mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
d9fb37ac98
SlotCalculator in CWriter. (Unfortunately, all this means a lot of X86/Printer's methods have to be de-constified again. Oh well.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7299 91177308-0d34-0410-b5e6-96231b3b80d8
967 lines
33 KiB
C++
967 lines
33 KiB
C++
//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
|
|
//
|
|
// This file contains a printer that converts from our internal
|
|
// representation of machine-dependent LLVM code to Intel-format
|
|
// assembly language. This printer is the output mechanism used
|
|
// by `llc' and `lli -printmachineinstrs' on X86.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "Support/StringExtras.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
|
|
namespace {
|
|
struct Printer : public MachineFunctionPass {
|
|
/// Output stream on which we're printing assembly code.
|
|
///
|
|
std::ostream &O;
|
|
|
|
/// Target machine description which we query for reg. names, data
|
|
/// layout, etc.
|
|
///
|
|
TargetMachine &TM;
|
|
|
|
/// Name-mangler for global names.
|
|
///
|
|
Mangler *Mang;
|
|
|
|
Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
|
|
|
|
/// We name each basic block in a Function with a unique number, so
|
|
/// that we can consistently refer to them later. This is cleared
|
|
/// at the beginning of each call to runOnMachineFunction().
|
|
///
|
|
typedef std::map<const Value *, unsigned> ValueMapTy;
|
|
ValueMapTy NumberForBB;
|
|
|
|
/// Cache of mangled name for current function. This is
|
|
/// recalculated at the beginning of each call to
|
|
/// runOnMachineFunction().
|
|
///
|
|
std::string CurrentFnName;
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Assembly Printer";
|
|
}
|
|
|
|
void printMachineInstruction(const MachineInstr *MI);
|
|
void printOp(const MachineOperand &MO,
|
|
bool elideOffsetKeyword = false);
|
|
void printMemReference(const MachineInstr *MI, unsigned Op);
|
|
void printConstantPool(MachineConstantPool *MCP);
|
|
bool runOnMachineFunction(MachineFunction &F);
|
|
std::string ConstantExprToString(const ConstantExpr* CE);
|
|
std::string valToExprString(const Value* V);
|
|
bool doInitialization(Module &M);
|
|
bool doFinalization(Module &M);
|
|
void printConstantValueOnly(const Constant* CV, int numPadBytesAfter = 0);
|
|
void printSingleConstantValue(const Constant* CV);
|
|
};
|
|
} // end of anonymous namespace
|
|
|
|
/// createX86CodePrinterPass - Returns a pass that prints the X86
|
|
/// assembly code for a MachineFunction to the given output stream,
|
|
/// using the given target machine description. This should work
|
|
/// regardless of whether the function is in SSA form.
|
|
///
|
|
Pass *createX86CodePrinterPass(std::ostream &o, TargetMachine &tm) {
|
|
return new Printer(o, tm);
|
|
}
|
|
|
|
/// valToExprString - Helper function for ConstantExprToString().
|
|
/// Appends result to argument string S.
|
|
///
|
|
std::string Printer::valToExprString(const Value* V) {
|
|
std::string S;
|
|
bool failed = false;
|
|
if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
|
|
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
|
|
S += std::string(CB == ConstantBool::True ? "1" : "0");
|
|
else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
|
|
S += itostr(CI->getValue());
|
|
else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
|
|
S += utostr(CI->getValue());
|
|
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
|
|
S += ftostr(CFP->getValue());
|
|
else if (isa<ConstantPointerNull>(CV))
|
|
S += "0";
|
|
else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
|
|
S += valToExprString(CPR->getValue());
|
|
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
|
|
S += ConstantExprToString(CE);
|
|
else
|
|
failed = true;
|
|
} else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
|
|
S += Mang->getValueName(GV);
|
|
}
|
|
else
|
|
failed = true;
|
|
|
|
if (failed) {
|
|
assert(0 && "Cannot convert value to string");
|
|
S += "<illegal-value>";
|
|
}
|
|
return S;
|
|
}
|
|
|
|
/// ConstantExprToString - Convert a ConstantExpr to an asm expression
|
|
/// and return this as a string.
|
|
///
|
|
std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
|
|
std::string S;
|
|
const TargetData &TD = TM.getTargetData();
|
|
switch(CE->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
{ // generate a symbolic expression for the byte address
|
|
const Value* ptrVal = CE->getOperand(0);
|
|
std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
|
|
S += "(" + valToExprString(ptrVal) + ") + ("
|
|
+ utostr(TD.getIndexedOffset(ptrVal->getType(),idxVec)) + ")";
|
|
break;
|
|
}
|
|
|
|
case Instruction::Cast:
|
|
// Support only non-converting or widening casts for now, that is,
|
|
// ones that do not involve a change in value. This assertion is
|
|
// not a complete check.
