mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-13 06:06:27 +00:00
5c24a6da29
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92824 91177308-0d34-0410-b5e6-96231b3b80d8
1316 lines
53 KiB
C++
1316 lines
53 KiB
C++
//===- InstCombineCasts.cpp -----------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visit functions for cast operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombine.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/PatternMatch.h"
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
|
|
/// expression. If so, decompose it, returning some value X, such that Val is
|
|
/// X*Scale+Offset.
|
|
///
|
|
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
|
|
int &Offset) {
|
|
assert(Val->getType()->isInteger(32) && "Unexpected allocation size type!");
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
|
|
Offset = CI->getZExtValue();
|
|
Scale = 0;
|
|
return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0);
|
|
}
|
|
|
|
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
|
|
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
if (I->getOpcode() == Instruction::Shl) {
|
|
// This is a value scaled by '1 << the shift amt'.
|
|
Scale = 1U << RHS->getZExtValue();
|
|
Offset = 0;
|
|
return I->getOperand(0);
|
|
}
|
|
|
|
if (I->getOpcode() == Instruction::Mul) {
|
|
// This value is scaled by 'RHS'.
|
|
Scale = RHS->getZExtValue();
|
|
Offset = 0;
|
|
return I->getOperand(0);
|
|
}
|
|
|
|
if (I->getOpcode() == Instruction::Add) {
|
|
// We have X+C. Check to see if we really have (X*C2)+C1,
|
|
// where C1 is divisible by C2.
|
|
unsigned SubScale;
|
|
Value *SubVal =
|
|
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
|
|
Offset += RHS->getZExtValue();
|
|
Scale = SubScale;
|
|
return SubVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, we can't look past this.
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return Val;
|
|
}
|
|
|
|
/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
|
|
/// try to eliminate the cast by moving the type information into the alloc.
|
|
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
|
|
AllocaInst &AI) {
|
|
// This requires TargetData to get the alloca alignment and size information.
|
|
if (!TD) return 0;
|
|
|
|
const PointerType *PTy = cast<PointerType>(CI.getType());
|
|
|
|
BuilderTy AllocaBuilder(*Builder);
|
|
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
|
|
|
|
// Get the type really allocated and the type casted to.
|
|
const Type *AllocElTy = AI.getAllocatedType();
|
|
const Type *CastElTy = PTy->getElementType();
|
|
if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
|
|
|
|
unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
|
|
unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
|
|
if (CastElTyAlign < AllocElTyAlign) return 0;
|
|
|
|
// If the allocation has multiple uses, only promote it if we are strictly
|
|
// increasing the alignment of the resultant allocation. If we keep it the
|
|
// same, we open the door to infinite loops of various kinds. (A reference
|
|
// from a dbg.declare doesn't count as a use for this purpose.)
|
|
if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
|
|
CastElTyAlign == AllocElTyAlign) return 0;
|
|
|
|
uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
|
|
uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
|
|
if (CastElTySize == 0 || AllocElTySize == 0) return 0;
|
|
|
|
// See if we can satisfy the modulus by pulling a scale out of the array
|
|
// size argument.
|
|
unsigned ArraySizeScale;
|
|
int ArrayOffset;
|
|
Value *NumElements = // See if the array size is a decomposable linear expr.
|
|
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
|
|
|
|
// If we can now satisfy the modulus, by using a non-1 scale, we really can
|
|
// do the xform.
|
|
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
|
|
(AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
|
|
|
|
unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
|
|
Value *Amt = 0;
|
|
if (Scale == 1) {
|
|
Amt = NumElements;
|
|
} else {
|
|
Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale);
|
|
// Insert before the alloca, not before the cast.
|
|
Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
|
|
}
|
|
|
|
if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
|
|
Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()),
|
|
Offset, true);
|
|
Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
|
|
}
|
|
|
|
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
|
|
New->setAlignment(AI.getAlignment());
|
|
New->takeName(&AI);
|
|
|
|
// If the allocation has one real use plus a dbg.declare, just remove the
|
|
// declare.
|
|
if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
|
|
EraseInstFromFunction(*(Instruction*)DI);
|
|
}
|
|
// If the allocation has multiple real uses, insert a cast and change all
|
|
// things that used it to use the new cast. This will also hack on CI, but it
|
|
// will die soon.
|
|
else if (!AI.hasOneUse()) {
|
|
// New is the allocation instruction, pointer typed. AI is the original
|
|
// allocation instruction, also pointer typed. Thus, cast to use is BitCast.
|
|
Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
|
|
AI.replaceAllUsesWith(NewCast);
|
|
}
|
|
return ReplaceInstUsesWith(CI, New);
|
|
}
|
|
|
|
|
|
/// CanEvaluateInDifferentType - Return true if we can take the specified value
|
|
/// and return it as type Ty without inserting any new casts and without
|
|
/// changing the computed value. This is used by code that tries to decide
|
|
/// whether promoting or shrinking integer operations to wider or smaller types
|
|
/// will allow us to eliminate a truncate or extend.
|
|
///
|
|
/// This is a truncation operation if Ty is smaller than V->getType(), or a zero
|
|
/// extension operation if Ty is larger.
|
|
///
|
|
/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
|
|
/// should return true if trunc(V) can be computed by computing V in the smaller
|
|
/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
|
|
/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
|
|
/// efficiently truncated.
|
|
///
|
|
/// If CastOpc is zext, we are asking if the low bits of the value can be
|
|
/// computed in a larger type, which is then and'd to get the final result.
