtLeastOneValue() const { return !valnos.empty(); }
bool containsOneValue() const { return valnos.size() == 1; }
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
/// getValNumInfo - Returns pointer to the specified val#.
///
inline VNInfo *getValNumInfo(unsigned ValNo) {
return valnos[ValNo];
}
inline const VNInfo *getValNumInfo(unsigned ValNo) const {
return valnos[ValNo];
}
/// containsValue - Returns true if VNI belongs to this range.
bool containsValue(const VNInfo *VNI) const {
return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
}
/// getNextValue - Create a new value number and return it. MIIdx specifies
/// the instruction that defines the value number.
VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
VNInfo *VNI =
new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
valnos.push_back(VNI);
return VNI;
}
/// createDeadDef - Make sure the range has a value defined at Def.
/// If one already exists, return it. Otherwise allocate a new value and
/// add liveness for a dead def.
VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
/// Create a copy of the given value. The new value will be identical except
/// for the Value number.
VNInfo *createValueCopy(const VNInfo *orig,
VNInfo::Allocator &VNInfoAllocator) {
VNInfo *VNI =
new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
valnos.push_back(VNI);
return VNI;
}
/// RenumberValues - Renumber all values in order of appearance and remove
/// unused values.
void RenumberValues();
/// MergeValueNumberInto - This method is called when two value numbers
/// are found to be equivalent. This eliminates V1, replacing all
/// segments with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
/// Merge all of the live segments of a specific val# in RHS into this live
/// range as the specified value number. The segments in RHS are allowed
/// to overlap with segments in the current range, it will replace the
/// value numbers of the overlaped live segments with the specified value
/// number.
void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
/// MergeValueInAsValue - Merge all of the segments of a specific val#
/// in RHS into this live range as the specified value number.
/// The segments in RHS are allowed to overlap with segments in the
/// current range, but only if the overlapping segments have the
/// specified value number.
void MergeValueInAsValue(const LiveRange &RHS,
const VNInfo *RHSValNo, VNInfo *LHSValNo);
bool empty() const { return segments.empty(); }
/// beginIndex - Return the lowest numbered slot covered.
SlotIndex beginIndex() const {
assert(!empty() && "Call to beginIndex() on empty range.");
return segments.front().start;
}
/// endNumber - return the maximum point of the range of the whole,
/// exclusive.
SlotIndex endIndex() const {
assert(!empty() && "Call to endIndex() on empty range.");
return segments.back().end;
}
bool expiredAt(SlotIndex index) const {
return index >= endIndex();
}
bool liveAt(SlotIndex index) const {
const_iterator r = find(index);
return r != end() && r->start <= index;
}
/// Return the segment that contains the specified index, or null if there
/// is none.
const Segment *getSegmentContaining(SlotIndex Idx) const {
const_iterator I = FindSegmentContaining(Idx);
return I == end() ? nullptr : &*I;
}
/// Return the live segment that contains the specified index, or null if
/// there is none.
Segment *getSegmentContaining(SlotIndex Idx) {
iterator I = FindSegmentContaining(Idx);
return I == end() ? nullptr : &*I;
}
/// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
VNInfo *getVNInfoAt(SlotIndex Idx) const {
const_iterator I = FindSegmentContaining(Idx);
return I == end() ? nullptr : I->valno;
}
/// getVNInfoBefore - Return the VNInfo that is live up to but not
/// necessarilly including Idx, or NULL. Use this to find the reaching def
/// used by an instruction at this SlotIndex position.
VNInfo *getVNInfoBefore(SlotIndex Idx) const {
const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
return I == end() ? nullptr : I->valno;
}
/// Return an iterator to the segment that contains the specified index, or
/// end() if there is none.
iterator FindSegmentContaining(SlotIndex Idx) {
iterator I = find(Idx);
return I != end() && I->start <= Idx ? I : end();
}
const_iterator FindSegmentContaining(SlotIndex Idx) const {
const_iterator I = find(Idx);
return I != end() && I->start <= Idx ? I : end();
}
/// overlaps - Return true if the intersection of the two live ranges is
/// not empty.
bool overlaps(const LiveRange &other) const {
if (other.empty())
return false;
return overlapsFrom(other, other.begin());
}
/// overlaps - Return true if the two ranges have overlapping segments
/// that are not coalescable according to CP.
