mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-17 03:30:28 +00:00
c8a51b01aa
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236368 91177308-0d34-0410-b5e6-96231b3b80d8
580 lines
24 KiB
C++
580 lines
24 KiB
C++
//===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MCOperandInfo and MCInstrDesc classes, which
|
|
// are used to describe target instructions and their operands.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_MC_MCINSTRDESC_H
|
|
#define LLVM_MC_MCINSTRDESC_H
|
|
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Machine Operand Flags and Description
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace MCOI {
|
|
// Operand constraints
|
|
enum OperandConstraint {
|
|
TIED_TO = 0, // Must be allocated the same register as.
|
|
EARLY_CLOBBER // Operand is an early clobber register operand
|
|
};
|
|
|
|
/// \brief These are flags set on operands, but should be considered
|
|
/// private, all access should go through the MCOperandInfo accessors.
|
|
/// See the accessors for a description of what these are.
|
|
enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
|
|
|
|
/// \brief Operands are tagged with one of the values of this enum.
|
|
enum OperandType {
|
|
OPERAND_UNKNOWN = 0,
|
|
OPERAND_IMMEDIATE = 1,
|
|
OPERAND_REGISTER = 2,
|
|
OPERAND_MEMORY = 3,
|
|
OPERAND_PCREL = 4,
|
|
OPERAND_FIRST_TARGET = 5
|
|
};
|
|
}
|
|
|
|
/// \brief This holds information about one operand of a machine instruction,
|
|
/// indicating the register class for register operands, etc.
|
|
class MCOperandInfo {
|
|
public:
|
|
/// \brief This specifies the register class enumeration of the operand
|
|
/// if the operand is a register. If isLookupPtrRegClass is set, then this is
|
|
/// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
|
|
/// get a dynamic register class.
|
|
int16_t RegClass;
|
|
|
|
/// \brief These are flags from the MCOI::OperandFlags enum.
|
|
uint8_t Flags;
|
|
|
|
/// \brief Information about the type of the operand.
|
|
uint8_t OperandType;
|
|
/// \brief The lower 16 bits are used to specify which constraints are set.
|
|
/// The higher 16 bits are used to specify the value of constraints (4 bits
|
|
/// each).
|
|
uint32_t Constraints;
|
|
|
|
/// \brief Set if this operand is a pointer value and it requires a callback
|
|
/// to look up its register class.
|
|
bool isLookupPtrRegClass() const {
|
|
return Flags & (1 << MCOI::LookupPtrRegClass);
|
|
}
|
|
|
|
/// \brief Set if this is one of the operands that made up of the predicate
|
|
/// operand that controls an isPredicable() instruction.
|
|
bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
|
|
|
|
/// \brief Set if this operand is a optional def.
|
|
bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Machine Instruction Flags and Description
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace MCID {
|
|
/// \brief These should be considered private to the implementation of the
|
|
/// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc,
|
|
/// not use these directly. These all correspond to bitfields in the
|
|
/// MCInstrDesc::Flags field.
|
|
enum Flag {
|
|
Variadic = 0,
|
|
HasOptionalDef,
|
|
Pseudo,
|
|
Return,
|
|
Call,
|
|
Barrier,
|
|
Terminator,
|
|
Branch,
|
|
IndirectBranch,
|
|
Compare,
|
|
MoveImm,
|
|
Bitcast,
|
|
Select,
|
|
DelaySlot,
|
|
FoldableAsLoad,
|
|
MayLoad,
|
|
MayStore,
|
|
Predicable,
|
|
NotDuplicable,
|
|
UnmodeledSideEffects,
|
|
Commutable,
|
|
ConvertibleTo3Addr,
|
|
UsesCustomInserter,
|
|
HasPostISelHook,
|
|
Rematerializable,
|
|
CheapAsAMove,
|
|
ExtraSrcRegAllocReq,
|
|
ExtraDefRegAllocReq,
|
|
RegSequence,
|
|
ExtractSubreg,
|
|
InsertSubreg
|
|
};
|
|
}
|
|
|
|
/// \brief Describe properties that are true of each instruction in the target
|
|
/// description file. This captures information about side effects, register
|
|
/// use and many other things. There is one instance of this struct for each
|
|
/// target instruction class, and the MachineInstr class points to this struct
|
|
/// directly to describe itself.