|
|
static bool CanEvaluateInDifferentType(Value *V, const Type *Ty,
|
|
unsigned CastOpc,
|
|
unsigned &NumCastsRemoved) {
|
|
assert(CastOpc == Instruction::ZExt || CastOpc == Instruction::Trunc);
|
|
|
|
// We can always evaluate constants in another type.
|
|
if (isa<Constant>(V))
|
|
return true;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) return false;
|
|
|
|
const Type *OrigTy = V->getType();
|
|
|
|
// If this is an extension or truncate, we can often eliminate it.
|
|
if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
|
|
// If this is a cast from the destination type, we can trivially eliminate
|
|
// it, and this will remove a cast overall.
|
|
if (I->getOperand(0)->getType() == Ty) {
|
|
// If the first operand is itself a cast, and is eliminable, do not count
|
|
// this as an eliminable cast. We would prefer to eliminate those two
|
|
// casts first.
|
|
if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
|
|
++NumCastsRemoved;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
// require duplicating the instruction in general, which isn't profitable.
|
|
if (!I->hasOneUse()) return false;
|
|
|
|
unsigned Opc = I->getOpcode();
|
|
switch (Opc) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
// These operators can all arbitrarily be extended or truncated.
|
|
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
|
|
NumCastsRemoved) &&
|
|
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
|
|
NumCastsRemoved);
|
|
|
|
case Instruction::UDiv:
|
|
case Instruction::URem: {
|
|
// UDiv and URem can be truncated if all the truncated bits are zero.
|
|
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
if (BitWidth < OrigBitWidth) {
|
|
APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
|
|
if (MaskedValueIsZero(I->getOperand(0), Mask) &&
|
|
MaskedValueIsZero(I->getOperand(1), Mask)) {
|
|
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
|
|
NumCastsRemoved) &&
|
|
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
|
|
NumCastsRemoved);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Shl:
|
|
// If we are truncating the result of this SHL, and if it's a shift of a
|
|
// constant amount, we can always perform a SHL in a smaller type.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
if (BitWidth < OrigTy->getScalarSizeInBits() &&
|
|
CI->getLimitedValue(BitWidth) < BitWidth)
|
|
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
|
|
NumCastsRemoved);
|
|
}
|
|
break;
|
|
case Instruction::LShr:
|
|
// If this is a truncate of a logical shr, we can truncate it to a smaller
|
|
// lshr iff we know that the bits we would otherwise be shifting in are
|
|
// already zeros.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
if (BitWidth < OrigBitWidth &&
|
|
MaskedValueIsZero(I->getOperand(0),
|
|
APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
|
|
CI->getLimitedValue(BitWidth) < BitWidth) {
|
|
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
|
|
NumCastsRemoved);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::Trunc:
|
|
// If this is the same kind of case as our original (e.g. zext+zext), we
|
|
// can safely replace it. Note that replacing it does not reduce the number
|
|
// of casts in the input.
|
|
if (Opc == CastOpc)
|
|
return true;
|
|
|
|
// sext (zext ty1), ty2 -> zext ty2
|
|
if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
|
|
return true;
|
|
break;
|
|
case Instruction::Select: {
|
|
SelectInst *SI = cast<SelectInst>(I);
|
|
return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
|
|
NumCastsRemoved) &&
|
|
CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
|
|
NumCastsRemoved);
|
|
}
|
|
case Instruction::PHI: {
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
// instructions with a single use.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
|
|
NumCastsRemoved))
|
|
return false;
|
|
return true;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here.
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CanEvaluateSExtd - Return true if we can take the specified value
|
|
/// and return it as type Ty without inserting any new casts and without
|
|
/// changing the value of the common low bits. This is used by code that tries
|
|
/// to promote integer operations to a wider types will allow us to eliminate
|
|
/// the extension.
|
|
///
|
|
/// This returns 0 if we can't do this or the number of sign bits that would be
|
|
/// set if we can. For example, CanEvaluateSExtd(i16 1, i64) would return 63,
|
|
/// because the computation can be extended (to "i64 1") and the resulting
|
|
/// computation has 63 equal sign bits.
|
|
///
|
|
/// This function works on both vectors and scalars. For vectors, the result is
|
|
/// the number of bits known sign extended in each element.
|
|
///
|
|
static unsigned CanEvaluateSExtd(Value *V, const Type *Ty,
|
|
unsigned &NumCastsRemoved, TargetData *TD) {
|
|
assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
|
|
"Can't sign extend type to a smaller type");
|
|
// If this is a constant, return the number of sign bits the extended version
|
|
// of it would have.
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
return ComputeNumSignBits(ConstantExpr::getSExt(C, Ty), TD);
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) return 0;
|
|
|
|
// If this is a truncate from the destination type, we can trivially eliminate
|
|
// it, and this will remove a cast overall.
|
|
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) {
|
|
// If the operand of the truncate is itself a cast, and is eliminable, do
|
|
// not count this as an eliminable cast. We would prefer to eliminate those
|
|
// two casts first.
|
|
if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
|
|
++NumCastsRemoved;
|
|
return ComputeNumSignBits(I->getOperand(0), TD);
|
|
}
|
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
// require duplicating the instruction in general, which isn't profitable.
|
|
if (!I->hasOneUse()) return 0;
|
|
|
|
const Type *OrigTy = V->getType();
|
|
|
|
unsigned Opc = I->getOpcode();
|
|
unsigned Tmp1, Tmp2;
|
|
switch (Opc) {
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
// These operators can all arbitrarily be extended or truncated.