|
|
{
|
|
Constant *Op = CE->getOperand(0);
|
|
const Type *OpTy = Op->getType(), *Ty = CE->getType();
|
|
assert(((isa<PointerType>(OpTy)
|
|
&& (Ty == Type::LongTy || Ty == Type::ULongTy))
|
|
|| (isa<PointerType>(Ty)
|
|
&& (OpTy == Type::LongTy || OpTy == Type::ULongTy)))
|
|
|| (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
|
|
&& (OpTy-> isLosslesslyConvertibleTo(Ty))))
|
|
&& "FIXME: Don't yet support this kind of constant cast expr");
|
|
S += "(" + valToExprString(Op) + ")";
|
|
}
|
|
break;
|
|
|
|
case Instruction::Add:
|
|
S += "(" + valToExprString(CE->getOperand(0)) + ") + ("
|
|
+ valToExprString(CE->getOperand(1)) + ")";
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Unsupported operator in ConstantExprToString()");
|
|
break;
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
/// printSingleConstantValue - Print a single constant value.
|
|
///
|
|
void
|
|
Printer::printSingleConstantValue(const Constant* CV)
|
|
{
|
|
assert(CV->getType() != Type::VoidTy &&
|
|
CV->getType() != Type::TypeTy &&
|
|
CV->getType() != Type::LabelTy &&
|
|
"Unexpected type for Constant");
|
|
|
|
assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
|
|
&& "Aggregate types should be handled outside this function");
|
|
|
|
const Type *type = CV->getType();
|
|
O << "\t";
|
|
switch(type->getPrimitiveID())
|
|
{
|
|
case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
|
|
O << ".byte";
|
|
break;
|
|
case Type::UShortTyID: case Type::ShortTyID:
|
|
O << ".word";
|
|
break;
|
|
case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
|
|
O << ".long";
|
|
break;
|
|
case Type::ULongTyID: case Type::LongTyID:
|
|
O << ".quad";
|
|
break;
|
|
case Type::FloatTyID:
|
|
O << ".long";
|
|
break;
|
|
case Type::DoubleTyID:
|
|
O << ".quad";
|
|
break;
|
|
case Type::ArrayTyID:
|
|
if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
|
|
(cast<ArrayType>(type)->getElementType() == Type::SByteTy))
|
|
O << ".string";
|
|
else
|
|
assert (0 && "Can't handle printing this type of array");
|
|
break;
|
|
default:
|
|
assert (0 && "Can't handle printing this type of thing");
|
|
break;
|
|
}
|
|
O << "\t";
|
|
|
|
if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
|
|
{
|
|
// Constant expression built from operators, constants, and
|
|
// symbolic addrs
|
|
O << ConstantExprToString(CE) << "\n";
|
|
}
|
|
else if (type->isPrimitiveType())
|
|
{
|
|
if (type->isFloatingPoint()) {
|
|
// FP Constants are printed as integer constants to avoid losing
|
|
// precision...
|
|
double Val = cast<ConstantFP>(CV)->getValue();
|
|
if (type == Type::FloatTy) {
|
|
float FVal = (float)Val;
|
|
char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules
|
|
O << *(unsigned int*)ProxyPtr;
|
|
} else if (type == Type::DoubleTy) {
|
|
char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules
|
|
O << *(uint64_t*)ProxyPtr;
|
|
} else {
|
|
assert(0 && "Unknown floating point type!");
|
|
}
|
|
|
|
O << "\t# " << type->getDescription() << " value: " << Val << "\n";
|
|
} else {
|
|
WriteAsOperand(O, CV, false, false) << "\n";
|
|
}
|
|
}
|
|
else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
|
|
{
|
|
// This is a constant address for a global variable or method.
|
|
// Use the name of the variable or method as the address value.
|
|
O << Mang->getValueName(CPR->getValue()) << "\n";
|
|
}
|
|
else if (isa<ConstantPointerNull>(CV))
|
|
{
|
|
// Null pointer value
|
|
O << "0\n";
|
|
}
|
|
else
|
|
{
|
|
assert(0 && "Unknown elementary type for constant");
|
|
}
|
|
}
|
|
|
|
/// isStringCompatible - Can we treat the specified array as a string?
|
|
/// Only if it is an array of ubytes or non-negative sbytes.