|
|
class MCInstrDesc {
|
|
public:
|
|
unsigned short Opcode; // The opcode number
|
|
unsigned short NumOperands; // Num of args (may be more if variable_ops)
|
|
unsigned short NumDefs; // Num of args that are definitions
|
|
unsigned short SchedClass; // enum identifying instr sched class
|
|
unsigned short Size; // Number of bytes in encoding.
|
|
unsigned Flags; // Flags identifying machine instr class
|
|
uint64_t TSFlags; // Target Specific Flag values
|
|
const uint16_t *ImplicitUses; // Registers implicitly read by this instr
|
|
const uint16_t *ImplicitDefs; // Registers implicitly defined by this instr
|
|
const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands
|
|
uint64_t
|
|
DeprecatedFeatureMask; // Feature bits that this is deprecated on, if any
|
|
// A complex method to determine is a certain is deprecated or not, and return
|
|
// the reason for deprecation.
|
|
bool (*ComplexDeprecationInfo)(MCInst &, MCSubtargetInfo &, std::string &);
|
|
|
|
/// \brief Returns the value of the specific constraint if
|
|
/// it is set. Returns -1 if it is not set.
|
|
int getOperandConstraint(unsigned OpNum,
|
|
MCOI::OperandConstraint Constraint) const {
|
|
if (OpNum < NumOperands &&
|
|
(OpInfo[OpNum].Constraints & (1 << Constraint))) {
|
|
unsigned Pos = 16 + Constraint * 4;
|
|
return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// \brief Returns true if a certain instruction is deprecated and if so
|
|
/// returns the reason in \p Info.
|
|
bool getDeprecatedInfo(MCInst &MI, MCSubtargetInfo &STI,
|
|
std::string &Info) const {
|
|
if (ComplexDeprecationInfo)
|
|
return ComplexDeprecationInfo(MI, STI, Info);
|
|
if ((DeprecatedFeatureMask & STI.getFeatureBits()) != 0) {
|
|
// FIXME: it would be nice to include the subtarget feature here.
|
|
Info = "deprecated";
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Return the opcode number for this descriptor.
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
/// \brief Return the number of declared MachineOperands for this
|
|
/// MachineInstruction. Note that variadic (isVariadic() returns true)
|
|
/// instructions may have additional operands at the end of the list, and note
|
|
/// that the machine instruction may include implicit register def/uses as
|
|
/// well.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// \brief Return the number of MachineOperands that are register
|
|
/// definitions. Register definitions always occur at the start of the
|
|
/// machine operand list. This is the number of "outs" in the .td file,
|
|
/// and does not include implicit defs.
|
|
unsigned getNumDefs() const { return NumDefs; }
|
|
|
|
/// \brief Return flags of this instruction.
|
|
unsigned getFlags() const { return Flags; }
|
|
|
|
/// \brief Return true if this instruction can have a variable number of
|
|
/// operands. In this case, the variable operands will be after the normal
|
|
/// operands but before the implicit definitions and uses (if any are
|
|
/// present).
|
|
bool isVariadic() const { return Flags & (1 << MCID::Variadic); }
|
|
|
|
/// \brief Set if this instruction has an optional definition, e.g.
|
|
/// ARM instructions which can set condition code if 's' bit is set.
|
|
bool hasOptionalDef() const { return Flags & (1 << MCID::HasOptionalDef); }
|
|
|
|
/// \brief Return true if this is a pseudo instruction that doesn't
|
|
/// correspond to a real machine instruction.
|
|
bool isPseudo() const { return Flags & (1 << MCID::Pseudo); }
|
|
|
|
/// \brief Return true if the instruction is a return.
|
|
bool isReturn() const { return Flags & (1 << MCID::Return); }
|
|
|
|
/// \brief Return true if the instruction is a call.
|
|
bool isCall() const { return Flags & (1 << MCID::Call); }
|
|
|
|
/// \brief Returns true if the specified instruction stops control flow
|
|
/// from executing the instruction immediately following it. Examples include
|
|
/// unconditional branches and return instructions.
|
|
bool isBarrier() const { return Flags & (1 << MCID::Barrier); }
|
|
|
|
/// \brief Returns true if this instruction part of the terminator for
|
|
/// a basic block. Typically this is things like return and branch
|
|
/// instructions.
|
|
///
|
|
/// Various passes use this to insert code into the bottom of a basic block,
|
|
/// but before control flow occurs.