|
|
Tmp1 = CanEvaluateSExtd(I->getOperand(0), Ty, NumCastsRemoved, TD);
|
|
if (Tmp1 == 0) return 0;
|
|
Tmp2 = CanEvaluateSExtd(I->getOperand(1), Ty, NumCastsRemoved, TD);
|
|
return std::min(Tmp1, Tmp2);
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
// Add/Sub can have at most one carry/borrow bit.
|
|
Tmp1 = CanEvaluateSExtd(I->getOperand(0), Ty, NumCastsRemoved, TD);
|
|
if (Tmp1 == 0) return 0;
|
|
Tmp2 = CanEvaluateSExtd(I->getOperand(1), Ty, NumCastsRemoved, TD);
|
|
if (Tmp2 == 0) return 0;
|
|
return std::min(Tmp1, Tmp2)-1;
|
|
case Instruction::Mul:
|
|
// These operators can all arbitrarily be extended or truncated.
|
|
if (!CanEvaluateSExtd(I->getOperand(0), Ty, NumCastsRemoved, TD))
|
|
return 0;
|
|
if (!CanEvaluateSExtd(I->getOperand(1), Ty, NumCastsRemoved, TD))
|
|
return 0;
|
|
return 1; // IMPROVE?
|
|
|
|
//case Instruction::Shl: TODO
|
|
//case Instruction::LShr: TODO
|
|
//case Instruction::Trunc: TODO
|
|
|
|
case Instruction::SExt:
|
|
case Instruction::ZExt: {
|
|
// sext(sext(x)) -> sext(x)
|
|
// sext(zext(x)) -> zext(x)
|
|
// Note that replacing a cast does not reduce the number of casts in the
|
|
// input.
|
|
unsigned InSignBits = ComputeNumSignBits(I, TD);
|
|
unsigned ExtBits = Ty->getScalarSizeInBits()-OrigTy->getScalarSizeInBits();
|
|
// We'll end up extending it all the way out.
|
|
return InSignBits+ExtBits;
|
|
}
|
|
case Instruction::Select: {
|
|
SelectInst *SI = cast<SelectInst>(I);
|
|
Tmp1 = CanEvaluateSExtd(SI->getTrueValue(), Ty, NumCastsRemoved, TD);
|
|
if (Tmp1 == 0) return 0;
|
|
Tmp2 = CanEvaluateSExtd(SI->getFalseValue(), Ty, NumCastsRemoved,TD);
|
|
return std::min(Tmp1, Tmp2);
|
|
}
|
|
case Instruction::PHI: {
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
// instructions with a single use.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
unsigned Result = ~0U;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Result = std::min(Result,
|
|
CanEvaluateSExtd(PN->getIncomingValue(i), Ty,
|
|
NumCastsRemoved, TD));
|
|
if (Result == 0) return 0;
|
|
}
|
|
return Result;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here.
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// EvaluateInDifferentType - Given an expression that
|
|
/// CanEvaluateInDifferentType or CanEvaluateSExtd returns true for, actually
|
|
/// insert the code to evaluate the expression.
|
|
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
|
|
bool isSigned) {
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
|
|
|
|
// Otherwise, it must be an instruction.
|
|
Instruction *I = cast<Instruction>(V);
|
|
Instruction *Res = 0;
|
|
unsigned Opc = I->getOpcode();
|
|
switch (Opc) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::AShr:
|
|
case Instruction::LShr:
|
|
case Instruction::Shl:
|
|
case Instruction::UDiv:
|
|
case Instruction::URem: {
|
|
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
|
|
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
|
|
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
|
|
break;
|
|
}
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
// If the source type of the cast is the type we're trying for then we can
|
|
// just return the source. There's no need to insert it because it is not
|
|
// new.
|
|
if (I->getOperand(0)->getType() == Ty)
|
|
return I->getOperand(0);
|
|
|
|
// Otherwise, must be the same type of cast, so just reinsert a new one.
|
|
Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
|
|
break;
|
|
case Instruction::Select: {
|
|
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
|
|
Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
|
|
Res = SelectInst::Create(I->getOperand(0), True, False);
|
|
break;
|
|
}
|
|
case Instruction::PHI: {
|
|
PHINode *OPN = cast<PHINode>(I);
|
|
PHINode *NPN = PHINode::Create(Ty);
|
|
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
|
|
NPN->addIncoming(V, OPN->getIncomingBlock(i));
|
|
}
|
|
Res = NPN;
|
|
break;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here.
|
|
llvm_unreachable("Unreachable!");
|
|
break;
|
|
}
|
|
|
|
Res->takeName(I);
|
|
return InsertNewInstBefore(Res, *I);
|
|
}
|
|
|
|
|
|
/// This function is a wrapper around CastInst::isEliminableCastPair. It
|
|
/// simply extracts arguments and returns what that function returns.
|
|
static Instruction::CastOps
|
|
isEliminableCastPair(
|
|
const CastInst *CI, ///< The first cast instruction
|
|
unsigned opcode, ///< The opcode of the second cast instruction
|
|
const Type *DstTy, ///< The target type for the second cast instruction
|
|
TargetData *TD ///< The target data for pointer size
|
|
) {
|
|
|
|
const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
|
|
const Type *MidTy = CI->getType(); // B from above
|
|
|
|
// Get the opcodes of the two Cast instructions
|
|
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
|
|
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
|
|
|
|
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
|
|
DstTy,
|
|
TD ? TD->getIntPtrType(CI->getContext()) : 0);
|
|
|
|
// We don't want to form an inttoptr or ptrtoint that converts to an integer
|
|
// type that differs from the pointer size.