///
/// Overlapping segments where one range is defined by a coalescable
/// copy are allowed.
bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
const SlotIndexes&) const;
/// overlaps - Return true if the live range overlaps an interval specified
/// by [Start, End).
bool overlaps(SlotIndex Start, SlotIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live ranges
/// is not empty. The specified iterator is a hint that we can begin
/// scanning the Other range starting at I.
bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
/// Returns true if all segments of the @p Other live range are completely
/// covered by this live range.
/// Adjacent live ranges do not affect the covering:the liverange
/// [1,5](5,10] covers (3,7].
bool covers(const LiveRange &Other) const;
/// Add the specified Segment to this range, merging segments as
/// appropriate. This returns an iterator to the inserted segment (which
/// may have grown since it was inserted).
iterator addSegment(Segment S);
/// If this range is live before @p Use in the basic block that starts at
/// @p StartIdx, extend it to be live up to @p Use, and return the value. If
/// there is no segment before @p Use, return nullptr.
VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use);
/// join - Join two live ranges (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS ranges as specified. If
/// the ranges are not joinable, this aborts.
void join(LiveRange &Other,
const int *ValNoAssignments,
const int *RHSValNoAssignments,
SmallVectorImpl<VNInfo *> &NewVNInfo);
/// True iff this segment is a single segment that lies between the
/// specified boundaries, exclusively. Vregs live across a backedge are not
/// considered local. The boundaries are expected to lie within an extended
/// basic block, so vregs that are not live out should contain no holes.
bool isLocal(SlotIndex Start, SlotIndex End) const {
return beginIndex() > Start.getBaseIndex() &&
endIndex() < End.getBoundaryIndex();
}
/// Remove the specified segment from this range. Note that the segment
/// must be a single Segment in its entirety.
void removeSegment(SlotIndex Start, SlotIndex End,
bool RemoveDeadValNo = false);
void removeSegment(Segment S, bool RemoveDeadValNo = false) {
removeSegment(S.start, S.end, RemoveDeadValNo);
}
/// Remove segment pointed to by iterator @p I from this range. This does
/// not remove dead value numbers.
iterator removeSegment(iterator I) {
return segments.erase(I);
}
/// Query Liveness at Idx.
/// The sub-instruction slot of Idx doesn't matter, only the instruction
/// it refers to is considered.
LiveQueryResult Query(SlotIndex Idx) const {
// Find the segment that enters the instruction.
const_iterator I = find(Idx.getBaseIndex());
const_iterator E = end();
if (I == E)
return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
// Is this an instruction live-in segment?
// If Idx is the start index of a basic block, include live-in segments
// that start at Idx.getBaseIndex().
VNInfo *EarlyVal = nullptr;
VNInfo *LateVal = nullptr;
SlotIndex EndPoint;
bool Kill = false;
if (I->start <= Idx.getBaseIndex()) {
EarlyVal = I->valno;
EndPoint = I->end;
// Move to the potentially live-out segment.
if (SlotIndex::isSameInstr(Idx, I->end)) {
Kill = true;
if (++I == E)
return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
}
// Special case: A PHIDef value can have its def in the middle of a
// segment if the value happens to be live out of the layout
// predecessor.
// Such a value is not live-in.
if (EarlyVal->def == Idx.getBaseIndex())
EarlyVal = nullptr;
}
// I now points to the segment that may be live-through, or defined by
// this instr. Ignore segments starting after the current instr.
if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
LateVal = I->valno;
EndPoint = I->end;
}
return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
}
/// removeValNo - Remove all the segments defined by the specified value#.
/// Also remove the value# from value# list.
void removeValNo(VNInfo *ValNo);
/// Returns true if the live range is zero length, i.e. no live segments
/// span instructions. It doesn't pay to spill such a range.
bool isZeroLength(SlotIndexes *Indexes) const {
for (const Segment &S : segments)
if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
S.end.getBaseIndex())
return false;
return true;
}
bool operator<(const LiveRange& other) const {
const SlotIndex &thisIndex = beginIndex();
const SlotIndex &otherIndex = other.beginIndex();
return thisIndex < otherIndex;
}
/// Flush segment set into the regular segment vector.