|
|
bool isTerminator() const { return Flags & (1 << MCID::Terminator); }
|
|
|
|
/// \brief Returns true if this is a conditional, unconditional, or
|
|
/// indirect branch. Predicates below can be used to discriminate between
|
|
/// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
|
|
/// get more information.
|
|
bool isBranch() const { return Flags & (1 << MCID::Branch); }
|
|
|
|
/// \brief Return true if this is an indirect branch, such as a
|
|
/// branch through a register.
|
|
bool isIndirectBranch() const { return Flags & (1 << MCID::IndirectBranch); }
|
|
|
|
/// \brief Return true if this is a branch which may fall
|
|
/// through to the next instruction or may transfer control flow to some other
|
|
/// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
|
|
/// information about this branch.
|
|
bool isConditionalBranch() const {
|
|
return isBranch() & !isBarrier() & !isIndirectBranch();
|
|
}
|
|
|
|
/// \brief Return true if this is a branch which always
|
|
/// transfers control flow to some other block. The
|
|
/// TargetInstrInfo::AnalyzeBranch method can be used to get more information
|
|
/// about this branch.
|
|
bool isUnconditionalBranch() const {
|
|
return isBranch() & isBarrier() & !isIndirectBranch();
|
|
}
|
|
|
|
/// \brief Return true if this is a branch or an instruction which directly
|
|
/// writes to the program counter. Considered 'may' affect rather than
|
|
/// 'does' affect as things like predication are not taken into account.
|
|
bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const {
|
|
if (isBranch() || isCall() || isReturn() || isIndirectBranch())
|
|
return true;
|
|
unsigned PC = RI.getProgramCounter();
|
|
if (PC == 0)
|
|
return false;
|
|
if (hasDefOfPhysReg(MI, PC, RI))
|
|
return true;
|
|
// A variadic instruction may define PC in the variable operand list.
|
|
// There's currently no indication of which entries in a variable
|
|
// list are defs and which are uses. While that's the case, this function
|
|
// needs to assume they're defs in order to be conservatively correct.
|
|
for (int i = NumOperands, e = MI.getNumOperands(); i != e; ++i) {
|
|
if (MI.getOperand(i).isReg() &&
|
|
RI.isSubRegisterEq(PC, MI.getOperand(i).getReg()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Return true if this instruction has a predicate operand
|
|
/// that controls execution. It may be set to 'always', or may be set to other
|
|
/// values. There are various methods in TargetInstrInfo that can be used to
|
|
/// control and modify the predicate in this instruction.
|
|
bool isPredicable() const { return Flags & (1 << MCID::Predicable); }
|
|
|
|
/// \brief Return true if this instruction is a comparison.
|
|
bool isCompare() const { return Flags & (1 << MCID::Compare); }
|
|
|
|
/// \brief Return true if this instruction is a move immediate
|
|
/// (including conditional moves) instruction.
|
|
bool isMoveImmediate() const { return Flags & (1 << MCID::MoveImm); }
|
|
|
|
/// \brief Return true if this instruction is a bitcast instruction.
|
|
bool isBitcast() const { return Flags & (1 << MCID::Bitcast); }
|
|
|
|
/// \brief Return true if this is a select instruction.
|
|
bool isSelect() const { return Flags & (1 << MCID::Select); }
|
|
|
|
/// \brief Return true if this instruction cannot be safely
|
|
/// duplicated. For example, if the instruction has a unique labels attached
|
|
/// to it, duplicating it would cause multiple definition errors.
|
|
bool isNotDuplicable() const { return Flags & (1 << MCID::NotDuplicable); }
|
|
|
|
/// \brief Returns true if the specified instruction has a delay slot which
|
|
/// must be filled by the code generator.
|
|
bool hasDelaySlot() const { return Flags & (1 << MCID::DelaySlot); }
|
|
|
|
/// \brief Return true for instructions that can be folded as memory operands
|
|
/// in other instructions. The most common use for this is instructions that
|
|
/// are simple loads from memory that don't modify the loaded value in any
|
|
/// way, but it can also be used for instructions that can be expressed as
|
|
/// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
|
|
/// folded when it is beneficial. This should only be set on instructions
|
|
/// that return a value in their only virtual register definition.