|
|
if ((Res == Instruction::IntToPtr &&
|
|
(!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
|
|
(Res == Instruction::PtrToInt &&
|
|
(!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
|
|
Res = 0;
|
|
|
|
return Instruction::CastOps(Res);
|
|
}
|
|
|
|
/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
|
|
/// in any code being generated. It does not require codegen if V is simple
|
|
/// enough or if the cast can be folded into other casts.
|
|
bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
|
|
const Type *Ty) {
|
|
if (V->getType() == Ty || isa<Constant>(V)) return false;
|
|
|
|
// If this is another cast that can be eliminated, it isn't codegen either.
|
|
if (const CastInst *CI = dyn_cast<CastInst>(V))
|
|
if (isEliminableCastPair(CI, opcode, Ty, TD))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// @brief Implement the transforms common to all CastInst visitors.
|
|
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
|
|
// eliminate it now.
|
|
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
|
|
if (Instruction::CastOps opc =
|
|
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
|
|
// The first cast (CSrc) is eliminable so we need to fix up or replace
|
|
// the second cast (CI). CSrc will then have a good chance of being dead.
|
|
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
|
|
}
|
|
}
|
|
|
|
// If we are casting a select then fold the cast into the select
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Src))
|
|
if (Instruction *NV = FoldOpIntoSelect(CI, SI))
|
|
return NV;
|
|
|
|
// If we are casting a PHI then fold the cast into the PHI
|
|
if (isa<PHINode>(Src)) {
|
|
// We don't do this if this would create a PHI node with an illegal type if
|
|
// it is currently legal.
|
|
if (!isa<IntegerType>(Src->getType()) ||
|
|
!isa<IntegerType>(CI.getType()) ||
|
|
ShouldChangeType(CI.getType(), Src->getType()))
|
|
if (Instruction *NV = FoldOpIntoPhi(CI))
|
|
return NV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// commonIntCastTransforms - This function implements the common transforms
|
|
/// for trunc, zext, and sext.
|
|
Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
|
|
if (Instruction *Result = commonCastTransforms(CI))
|
|
return Result;
|
|
|
|
// See if we can simplify any instructions used by the LHS whose sole
|
|
// purpose is to compute bits we don't care about.
|
|
if (SimplifyDemandedInstructionBits(CI))
|
|
return &CI;
|
|
|
|
// If the source isn't an instruction or has more than one use then we
|
|
// can't do anything more.
|
|
Instruction *Src = dyn_cast<Instruction>(CI.getOperand(0));
|
|
if (!Src || !Src->hasOneUse())
|
|
return 0;
|
|
|
|
// Check to see if we can eliminate the cast by changing the entire
|
|
// computation chain to do the computation in the result type.
|
|
const Type *SrcTy = Src->getType();
|
|
const Type *DestTy = CI.getType();
|
|
|
|
// Only do this if the dest type is a simple type, don't convert the
|
|
// expression tree to something weird like i93 unless the source is also
|
|
// strange.
|
|
if (!isa<VectorType>(DestTy) && !ShouldChangeType(SrcTy, DestTy))
|
|
return 0;
|
|
|
|
// Attempt to propagate the cast into the instruction for int->int casts.
|
|
unsigned NumCastsRemoved = 0;
|
|
switch (CI.getOpcode()) {
|
|
default: assert(0 && "not an integer cast");
|
|
case Instruction::Trunc:
|
|
if (!CanEvaluateInDifferentType(Src, DestTy,
|
|
Instruction::Trunc, NumCastsRemoved))
|
|
return 0;
|
|
|
|
// If this cast is a truncate, evaluting in a different type always
|
|
// eliminates the cast, so it is always a win.
|
|
break;
|
|
case Instruction::ZExt:
|
|
if (!CanEvaluateInDifferentType(Src, DestTy,
|
|
Instruction::ZExt, NumCastsRemoved))
|
|
return 0;
|
|
|
|
// If this is a zero-extension, we need to do an AND to maintain the clear
|
|
// top-part of the computation, so we require that the input have eliminated
|
|
// at least one cast.
|
|
if (NumCastsRemoved < 1)
|
|
return 0;
|
|
break;
|
|
case Instruction::SExt: {
|
|
// Check to see if we can do this transformation, and if so, how many bits
|
|
// of the promoted expression will be known copies of the sign bit in the
|
|
// result.
|
|
unsigned NumBitsSExt = CanEvaluateSExtd(Src, DestTy, NumCastsRemoved, TD);
|
|
if (NumBitsSExt == 0)
|
|
return 0;
|
|
|
|
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
// Because this is a sign extension, we can always transform it by inserting
|
|
// two new shifts (to do the extension). However, this is only profitable
|
|
// if we've eliminated two or more casts from the input. If we know the
|
|
// result will be sign-extended enough to not require these shifts, we can
|
|
// always do the transformation.
|
|
if (NumCastsRemoved < 2 &&
|
|
NumBitsSExt <= DestBitSize-SrcBitSize)
|
|
return 0;
|
|
|
|
// Okay, we can transform this! Insert the new expression now.