|
|
///
|
|
static bool isStringCompatible(const ConstantArray *CVA) {
|
|
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
|
|
if (ETy == Type::UByteTy) return true;
|
|
if (ETy != Type::SByteTy) return false;
|
|
|
|
for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
|
|
if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// toOctal - Convert the low order bits of X into an octal digit.
|
|
///
|
|
static inline char toOctal(int X) {
|
|
return (X&7)+'0';
|
|
}
|
|
|
|
/// getAsCString - Return the specified array as a C compatible
|
|
/// string, only if the predicate isStringCompatible is true.
|
|
///
|
|
static std::string getAsCString(const ConstantArray *CVA) {
|
|
assert(isStringCompatible(CVA) && "Array is not string compatible!");
|
|
|
|
std::string Result;
|
|
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
|
|
Result = "\"";
|
|
for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
|
|
unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
|
|
|
|
if (C == '"') {
|
|
Result += "\\\"";
|
|
} else if (C == '\\') {
|
|
Result += "\\\\";
|
|
} else if (isprint(C)) {
|
|
Result += C;
|
|
} else {
|
|
switch(C) {
|
|
case '\a': Result += "\\a"; break;
|
|
case '\b': Result += "\\b"; break;
|
|
case '\f': Result += "\\f"; break;
|
|
case '\n': Result += "\\n"; break;
|
|
case '\r': Result += "\\r"; break;
|
|
case '\t': Result += "\\t"; break;
|
|
case '\v': Result += "\\v"; break;
|
|
default:
|
|
Result += '\\';
|
|
Result += toOctal(C >> 6);
|
|
Result += toOctal(C >> 3);
|
|
Result += toOctal(C >> 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Result += "\"";
|
|
return Result;
|
|
}
|
|
|
|
// Print a constant value or values (it may be an aggregate).
|
|
// Uses printSingleConstantValue() to print each individual value.
|
|
void
|
|
Printer::printConstantValueOnly(const Constant* CV,
|
|
int numPadBytesAfter /* = 0 */)
|
|
{
|
|
const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);
|
|
const TargetData &TD = TM.getTargetData();
|
|
|
|
if (CVA && isStringCompatible(CVA))
|
|
{ // print the string alone and return
|
|
O << "\t" << ".string" << "\t" << getAsCString(CVA) << "\n";
|
|
}
|
|
else if (CVA)
|
|
{ // Not a string. Print the values in successive locations
|
|
const std::vector<Use> &constValues = CVA->getValues();
|
|
for (unsigned i=0; i < constValues.size(); i++)
|
|
printConstantValueOnly(cast<Constant>(constValues[i].get()));
|
|
}
|
|
else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
|
|
{ // Print the fields in successive locations. Pad to align if needed!
|
|
const StructLayout *cvsLayout =
|
|
TD.getStructLayout(CVS->getType());
|
|
const std::vector<Use>& constValues = CVS->getValues();
|
|
unsigned sizeSoFar = 0;
|
|
for (unsigned i=0, N = constValues.size(); i < N; i++)
|
|
{
|
|
const Constant* field = cast<Constant>(constValues[i].get());
|
|
|
|
// Check if padding is needed and insert one or more 0s.
|
|
unsigned fieldSize = TD.getTypeSize(field->getType());
|
|
int padSize = ((i == N-1? cvsLayout->StructSize
|
|
: cvsLayout->MemberOffsets[i+1])
|
|
- cvsLayout->MemberOffsets[i]) - fieldSize;
|
|
sizeSoFar += (fieldSize + padSize);
|
|
|
|
// Now print the actual field value
|
|
printConstantValueOnly(field, padSize);
|
|
}
|
|
assert(sizeSoFar == cvsLayout->StructSize &&
|
|
"Layout of constant struct may be incorrect!");
|
|
}
|
|
else
|
|
printSingleConstantValue(CV);
|
|
|
|
if (numPadBytesAfter) {
|
|
unsigned numBytes = numPadBytesAfter;
|
|
for ( ; numBytes >= 8; numBytes -= 8)
|
|
printSingleConstantValue(Constant::getNullValue(Type::ULongTy));
|
|
if (numBytes >= 4)
|
|
{
|
|
printSingleConstantValue(Constant::getNullValue(Type::UIntTy));
|
|
numBytes -= 4;
|
|
}
|
|
while (numBytes--)
|
|
printSingleConstantValue(Constant::getNullValue(Type::UByteTy));
|
|
}
|
|
}
|
|
|
|
/// printConstantPool - Print to the current output stream assembly
|
|
/// representations of the constants in the constant pool MCP. This is
|
|
/// used to print out constants which have been "spilled to memory" by
|
|
/// the code generator.