/// The method is to be called after the live range
/// has been created, if use of the segment set was
/// activated in the constructor of the live range.
void flushSegmentSet();
void print(raw_ostream &OS) const;
void dump() const;
/// \brief Walk the range and assert if any invariants fail to hold.
///
/// Note that this is a no-op when asserts are disabled.
#ifdef NDEBUG
void verify() const {}
#else
void verify() const;
#endif
protected:
/// Append a segment to the list of segments.
void append(const LiveRange::Segment S);
private:
friend class LiveRangeUpdater;
void addSegmentToSet(Segment S);
void markValNoForDeletion(VNInfo *V);
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
LR.print(OS);
return OS;
}
/// LiveInterval - This class represents the liveness of a register,
/// or stack slot.
class LiveInterval : public LiveRange {
public:
typedef LiveRange super;
/// A live range for subregisters. The LaneMask specifies which parts of the
/// super register are covered by the interval.
/// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
class SubRange : public LiveRange {
public:
SubRange *Next;
unsigned LaneMask;
/// Constructs a new SubRange object.
SubRange(unsigned LaneMask)
: Next(nullptr), LaneMask(LaneMask) {
}
/// Constructs a new SubRange object by copying liveness from @p Other.
SubRange(unsigned LaneMask, const LiveRange &Other,
BumpPtrAllocator &Allocator)
: LiveRange(Other, Allocator), Next(nullptr), LaneMask(LaneMask) {
}
};
private:
SubRange *SubRanges; ///< Single linked list of subregister live ranges.
public:
const unsigned reg; // the register or stack slot of this interval.
float weight; // weight of this interval
LiveInterval(unsigned Reg, float Weight)
: SubRanges(nullptr), reg(Reg), weight(Weight) {}
~LiveInterval() {
clearSubRanges();
}
template<typename T>
class SingleLinkedListIterator {
T *P;
public:
SingleLinkedListIterator<T>(T *P) : P(P) {}
SingleLinkedListIterator<T> &operator++() {
P = P->Next;
return *this;
}
SingleLinkedListIterator<T> &operator++(int) {
SingleLinkedListIterator res = *this;
++*this;
return res;
}
bool operator!=(const SingleLinkedListIterator<T> &Other) {
return P != Other.operator->();
}
bool operator==(const SingleLinkedListIterator<T> &Other) {
return P == Other.operator->();
}
T &operator*() const {
return *P;
}
T *operator->() const {
return P;
}
};
typedef SingleLinkedListIterator<SubRange> subrange_iterator;
subrange_iterator subrange_begin() {
return subrange_iterator(SubRanges);
}
subrange_iterator subrange_end() {
return subrange_iterator(nullptr);
}
typedef SingleLinkedListIterator<const SubRange> const_subrange_iterator;
const_subrange_iterator subrange_begin() const {
return const_subrange_iterator(SubRanges);
}
const_subrange_iterator subrange_end() const {
return const_subrange_iterator(nullptr);
}
iterator_range<subrange_iterator> subranges() {
return make_range(subrange_begin(), subrange_end());
}
iterator_range<const_subrange_iterator> subranges() const {
return make_range(subrange_begin(), subrange_end());
}
/// Creates a new empty subregister live range. The range is added at the
/// beginning of the subrange list; subrange iterators stay valid.
SubRange *createSubRange(BumpPtrAllocator &Allocator, unsigned LaneMask) {
SubRange *Range = new (Allocator) SubRange(LaneMask);
appendSubRange(Range);
return Range;
}
/// Like createSubRange() but the new range is filled with a copy of the
/// liveness information in @p CopyFrom.
SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, unsigned LaneMask,
const LiveRange &CopyFrom) {
SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
appendSubRange(Range);
return Range;
}
/// Returns true if subregister liveness information is available.
bool hasSubRanges() const {
return SubRanges != nullptr;
}
/// Removes all subregister liveness information.
void clearSubRanges();
/// Removes all subranges without any segments (subranges without segments
/// are not considered valid and should only exist temporarily).
void removeEmptySubRanges();
/// Construct main live range by merging the SubRanges of @p LI.
void constructMainRangeFromSubranges(const SlotIndexes &Indexes,
VNInfo::Allocator &VNIAllocator);
/// getSize - Returns the sum of sizes of all the LiveRange's.