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
|
" to avoid sign extend: " << CI);
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, true);
|
|
assert(Res->getType() == DestTy);
|
|
|
|
// If the high bits are already filled with sign bit, just replace this
|
|
// cast with the result.
|
|
if (NumBitsSExt > DestBitSize - SrcBitSize ||
|
|
ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
|
|
// We need to emit a cast to truncate, then a cast to sext.
|
|
return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
|
" to avoid cast: " << CI);
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
|
|
assert(Res->getType() == DestTy);
|
|
|
|
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
|
switch (CI.getOpcode()) {
|
|
default: assert(0 && "Unknown cast type!");
|
|
case Instruction::Trunc:
|
|
// Just replace this cast with the result.
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
case Instruction::ZExt: {
|
|
// If the high bits are already zero, just replace this cast with the
|
|
// result.
|
|
APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
|
|
if (MaskedValueIsZero(Res, Mask))
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
|
|
// We need to emit an AND to clear the high bits.
|
|
Constant *C = ConstantInt::get(CI.getContext(),
|
|
APInt::getLowBitsSet(DestBitSize, SrcBitSize));
|
|
return BinaryOperator::CreateAnd(Res, C);
|
|
}
|
|
case Instruction::SExt: {
|
|
// If the high bits are already filled with sign bit, just replace this
|
|
// cast with the result.
|
|
unsigned NumSignBits = ComputeNumSignBits(Res);
|
|
if (NumSignBits > (DestBitSize - SrcBitSize))
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
|
|
// We need to emit a cast to truncate, then a cast to sext.
|
|
return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
|
|
}
|
|
}
|
|
}
|
|
|
|
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
|
if (Instruction *Result = commonIntCastTransforms(CI))
|
|
return Result;
|
|
|
|
Value *Src = CI.getOperand(0);
|
|
const Type *DestTy = CI.getType();
|
|
|
|
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
|
|
if (DestTy->getScalarSizeInBits() == 1) {
|
|
Constant *One = ConstantInt::get(Src->getType(), 1);
|
|
Src = Builder->CreateAnd(Src, One, "tmp");
|
|
Value *Zero = Constant::getNullValue(Src->getType());
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
|
|
/// in order to eliminate the icmp.
|
|
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
|
|
bool DoXform) {
|
|
// If we are just checking for a icmp eq of a single bit and zext'ing it
|
|
// to an integer, then shift the bit to the appropriate place and then
|
|
// cast to integer to avoid the comparison.
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
|
|
const APInt &Op1CV = Op1C->getValue();
|
|
|
|
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
|
|
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
|
|
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
|
|
(ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
|
|
if (!DoXform) return ICI;
|
|
|
|
Value *In = ICI->getOperand(0);
|
|
Value *Sh = ConstantInt::get(In->getType(),
|
|
In->getType()->getScalarSizeInBits()-1);
|
|
In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
|
|
if (In->getType() != CI.getType())
|
|
In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
|
|
Constant *One = ConstantInt::get(In->getType(), 1);
|
|
In = Builder->CreateXor(In, One, In->getName()+".not");
|
|
}
|
|
|
|
return ReplaceInstUsesWith(CI, In);
|
|
}
|
|
|
|
|
|
|
|
// zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
|
|
// zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
|
|
// zext (X == 1) to i32 --> X iff X has only the low bit set.
|
|
// zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
|
|
// zext (X != 0) to i32 --> X iff X has only the low bit set.
|
|
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
|
|
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
|
|
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
|
|
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
|
|
// This only works for EQ and NE
|
|
ICI->isEquality()) {
|
|
// If Op1C some other power of two, convert:
|
|
uint32_t BitWidth = Op1C->getType()->getBitWidth();
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
|
|
ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
|
|
|
|
APInt KnownZeroMask(~KnownZero);
|
|
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
|
|
if (!DoXform) return ICI;
|
|
|
|
bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
|
|
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
|
|
// (X&4) == 2 --> false
|
|
// (X&4) != 2 --> true
|
|
Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
|
|
isNE);
|
|
Res = ConstantExpr::getZExt(Res, CI.getType());
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
}
|
|
|
|
uint32_t ShiftAmt = KnownZeroMask.logBase2();
|
|
Value *In = ICI->getOperand(0);
|
|
if (ShiftAmt) {
|
|
// Perform a logical shr by shiftamt.
|
|
// Insert the shift to put the result in the low bit.
|
|
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
|
|
In->getName()+".lobit");
|
|
}
|
|
|
|
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
|
|
Constant *One = ConstantInt::get(In->getType(), 1);
|
|
In = Builder->CreateXor(In, One, "tmp");
|
|
}
|
|
|
|
if (CI.getType() == In->getType())
|
|
return ReplaceInstUsesWith(CI, In);
|
|
else
|
|
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
|
|
}
|
|
}
|
|
}
|
|
|
|
// icmp ne A, B is equal to xor A, B when A and B only really have one bit.
|
|
// It is also profitable to transform icmp eq into not(xor(A, B)) because that
|
|
// may lead to additional simplifications.
|
|
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
|
|
if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
|
|
uint32_t BitWidth = ITy->getBitWidth();
|
|
Value *LHS = ICI->getOperand(0);
|
|
Value *RHS = ICI->getOperand(1);
|
|
|
|
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
|
|
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
|
|
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
|
|
ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
|
|
ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
|
|
|
|
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
|
|
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
|
|
APInt UnknownBit = ~KnownBits;
|
|
if (UnknownBit.countPopulation() == 1) {
|
|
if (!DoXform) return ICI;
|
|
|
|
Value *Result = Builder->CreateXor(LHS, RHS);
|
|
|
|
// Mask off any bits that are set and won't be shifted away.
|
|
if (KnownOneLHS.uge(UnknownBit))
|
|
Result = Builder->CreateAnd(Result,
|
|
ConstantInt::get(ITy, UnknownBit));
|
|
|
|
// Shift the bit we're testing down to the lsb.