|
|
///
|
|
void Printer::printConstantPool(MachineConstantPool *MCP) {
|
|
const std::vector<Constant*> &CP = MCP->getConstants();
|
|
const TargetData &TD = TM.getTargetData();
|
|
|
|
if (CP.empty()) return;
|
|
|
|
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
|
|
O << "\t.section .rodata\n";
|
|
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
|
|
<< "\n";
|
|
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
|
|
<< *CP[i] << "\n";
|
|
printConstantValueOnly (CP[i]);
|
|
}
|
|
}
|
|
|
|
/// runOnMachineFunction - This uses the printMachineInstruction()
|
|
/// method to print assembly for each instruction.
|
|
///
|
|
bool Printer::runOnMachineFunction(MachineFunction &MF) {
|
|
// BBNumber is used here so that a given Printer will never give two
|
|
// BBs the same name. (If you have a better way, please let me know!)
|
|
static unsigned BBNumber = 0;
|
|
|
|
// What's my mangled name?
|
|
CurrentFnName = Mang->getValueName(MF.getFunction());
|
|
|
|
// Print out constants referenced by the function
|
|
printConstantPool(MF.getConstantPool());
|
|
|
|
// Print out labels for the function.
|
|
O << "\t.text\n";
|
|
O << "\t.align 16\n";
|
|
O << "\t.globl\t" << CurrentFnName << "\n";
|
|
O << "\t.type\t" << CurrentFnName << ", @function\n";
|
|
O << CurrentFnName << ":\n";
|
|
|
|
// Number each basic block so that we can consistently refer to them
|
|
// in PC-relative references.
|
|
NumberForBB.clear();
|
|
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
|
|
I != E; ++I) {
|
|
NumberForBB[I->getBasicBlock()] = BBNumber++;
|
|
}
|
|
|
|
// Print out code for the function.
|
|
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
|
|
I != E; ++I) {
|
|
// Print a label for the basic block.
|
|
O << ".BB" << NumberForBB[I->getBasicBlock()] << ":\t# "
|
|
<< I->getBasicBlock()->getName() << "\n";
|
|
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
|
|
II != E; ++II) {
|
|
// Print the assembly for the instruction.
|
|
O << "\t";
|
|
printMachineInstruction(*II);
|
|
}
|
|
}
|
|
|
|
// We didn't modify anything.
|
|
return false;
|
|
}
|
|
|
|
static bool isScale(const MachineOperand &MO) {
|
|
return MO.isImmediate() &&
|
|
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
|
|
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
|
|
}
|
|
|
|
static bool isMem(const MachineInstr *MI, unsigned Op) {
|
|
if (MI->getOperand(Op).isFrameIndex()) return true;
|
|
if (MI->getOperand(Op).isConstantPoolIndex()) return true;
|
|
return Op+4 <= MI->getNumOperands() &&
|
|
MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
|
|
MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
|
|
}
|
|
|
|
void Printer::printOp(const MachineOperand &MO,
|
|
bool elideOffsetKeyword /* = false */) {
|
|
const MRegisterInfo &RI = *TM.getRegisterInfo();
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_VirtualRegister:
|
|
if (Value *V = MO.getVRegValueOrNull()) {
|
|
O << "<" << V->getName() << ">";
|
|
return;
|
|
}
|
|
// FALLTHROUGH
|
|
case MachineOperand::MO_MachineRegister:
|
|
if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
|
|
O << RI.get(MO.getReg()).Name;
|
|
else
|
|
O << "%reg" << MO.getReg();
|
|
return;
|
|
|
|
case MachineOperand::MO_SignExtendedImmed:
|
|
case MachineOperand::MO_UnextendedImmed:
|
|
O << (int)MO.getImmedValue();
|
|
return;
|
|
case MachineOperand::MO_PCRelativeDisp:
|
|
{
|
|
ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
|
|
assert (i != NumberForBB.end()
|
|
&& "Could not find a BB I previously put in the NumberForBB map!");
|
|
O << ".BB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
|
|
}
|
|
return;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
if (!elideOffsetKeyword) O << "OFFSET "; O << Mang->getValueName(MO.getGlobal());
|
|
return;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
O << MO.getSymbolName();
|
|
return;
|
|
default:
|
|
O << "<unknown operand type>"; return;
|
|
}
|
|
}
|
|
|
|
static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
|
|
switch (Desc.TSFlags & X86II::ArgMask) {
|
|