///
unsigned getSize() const;
/// isSpillable - Can this interval be spilled?
bool isSpillable() const {
return weight != llvm::huge_valf;
}
/// markNotSpillable - Mark interval as not spillable
void markNotSpillable() {
weight = llvm::huge_valf;
}
bool operator<(const LiveInterval& other) const {
const SlotIndex &thisIndex = beginIndex();
const SlotIndex &otherIndex = other.beginIndex();
return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
}
void print(raw_ostream &OS) const;
void dump() const;
/// \brief Walks the interval and assert if any invariants fail to hold.
///
/// Note that this is a no-op when asserts are disabled.
#ifdef NDEBUG
void verify(const MachineRegisterInfo *MRI = nullptr) const {}
#else
void verify(const MachineRegisterInfo *MRI = nullptr) const;
#endif
private:
/// Appends @p Range to SubRanges list.
void appendSubRange(SubRange *Range) {
Range->Next = SubRanges;
SubRanges = Range;
}
/// Free memory held by SubRange.
void freeSubRange(SubRange *S);
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
LI.print(OS);
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
return V < S.start;
}
inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
return S.start < V;
}
/// Helper class for performant LiveRange bulk updates.
///
/// Calling LiveRange::addSegment() repeatedly can be expensive on large
/// live ranges because segments after the insertion point may need to be
/// shifted. The LiveRangeUpdater class can defer the shifting when adding
/// many segments in order.
///
/// The LiveRange will be in an invalid state until flush() is called.
class LiveRangeUpdater {
LiveRange *LR;
SlotIndex LastStart;
LiveRange::iterator WriteI;
LiveRange::iterator ReadI;
SmallVector<LiveRange::Segment, 16> Spills;
void mergeSpills();
public:
/// Create a LiveRangeUpdater for adding segments to LR.
/// LR will temporarily be in an invalid state until flush() is called.
LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
~LiveRangeUpdater() { flush(); }
/// Add a segment to LR and coalesce when possible, just like
/// LR.addSegment(). Segments should be added in increasing start order for
/// best performance.
void add(LiveRange::Segment);
void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
add(LiveRange::Segment(Start, End, VNI));
}
/// Return true if the LR is currently in an invalid state, and flush()
/// needs to be called.
bool isDirty() const { return LastStart.isValid(); }
/// Flush the updater state to LR so it is valid and contains all added
/// segments.
void flush();
/// Select a different destination live range.
void setDest(LiveRange *lr) {
if (LR != lr && isDirty())
flush();
LR = lr;
}
/// Get the current destination live range.
LiveRange *getDest() const { return LR; }
void dump() const;
void print(raw_ostream&) const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
X.print(OS);
return OS;
}
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
/// LiveInterval into equivalence clases of connected components. A
/// LiveInterval that has multiple connected components can be broken into
/// multiple LiveIntervals.
///
/// Given a LiveInterval that may have multiple connected components, run:
///
/// unsigned numComps = ConEQ.Classify(LI);
/// if (numComps > 1) {
/// // allocate numComps-1 new LiveIntervals into LIS[1..]
/// ConEQ.Distribute(LIS);
/// }
class ConnectedVNInfoEqClasses {
LiveIntervals &LIS;
IntEqClasses EqClass;
// Note that values a and b are connected.
void Connect(unsigned a, unsigned b);
unsigned Renumber();
public:
explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
/// Classify - Classify the values in LI into connected components.
/// Return the number of connected components.
unsigned Classify(const LiveInterval *LI);
/// getEqClass - Classify creates equivalence classes numbered 0..N. Return
/// the equivalence class assigned the VNI.
unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
/// Distribute - Distribute values in LIV[0] into a separate LiveInterval
/// for each connected component. LIV must have a LiveInterval for each
/// connected component. The LiveIntervals in Liv[1..] must be empty.
/// Instructions using LIV[0] are rewritten.
void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
};
}
#endif