|
|
Result = Builder->CreateLShr(
|
|
Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
|
|
Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
|
|
Result->takeName(ICI);
|
|
return ReplaceInstUsesWith(CI, Result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
|
// If one of the common conversion will work, do it.
|
|
if (Instruction *Result = commonIntCastTransforms(CI))
|
|
return Result;
|
|
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
// If this is a TRUNC followed by a ZEXT then we are dealing with integral
|
|
// types and if the sizes are just right we can convert this into a logical
|
|
// 'and' which will be much cheaper than the pair of casts.
|
|
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
|
|
// Get the sizes of the types involved. We know that the intermediate type
|
|
// will be smaller than A or C, but don't know the relation between A and C.
|
|
Value *A = CSrc->getOperand(0);
|
|
unsigned SrcSize = A->getType()->getScalarSizeInBits();
|
|
unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
|
|
unsigned DstSize = CI.getType()->getScalarSizeInBits();
|
|
// If we're actually extending zero bits, then if
|
|
// SrcSize < DstSize: zext(a & mask)
|
|
// SrcSize == DstSize: a & mask
|
|
// SrcSize > DstSize: trunc(a) & mask
|
|
if (SrcSize < DstSize) {
|
|
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
|
|
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
|
|
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
|
|
return new ZExtInst(And, CI.getType());
|
|
}
|
|
|
|
if (SrcSize == DstSize) {
|
|
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
|
|
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
|
|
AndValue));
|
|
}
|
|
if (SrcSize > DstSize) {
|
|
Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
|
|
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
|
|
return BinaryOperator::CreateAnd(Trunc,
|
|
ConstantInt::get(Trunc->getType(),
|
|
AndValue));
|
|
}
|
|
}
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
|
|
return transformZExtICmp(ICI, CI);
|
|
|
|
BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
|
|
if (SrcI && SrcI->getOpcode() == Instruction::Or) {
|
|
// zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
|
|
// of the (zext icmp) will be transformed.
|
|
ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
|
|
ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
|
|
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
|
|
(transformZExtICmp(LHS, CI, false) ||
|
|
transformZExtICmp(RHS, CI, false))) {
|
|
Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
|
|
Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
|
|
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
|
|
}
|
|
}
|
|
|
|
// zext(trunc(t) & C) -> (t & zext(C)).
|
|
if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
|
|
Value *TI0 = TI->getOperand(0);
|
|
if (TI0->getType() == CI.getType())
|
|
return
|
|
BinaryOperator::CreateAnd(TI0,
|
|
ConstantExpr::getZExt(C, CI.getType()));
|
|
}
|
|
|
|
// zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
|
|
if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
|
|
if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
|
|
if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
|
|
And->getOperand(1) == C)
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
|
|
Value *TI0 = TI->getOperand(0);
|
|
if (TI0->getType() == CI.getType()) {
|
|
Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
|
|
Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
|
|
return BinaryOperator::CreateXor(NewAnd, ZC);
|
|
}
|
|
}
|
|
|
|
// zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
|
|
Value *X;
|
|
if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isInteger(1) &&
|
|
match(SrcI, m_Not(m_Value(X))) &&
|
|
(!X->hasOneUse() || !isa<CmpInst>(X))) {
|
|
Value *New = Builder->CreateZExt(X, CI.getType());
|
|
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
|
|
if (Instruction *I = commonIntCastTransforms(CI))
|
|
return I;
|
|
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
// Canonicalize sign-extend from i1 to a select.
|
|
if (Src->getType()->isInteger(1))
|
|
return SelectInst::Create(Src,
|
|
Constant::getAllOnesValue(CI.getType()),
|
|
Constant::getNullValue(CI.getType()));
|
|
|
|
// See if the value being truncated is already sign extended. If so, just
|
|
// eliminate the trunc/sext pair.
|
|
if (Operator::getOpcode(Src) == Instruction::Trunc) {
|
|
Value *Op = cast<User>(Src)->getOperand(0);
|
|
unsigned OpBits = Op->getType()->getScalarSizeInBits();
|
|
unsigned MidBits = Src->getType()->getScalarSizeInBits();
|
|
unsigned DestBits = CI.getType()->getScalarSizeInBits();
|
|
unsigned NumSignBits = ComputeNumSignBits(Op);
|
|
|
|
if (OpBits == DestBits) {
|
|
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
|
|
// bits, it is already ready.
|
|
if (NumSignBits > DestBits-MidBits)
|
|
return ReplaceInstUsesWith(CI, Op);
|
|
} else if (OpBits < DestBits) {
|
|
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
|
|
// bits, just sext from i32.
|
|
if (NumSignBits > OpBits-MidBits)
|
|
return new SExtInst(Op, CI.getType(), "tmp");
|
|
} else {
|
|
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
|
|
// bits, just truncate to i32.