default: assert(0 && "Unknown arg size!");
|
|
case X86II::Arg8: return "BYTE PTR";
|
|
case X86II::Arg16: return "WORD PTR";
|
|
case X86II::Arg32: return "DWORD PTR";
|
|
case X86II::Arg64: return "QWORD PTR";
|
|
case X86II::ArgF32: return "DWORD PTR";
|
|
case X86II::ArgF64: return "QWORD PTR";
|
|
case X86II::ArgF80: return "XWORD PTR";
|
|
}
|
|
}
|
|
|
|
void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
|
|
const MRegisterInfo &RI = *TM.getRegisterInfo();
|
|
assert(isMem(MI, Op) && "Invalid memory reference!");
|
|
|
|
if (MI->getOperand(Op).isFrameIndex()) {
|
|
O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
|
|
if (MI->getOperand(Op+3).getImmedValue())
|
|
O << " + " << MI->getOperand(Op+3).getImmedValue();
|
|
O << "]";
|
|
return;
|
|
} else if (MI->getOperand(Op).isConstantPoolIndex()) {
|
|
O << "[.CPI" << CurrentFnName << "_"
|
|
<< MI->getOperand(Op).getConstantPoolIndex();
|
|
if (MI->getOperand(Op+3).getImmedValue())
|
|
O << " + " << MI->getOperand(Op+3).getImmedValue();
|
|
O << "]";
|
|
return;
|
|
}
|
|
|
|
const MachineOperand &BaseReg = MI->getOperand(Op);
|
|
int ScaleVal = MI->getOperand(Op+1).getImmedValue();
|
|
const MachineOperand &IndexReg = MI->getOperand(Op+2);
|
|
int DispVal = MI->getOperand(Op+3).getImmedValue();
|
|
|
|
O << "[";
|
|
bool NeedPlus = false;
|
|
if (BaseReg.getReg()) {
|
|
printOp(BaseReg);
|
|
NeedPlus = true;
|
|
}
|
|
|
|
if (IndexReg.getReg()) {
|
|
if (NeedPlus) O << " + ";
|
|
if (ScaleVal != 1)
|
|
O << ScaleVal << "*";
|
|
printOp(IndexReg);
|
|
NeedPlus = true;
|
|
}
|
|
|
|
if (DispVal) {
|
|
if (NeedPlus)
|
|
if (DispVal > 0)
|
|
O << " + ";
|
|
else {
|
|
O << " - ";
|
|
DispVal = -DispVal;
|
|
}
|
|
O << DispVal;
|
|
}
|
|
O << "]";
|
|
}
|
|
|
|
/// printMachineInstruction -- Print out a single X86 LLVM instruction
|
|
/// MI in Intel syntax to the current output stream.
|
|
///
|
|
void Printer::printMachineInstruction(const MachineInstr *MI) {
|
|
unsigned Opcode = MI->getOpcode();
|
|
const TargetInstrInfo &TII = TM.getInstrInfo();
|
|
const TargetInstrDescriptor &Desc = TII.get(Opcode);
|
|
const MRegisterInfo &RI = *TM.getRegisterInfo();
|
|
|
|
switch (Desc.TSFlags & X86II::FormMask) {
|
|
case X86II::Pseudo:
|
|
// Print pseudo-instructions as comments; either they should have been
|
|
// turned into real instructions by now, or they don't need to be
|
|
// seen by the assembler (e.g., IMPLICIT_USEs.)
|
|
O << "# ";
|
|
if (Opcode == X86::PHI) {
|
|
printOp(MI->getOperand(0));
|
|
O << " = phi ";
|
|
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
|
|
if (i != 1) O << ", ";
|
|
O << "[";
|
|
printOp(MI->getOperand(i));
|
|
O << ", ";
|
|
printOp(MI->getOperand(i+1));
|
|
O << "]";
|
|
}
|
|
} else {
|
|
unsigned i = 0;
|
|
if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() ||
|
|
MI->getOperand(0).opIsDefAndUse())) {
|
|
printOp(MI->getOperand(0));
|
|
O << " = ";
|
|
++i;
|
|
}
|
|
O << TII.getName(MI->getOpcode());
|
|
|
|
for (unsigned e = MI->getNumOperands(); i != e; ++i) {
|
|
O << " ";
|
|
if (MI->getOperand(i).opIsDefOnly() ||
|
|
MI->getOperand(i).opIsDefAndUse()) O << "*";
|
|
printOp(MI->getOperand(i));
|
|
if (MI->getOperand(i).opIsDefOnly() ||
|
|
MI->getOperand(i).opIsDefAndUse()) O << "*";
|
|
}
|
|
}
|
|
O << "\n";
|
|
return;
|
|
|
|
case X86II::RawFrm:
|
|
// The accepted forms of Raw instructions are:
|
|
// 1. nop - No operand required
|
|
// 2. jmp foo - PC relative displacement operand
|
|
// 3. call bar - GlobalAddress Operand or External Symbol Operand
|
|
//
|
|
assert(MI->getNumOperands() == 0 ||
|
|
(MI->getNumOperands() == 1 &&
|
|
(MI->getOperand(0).isPCRelativeDisp() ||
|
|
MI->getOperand(0).isGlobalAddress() ||
|
|
MI->getOperand(0).isExternalSymbol())) &&
|
|
"Illegal raw instruction!");
|
|
O << TII.getName(MI->getOpcode()) << " ";
|
|
|
|
if (MI->getNumOperands() == 1) {
|
|
printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
|
|
}
|
|
O << "\n";
|
|
return;
|
|
|
|
case X86II::AddRegFrm: {
|
|
// There are currently two forms of acceptable AddRegFrm instructions.