|
|
bool canFoldAsLoad() const { return Flags & (1 << MCID::FoldableAsLoad); }
|
|
|
|
/// \brief Return true if this instruction behaves
|
|
/// the same way as the generic REG_SEQUENCE instructions.
|
|
/// E.g., on ARM,
|
|
/// dX VMOVDRR rY, rZ
|
|
/// is equivalent to
|
|
/// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isRegSequenceLike() const { return Flags & (1 << MCID::RegSequence); }
|
|
|
|
/// \brief Return true if this instruction behaves
|
|
/// the same way as the generic EXTRACT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// rX, rY VMOVRRD dZ
|
|
/// is equivalent to two EXTRACT_SUBREG:
|
|
/// rX = EXTRACT_SUBREG dZ, ssub_0
|
|
/// rY = EXTRACT_SUBREG dZ, ssub_1
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isExtractSubregLike() const {
|
|
return Flags & (1 << MCID::ExtractSubreg);
|
|
}
|
|
|
|
/// \brief Return true if this instruction behaves
|
|
/// the same way as the generic INSERT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// dX = VSETLNi32 dY, rZ, Imm
|
|
/// is equivalent to a INSERT_SUBREG:
|
|
/// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isInsertSubregLike() const { return Flags & (1 << MCID::InsertSubreg); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Side Effect Analysis
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// \brief Return true if this instruction could possibly read memory.
|
|
/// Instructions with this flag set are not necessarily simple load
|
|
/// instructions, they may load a value and modify it, for example.
|
|
bool mayLoad() const { return Flags & (1 << MCID::MayLoad); }
|
|
|
|
/// \brief Return true if this instruction could possibly modify memory.
|
|
/// Instructions with this flag set are not necessarily simple store
|
|
/// instructions, they may store a modified value based on their operands, or
|
|
/// may not actually modify anything, for example.
|
|
bool mayStore() const { return Flags & (1 << MCID::MayStore); }
|
|
|
|
/// \brief Return true if this instruction has side
|
|
/// effects that are not modeled by other flags. This does not return true
|
|
/// for instructions whose effects are captured by:
|
|
///
|
|
/// 1. Their operand list and implicit definition/use list. Register use/def
|
|
/// info is explicit for instructions.
|
|
/// 2. Memory accesses. Use mayLoad/mayStore.
|
|
/// 3. Calling, branching, returning: use isCall/isReturn/isBranch.
|
|
///
|
|
/// Examples of side effects would be modifying 'invisible' machine state like
|
|
/// a control register, flushing a cache, modifying a register invisible to
|
|
/// LLVM, etc.
|
|
bool hasUnmodeledSideEffects() const {
|
|
return Flags & (1 << MCID::UnmodeledSideEffects);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Flags that indicate whether an instruction can be modified by a method.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// \brief Return true if this may be a 2- or 3-address instruction (of the
|
|
/// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
|
|
/// exchanged. If this flag is set, then the
|
|
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
|
|
/// instruction.
|
|
///
|
|
/// Note that this flag may be set on instructions that are only commutable
|
|
/// sometimes. In these cases, the call to commuteInstruction will fail.
|
|
/// Also note that some instructions require non-trivial modification to
|
|
/// commute them.
|
|
bool isCommutable() const { return Flags & (1 << MCID::Commutable); }
|
|
|
|
/// \brief Return true if this is a 2-address instruction which can be changed
|
|
/// into a 3-address instruction if needed. Doing this transformation can be
|
|
/// profitable in the register allocator, because it means that the
|
|
/// instruction can use a 2-address form if possible, but degrade into a less
|
|
/// efficient form if the source and dest register cannot be assigned to the
|
|
/// same register. For example, this allows the x86 backend to turn a "shl
|
|
/// reg, 3" instruction into an LEA instruction, which is the same speed as
|
|
/// the shift but has bigger code size.
|
|
///
|
|
/// If this returns true, then the target must implement the
|
|
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
|
|
/// is allowed to fail if the transformation isn't valid for this specific
|
|
/// instruction (e.g. shl reg, 4 on x86).
|
|
///
|
|
bool isConvertibleTo3Addr() const {
|
|
return Flags & (1 << MCID::ConvertibleTo3Addr);
|
|
}
|
|
|
|
/// \brief Return true if this instruction requires custom insertion support
|
|
/// when the DAG scheduler is inserting it into a machine basic block. If
|
|
/// this is true for the instruction, it basically means that it is a pseudo
|
|
/// instruction used at SelectionDAG time that is expanded out into magic code
|
|
/// by the target when MachineInstrs are formed.