|
|
if (NumSignBits > OpBits-MidBits)
|
|
return new TruncInst(Op, CI.getType(), "tmp");
|
|
}
|
|
}
|
|
|
|
// If the input is a shl/ashr pair of a same constant, then this is a sign
|
|
// extension from a smaller value. If we could trust arbitrary bitwidth
|
|
// integers, we could turn this into a truncate to the smaller bit and then
|
|
// use a sext for the whole extension. Since we don't, look deeper and check
|
|
// for a truncate. If the source and dest are the same type, eliminate the
|
|
// trunc and extend and just do shifts. For example, turn:
|
|
// %a = trunc i32 %i to i8
|
|
// %b = shl i8 %a, 6
|
|
// %c = ashr i8 %b, 6
|
|
// %d = sext i8 %c to i32
|
|
// into:
|
|
// %a = shl i32 %i, 30
|
|
// %d = ashr i32 %a, 30
|
|
Value *A = 0;
|
|
ConstantInt *BA = 0, *CA = 0;
|
|
if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
|
|
m_ConstantInt(CA))) &&
|
|
BA == CA && isa<TruncInst>(A)) {
|
|
Value *I = cast<TruncInst>(A)->getOperand(0);
|
|
if (I->getType() == CI.getType()) {
|
|
unsigned MidSize = Src->getType()->getScalarSizeInBits();
|
|
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
|
|
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
|
|
Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
|
|
I = Builder->CreateShl(I, ShAmtV, CI.getName());
|
|
return BinaryOperator::CreateAShr(I, ShAmtV);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
|
|
/// in the specified FP type without changing its value.
|
|
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
|
|
bool losesInfo;
|
|
APFloat F = CFP->getValueAPF();
|
|
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
|
|
if (!losesInfo)
|
|
return ConstantFP::get(CFP->getContext(), F);
|
|
return 0;
|
|
}
|
|
|
|
/// LookThroughFPExtensions - If this is an fp extension instruction, look
|
|
/// through it until we get the source value.
|
|
static Value *LookThroughFPExtensions(Value *V) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getOpcode() == Instruction::FPExt)
|
|
return LookThroughFPExtensions(I->getOperand(0));
|
|
|
|
// If this value is a constant, return the constant in the smallest FP type
|
|
// that can accurately represent it. This allows us to turn
|
|
// (float)((double)X+2.0) into x+2.0f.
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
|
|
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
|
|
return V; // No constant folding of this.
|
|
// See if the value can be truncated to float and then reextended.
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
|
|
return V;
|
|
if (CFP->getType()->isDoubleTy())
|
|
return V; // Won't shrink.
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
|
|
return V;
|
|
// Don't try to shrink to various long double types.
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
|
if (Instruction *I = commonCastTransforms(CI))
|
|
return I;
|
|
|
|
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
|
|
// smaller than the destination type, we can eliminate the truncate by doing
|
|
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
|
|
// as many builtins (sqrt, etc).
|
|
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
|
|
if (OpI && OpI->hasOneUse()) {
|
|
switch (OpI->getOpcode()) {
|
|
default: break;
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
const Type *SrcTy = OpI->getType();
|
|
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
|
|
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
|
|
if (LHSTrunc->getType() != SrcTy &&
|
|
RHSTrunc->getType() != SrcTy) {
|
|
unsigned DstSize = CI.getType()->getScalarSizeInBits();
|
|
// If the source types were both smaller than the destination type of
|
|
// the cast, do this xform.
|
|
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
|
|
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
|
|
LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
|
|
RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
|
|
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
|
|
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
|
|
if (OpI == 0)
|
|
return commonCastTransforms(FI);
|
|
|
|
// fptoui(uitofp(X)) --> X
|
|
// fptoui(sitofp(X)) --> X
|
|
// This is safe if the intermediate type has enough bits in its mantissa to
|
|
// accurately represent all values of X. For example, do not do this with
|
|
// i64->float->i64. This is also safe for sitofp case, because any negative
|
|
// 'X' value would cause an undefined result for the fptoui.
|
|
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
|
OpI->getOperand(0)->getType() == FI.getType() &&
|
|
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
|
|
OpI->getType()->getFPMantissaWidth())
|
|
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
|
|
|
|
return commonCastTransforms(FI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
|
|
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
|
|
if (OpI == 0)
|
|
return commonCastTransforms(FI);
|
|
|
|
// fptosi(sitofp(X)) --> X
|
|
// fptosi(uitofp(X)) --> X
|
|
// This is safe if the intermediate type has enough bits in its mantissa to
|
|
// accurately represent all values of X. For example, do not do this with
|
|
// i64->float->i64. This is also safe for sitofp case, because any negative
|
|
// 'X' value would cause an undefined result for the fptoui.
|
|
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
|
OpI->getOperand(0)->getType() == FI.getType() &&
|
|
(int)FI.getType()->getScalarSizeInBits() <=
|
|
OpI->getType()->getFPMantissaWidth())
|
|
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
|
|
|
|
return commonCastTransforms(FI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
|
|
// If the source integer type is larger than the intptr_t type for
|
|
// this target, do a trunc to the intptr_t type, then inttoptr of it. This
|
|
// allows the trunc to be exposed to other transforms. Don't do this for
|
|
// extending inttoptr's, because we don't know if the target sign or zero
|
|
// extends to pointers.
|
|
if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
|
|
TD->getPointerSizeInBits()) {
|
|
Value *P = Builder->CreateTrunc(CI.getOperand(0),
|
|
TD->getIntPtrType(CI.getContext()), "tmp");
|
|
return new IntToPtrInst(P, CI.getType());
|
|
}
|
|
|
|
if (Instruction *I = commonCastTransforms(CI))
|
|
return I;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
|
|
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
|
|
// If casting the result of a getelementptr instruction with no offset, turn
|
|
// this into a cast of the original pointer!
|
|
if (GEP->hasAllZeroIndices()) {
|
|
// Changing the cast operand is usually not a good idea but it is safe
|
|
// here because the pointer operand is being replaced with another
|
|
// pointer operand so the opcode doesn't need to change.