|
|
// Either the instruction JUST takes a single register (like inc, dec, etc),
|
|
// or it takes a register and an immediate of the same size as the register
|
|
// (move immediate f.e.). Note that this immediate value might be stored as
|
|
// an LLVM value, to represent, for example, loading the address of a global
|
|
// into a register. The initial register might be duplicated if this is a
|
|
// M_2_ADDR_REG instruction
|
|
//
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
(MI->getNumOperands() == 1 ||
|
|
(MI->getNumOperands() == 2 &&
|
|
(MI->getOperand(1).getVRegValueOrNull() ||
|
|
MI->getOperand(1).isImmediate() ||
|
|
MI->getOperand(1).isRegister() ||
|
|
MI->getOperand(1).isGlobalAddress() ||
|
|
MI->getOperand(1).isExternalSymbol()))) &&
|
|
"Illegal form for AddRegFrm instruction!");
|
|
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
|
|
O << TII.getName(MI->getOpCode()) << " ";
|
|
printOp(MI->getOperand(0));
|
|
if (MI->getNumOperands() == 2 &&
|
|
(!MI->getOperand(1).isRegister() ||
|
|
MI->getOperand(1).getVRegValueOrNull() ||
|
|
MI->getOperand(1).isGlobalAddress() ||
|
|
MI->getOperand(1).isExternalSymbol())) {
|
|
O << ", ";
|
|
printOp(MI->getOperand(1));
|
|
}
|
|
if (Desc.TSFlags & X86II::PrintImplUses) {
|
|
for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
|
|
O << ", " << RI.get(*p).Name;
|
|
}
|
|
}
|
|
O << "\n";
|
|
return;
|
|
}
|
|
case X86II::MRMDestReg: {
|
|
// There are two acceptable forms of MRMDestReg instructions, those with 2,
|
|
// 3 and 4 operands:
|
|
//
|
|
// 2 Operands: this is for things like mov that do not read a second input
|
|
//
|
|
// 3 Operands: in this form, the first two registers (the destination, and
|
|
// the first operand) should be the same, post register allocation. The 3rd
|
|
// operand is an additional input. This should be for things like add
|
|
// instructions.
|
|
//
|
|
// 4 Operands: This form is for instructions which are 3 operands forms, but
|
|
// have a constant argument as well.
|
|
//
|
|
bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
(MI->getNumOperands() == 2 ||
|
|
(isTwoAddr && MI->getOperand(1).isRegister() &&
|
|
MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
|
|
(MI->getNumOperands() == 3 ||
|
|
(MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
|
|
&& "Bad format for MRMDestReg!");
|
|
|
|
O << TII.getName(MI->getOpCode()) << " ";
|
|
printOp(MI->getOperand(0));
|
|
O << ", ";
|
|
printOp(MI->getOperand(1+isTwoAddr));
|
|
if (MI->getNumOperands() == 4) {
|
|
O << ", ";
|
|
printOp(MI->getOperand(3));
|
|
}
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMDestMem: {
|
|
// These instructions are the same as MRMDestReg, but instead of having a
|
|
// register reference for the mod/rm field, it's a memory reference.
|
|
//
|
|
assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
|
|
MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
|
|
|
|
O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
|
|
printMemReference(MI, 0);
|
|
O << ", ";
|
|
printOp(MI->getOperand(4));
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMSrcReg: {
|
|
// There is a two forms that are acceptable for MRMSrcReg instructions,
|
|
// those with 3 and 2 operands:
|
|
//
|
|
// 3 Operands: in this form, the last register (the second input) is the
|
|
// ModR/M input. The first two operands should be the same, post register
|
|
// allocation. This is for things like: add r32, r/m32
|
|
//
|
|
// 2 Operands: this is for things like mov that do not read a second input
|
|
//
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
MI->getOperand(1).isRegister() &&
|
|
(MI->getNumOperands() == 2 ||
|
|
(MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
|
|
&& "Bad format for MRMSrcReg!");
|
|
if (MI->getNumOperands() == 3 &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << TII.getName(MI->getOpCode()) << " ";
|
|
printOp(MI->getOperand(0));
|
|
O << ", ";
|
|
printOp(MI->getOperand(MI->getNumOperands()-1));
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMSrcMem: {
|
|
// These instructions are the same as MRMSrcReg, but instead of having a
|
|
// register reference for the mod/rm field, it's a memory reference.