|
|
Worklist.Add(GEP);
|
|
CI.setOperand(0, GEP->getOperand(0));
|
|
return &CI;
|
|
}
|
|
|
|
// If the GEP has a single use, and the base pointer is a bitcast, and the
|
|
// GEP computes a constant offset, see if we can convert these three
|
|
// instructions into fewer. This typically happens with unions and other
|
|
// non-type-safe code.
|
|
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
|
|
GEP->hasAllConstantIndices()) {
|
|
// We are guaranteed to get a constant from EmitGEPOffset.
|
|
ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
|
|
int64_t Offset = OffsetV->getSExtValue();
|
|
|
|
// Get the base pointer input of the bitcast, and the type it points to.
|
|
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
|
|
const Type *GEPIdxTy =
|
|
cast<PointerType>(OrigBase->getType())->getElementType();
|
|
SmallVector<Value*, 8> NewIndices;
|
|
if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
|
|
// If we were able to index down into an element, create the GEP
|
|
// and bitcast the result. This eliminates one bitcast, potentially
|
|
// two.
|
|
Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
|
|
Builder->CreateInBoundsGEP(OrigBase,
|
|
NewIndices.begin(), NewIndices.end()) :
|
|
Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
|
|
NGEP->takeName(GEP);
|
|
|
|
if (isa<BitCastInst>(CI))
|
|
return new BitCastInst(NGEP, CI.getType());
|
|
assert(isa<PtrToIntInst>(CI));
|
|
return new PtrToIntInst(NGEP, CI.getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
|
|
// If the destination integer type is smaller than the intptr_t type for
|
|
// this target, do a ptrtoint to intptr_t then do a trunc. This allows the
|
|
// trunc to be exposed to other transforms. Don't do this for extending
|
|
// ptrtoint's, because we don't know if the target sign or zero extends its
|
|
// pointers.
|
|
if (TD &&
|
|
CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
|
|
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
|
|
TD->getIntPtrType(CI.getContext()),
|
|
"tmp");
|
|
return new TruncInst(P, CI.getType());
|
|
}
|
|
|
|
return commonPointerCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|
// If the operands are integer typed then apply the integer transforms,
|
|
// otherwise just apply the common ones.
|
|
Value *Src = CI.getOperand(0);
|
|
const Type *SrcTy = Src->getType();
|
|
const Type *DestTy = CI.getType();
|
|
|
|
// Get rid of casts from one type to the same type. These are useless and can
|
|
// be replaced by the operand.
|
|
if (DestTy == Src->getType())
|
|
return ReplaceInstUsesWith(CI, Src);
|
|
|
|
if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
|
|
const PointerType *SrcPTy = cast<PointerType>(SrcTy);
|
|
const Type *DstElTy = DstPTy->getElementType();
|
|
const Type *SrcElTy = SrcPTy->getElementType();
|
|
|
|
// If the address spaces don't match, don't eliminate the bitcast, which is
|
|
// required for changing types.
|
|
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
|
|
return 0;
|
|
|
|
// If we are casting a alloca to a pointer to a type of the same
|
|
// size, rewrite the allocation instruction to allocate the "right" type.
|
|
// There is no need to modify malloc calls because it is their bitcast that
|
|
// needs to be cleaned up.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
|
|
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
|
|
return V;
|
|
|
|
// If the source and destination are pointers, and this cast is equivalent
|
|
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
|
|
// This can enhance SROA and other transforms that want type-safe pointers.
|
|
Constant *ZeroUInt =
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
|
|
unsigned NumZeros = 0;
|
|
while (SrcElTy != DstElTy &&
|
|
isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
|
|
SrcElTy->getNumContainedTypes() /* not "{}" */) {
|
|
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
|
|
++NumZeros;
|
|
}
|
|
|
|
// If we found a path from the src to dest, create the getelementptr now.
|
|
if (SrcElTy == DstElTy) {
|
|
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
|
|
return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
|
|
((Instruction*)NULL));
|
|
}
|
|
}
|
|
|
|
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
|
|
if (DestVTy->getNumElements() == 1 && !isa<VectorType>(SrcTy)) {
|
|
Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
|
|
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
|
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
|
|
}
|
|
}
|
|
|
|
if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
|
|
if (SrcVTy->getNumElements() == 1 && !isa<VectorType>(DestTy)) {
|
|
Value *Elem =
|
|
Builder->CreateExtractElement(Src,
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
|
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
|
|
}
|
|
}
|
|
|
|
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
|
|
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
|
|
// a bitconvert to a vector with the same # elts.
|
|
if (SVI->hasOneUse() && isa<VectorType>(DestTy) &&
|
|
cast<VectorType>(DestTy)->getNumElements() ==
|
|
SVI->getType()->getNumElements() &&
|
|
SVI->getType()->getNumElements() ==
|
|
cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
|
|
BitCastInst *Tmp;
|
|
// If either of the operands is a cast from CI.getType(), then
|
|
// evaluating the shuffle in the casted destination's type will allow
|
|
// us to eliminate at least one cast.
|
|
if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
|
|
Tmp->getOperand(0)->getType() == DestTy) ||
|
|
((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
|
|
Tmp->getOperand(0)->getType() == DestTy)) {
|
|
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
|
|
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
|
|
// Return a new shuffle vector. Use the same element ID's, as we
|
|
// know the vector types match #elts.
|
|
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isa<PointerType>(SrcTy))
|
|
return commonPointerCastTransforms(CI);
|
|
return commonCastTransforms(CI);
|
|
}
|