|
|
//
|
|
assert(MI->getOperand(0).isRegister() &&
|
|
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
|
|
(MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
|
|
isMem(MI, 2))
|
|
&& "Bad format for MRMDestReg!");
|
|
if (MI->getNumOperands() == 2+4 &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << TII.getName(MI->getOpCode()) << " ";
|
|
printOp(MI->getOperand(0));
|
|
O << ", " << sizePtr(Desc) << " ";
|
|
printMemReference(MI, MI->getNumOperands()-4);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMS0r: case X86II::MRMS1r:
|
|
case X86II::MRMS2r: case X86II::MRMS3r:
|
|
case X86II::MRMS4r: case X86II::MRMS5r:
|
|
case X86II::MRMS6r: case X86II::MRMS7r: {
|
|
// In this form, the following are valid formats:
|
|
// 1. sete r
|
|
// 2. cmp reg, immediate
|
|
// 2. shl rdest, rinput <implicit CL or 1>
|
|
// 3. sbb rdest, rinput, immediate [rdest = rinput]
|
|
//
|
|
assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
|
|
MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
|
|
assert((MI->getNumOperands() != 2 ||
|
|
MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
|
|
"Bad MRMSxR format!");
|
|
assert((MI->getNumOperands() < 3 ||
|
|
(MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
|
|
"Bad MRMSxR format!");
|
|
|
|
if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << TII.getName(MI->getOpCode()) << " ";
|
|
printOp(MI->getOperand(0));
|
|
if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
|
|
O << ", ";
|
|
printOp(MI->getOperand(MI->getNumOperands()-1));
|
|
}
|
|
if (Desc.TSFlags & X86II::PrintImplUses) {
|
|
for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
|
|
O << ", " << RI.get(*p).Name;
|
|
}
|
|
}
|
|
O << "\n";
|
|
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMS0m: case X86II::MRMS1m:
|
|
case X86II::MRMS2m: case X86II::MRMS3m:
|
|
case X86II::MRMS4m: case X86II::MRMS5m:
|
|
case X86II::MRMS6m: case X86II::MRMS7m: {
|
|
// In this form, the following are valid formats:
|
|
// 1. sete [m]
|
|
// 2. cmp [m], immediate
|
|
// 2. shl [m], rinput <implicit CL or 1>
|
|
// 3. sbb [m], immediate
|
|
//
|
|
assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
|
|
isMem(MI, 0) && "Bad MRMSxM format!");
|
|
assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
|
|
"Bad MRMSxM format!");
|
|
// Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
|
|
// is misassembled by gas in intel_syntax mode as its 32-bit
|
|
// equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
|
|
// opcode bytes instead of the instruction.
|
|
if (MI->getOpCode() == X86::FSTPr80) {
|
|
if ((MI->getOperand(0).getReg() == X86::ESP)
|
|
&& (MI->getOperand(1).getImmedValue() == 1)) {
|
|
int DispVal = MI->getOperand(3).getImmedValue();
|
|
if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
|
|
unsigned int val = (unsigned int) DispVal;
|
|
O << ".byte 0xdb, 0xbc, 0x24\n\t";
|
|
O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
|
|
} else { // 1 byte disp.
|
|
unsigned char val = (unsigned char) DispVal;
|
|
O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
|
|
<< std::dec << "\t# ";
|
|
}
|
|
}
|
|
}
|
|
// Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
|
|
// misassembled by gas in intel_syntax mode as its 32-bit
|
|
// equivalent "fld DWORD PTR [...]". Workaround: Output the raw
|
|
// opcode bytes instead of the instruction.
|
|
if (MI->getOpCode() == X86::FLDr80) {
|
|
if ((MI->getOperand(0).getReg() == X86::ESP)
|
|
&& (MI->getOperand(1).getImmedValue() == 1)) {
|
|
int DispVal = MI->getOperand(3).getImmedValue();
|
|
if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
|
|
unsigned int val = (unsigned int) DispVal;
|
|
O << ".byte 0xdb, 0xac, 0x24\n\t";
|
|
O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
|
|
} else { // 1 byte disp.
|
|
unsigned char val = (unsigned char) DispVal;
|
|
O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
|
|
<< std::dec << "\t# ";
|
|
}
|
|
}
|
|
}
|
|
// Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
|
|
// invalid opcode, saying "64 bit operations are only supported in
|
|
// 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
|
|
// [...]", which is wrong. Workaround: Output the raw opcode bytes
|
|
// instead of the instruction.
|
|
if (MI->getOpCode() == X86::FILDr64) {
|
|
if ((MI->getOperand(0).getReg() == X86::ESP)
|
|
&& (MI->getOperand(1).getImmedValue() == 1)) {
|
|
int DispVal = MI->getOperand(3).getImmedValue();
|
|
if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
|
|
unsigned int val = (unsigned int) DispVal;
|
|
O << ".byte 0xdf, 0xac, 0x24\n\t";
|
|
O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
|
|
} else { // 1 byte disp.
|
|
unsigned char val = (unsigned char) DispVal;
|
|
O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
|
|
<< std::dec << "\t# ";
|
|
}
|
|
}
|
|
}
|
|
// Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
|
|
// an invalid opcode, saying "64 bit operations are only
|
|
// supported in 64 bit modes." libopcodes disassembles it as
|
|
// "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
|
|
// "fistpll DWORD PTR " instead, which is what libopcodes is
|
|
// expecting to see.
|
|
if (MI->getOpCode() == X86::FISTPr64) {
|
|
O << "fistpll DWORD PTR ";
|
|
printMemReference(MI, 0);
|
|
if (MI->getNumOperands() == 5) {
|
|
O << ", ";
|
|
printOp(MI->getOperand(4));
|
|
}
|
|
O << "\t# ";
|
|
}
|
|
|
|
O << TII.getName(MI->getOpCode()) << " ";
|
|
O << sizePtr(Desc) << " ";
|
|
printMemReference(MI, 0);
|
|
if (MI->getNumOperands() == 5) {
|
|
O << ", ";
|
|
printOp(MI->getOperand(4));
|
|
}
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
default:
|
|
O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
|
|
}
|
|
}
|
|
|
|
bool Printer::doInitialization(Module &M)
|
|
{
|
|
// Tell gas we are outputting Intel syntax (not AT&T syntax) assembly,
|
|
// with no % decorations on register names.
|
|
O << "\t.intel_syntax noprefix\n";
|
|
Mang = new Mangler(M);
|
|
return false; // success
|
|
}
|
|
|
|
static const Function *isConstantFunctionPointerRef(const Constant *C) {
|
|
if (const ConstantPointerRef *R = dyn_cast<ConstantPointerRef>(C))
|
|
if (const Function *F = dyn_cast<Function>(R->getValue()))
|
|
return F;
|
|
return 0;
|
|
}
|
|
|
|
bool Printer::doFinalization(Module &M)
|
|
{
|
|
const TargetData &TD = TM.getTargetData();
|
|
// Print out module-level global variables here.
|
|
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
|
|
std::string name(Mang->getValueName(I));
|
|
if (I->hasInitializer()) {
|
|
Constant *C = I->getInitializer();
|
|
O << "\t.data\n";
|
|
O << "\t.globl " << name << "\n";
|
|
O << "\t.type " << name << ",@object\n";
|
|
O << "\t.size " << name << ","
|
|
<< (unsigned)TD.getTypeSize(I->getType()) << "\n";
|
|
O << "\t.align " << (unsigned)TD.getTypeAlignment(C->getType()) << "\n";
|
|
O << name << ":\t\t\t\t\t#";
|
|
// If this is a constant function pointer, we only print out the
|
|
// name of the function in the comment (because printing the
|
|
// function means calling AsmWriter to print the whole LLVM
|
|
// assembly, which would corrupt the X86 assembly output.)
|
|
// Otherwise we print out the whole llvm value as a comment.
|
|
if (const Function *F = isConstantFunctionPointerRef (C)) {
|
|
O << " %" << F->getName() << "()\n";
|
|
} else {
|
|
O << *C << "\n";
|
|
}
|
|
printConstantValueOnly (C);
|
|
} else {
|
|
O << "\t.globl " << name << "\n";
|
|
O << "\t.comm " << name << ", "
|
|
<< (unsigned)TD.getTypeSize(I->getType()) << ", "
|
|
<< (unsigned)TD.getTypeAlignment(I->getType()) << "\n";
|
|
}
|
|
}
|
|
delete Mang;
|
|
return false; // success
|
|
}
|