|
|
///
|
|
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
|
|
/// is used to insert this into the MachineBasicBlock.
|
|
bool usesCustomInsertionHook() const {
|
|
return Flags & (1 << MCID::UsesCustomInserter);
|
|
}
|
|
|
|
/// \brief Return true if this instruction requires *adjustment* after
|
|
/// instruction selection by calling a target hook. For example, this can be
|
|
/// used to fill in ARM 's' optional operand depending on whether the
|
|
/// conditional flag register is used.
|
|
bool hasPostISelHook() const { return Flags & (1 << MCID::HasPostISelHook); }
|
|
|
|
/// \brief Returns true if this instruction is a candidate for remat. This
|
|
/// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
|
|
///
|
|
/// If this flag is set, the isReallyTriviallyReMaterializable()
|
|
/// or isReallyTriviallyReMaterializableGeneric methods are called to verify
|
|
/// the instruction is really rematable.
|
|
bool isRematerializable() const {
|
|
return Flags & (1 << MCID::Rematerializable);
|
|
}
|
|
|
|
/// \brief Returns true if this instruction has the same cost (or less) than a
|
|
/// move instruction. This is useful during certain types of optimizations
|
|
/// (e.g., remat during two-address conversion or machine licm) where we would
|
|
/// like to remat or hoist the instruction, but not if it costs more than
|
|
/// moving the instruction into the appropriate register. Note, we are not
|
|
/// marking copies from and to the same register class with this flag.
|
|
///
|
|
/// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
|
|
/// for different subtargets.
|
|
bool isAsCheapAsAMove() const { return Flags & (1 << MCID::CheapAsAMove); }
|
|
|
|
/// \brief Returns true if this instruction source operands have special
|
|
/// register allocation requirements that are not captured by the operand
|
|
/// register classes. e.g. ARM::STRD's two source registers must be an even /
|
|
/// odd pair, ARM::STM registers have to be in ascending order. Post-register
|
|
/// allocation passes should not attempt to change allocations for sources of
|
|
/// instructions with this flag.
|
|
bool hasExtraSrcRegAllocReq() const {
|
|
return Flags & (1 << MCID::ExtraSrcRegAllocReq);
|
|
}
|
|
|
|
/// \brief Returns true if this instruction def operands have special register
|
|
/// allocation requirements that are not captured by the operand register
|
|
/// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
|
|
/// ARM::LDM registers have to be in ascending order. Post-register
|
|
/// allocation passes should not attempt to change allocations for definitions
|
|
/// of instructions with this flag.
|
|
bool hasExtraDefRegAllocReq() const {
|
|
return Flags & (1 << MCID::ExtraDefRegAllocReq);
|
|
}
|
|
|
|
/// \brief Return a list of registers that are potentially read by any
|
|
/// instance of this machine instruction. For example, on X86, the "adc"
|
|
/// instruction adds two register operands and adds the carry bit in from the
|
|
/// flags register. In this case, the instruction is marked as implicitly
|
|
/// reading the flags. Likewise, the variable shift instruction on X86 is
|
|
/// marked as implicitly reading the 'CL' register, which it always does.
|
|
///
|
|
/// This method returns null if the instruction has no implicit uses.
|
|
const uint16_t *getImplicitUses() const { return ImplicitUses; }
|
|
|
|
/// \brief Return the number of implicit uses this instruction has.
|
|
unsigned getNumImplicitUses() const {
|
|
if (!ImplicitUses)
|
|
return 0;
|
|
unsigned i = 0;
|
|
for (; ImplicitUses[i]; ++i) /*empty*/
|
|
;
|
|
return i;
|
|
}
|
|
|
|
/// \brief Return a list of registers that are potentially written by any
|
|
/// instance of this machine instruction. For example, on X86, many
|
|
/// instructions implicitly set the flags register. In this case, they are
|
|
/// marked as setting the FLAGS. Likewise, many instructions always deposit
|
|
/// their result in a physical register. For example, the X86 divide
|
|
/// instruction always deposits the quotient and remainder in the EAX/EDX
|
|
/// registers. For that instruction, this will return a list containing the
|
|
/// EAX/EDX/EFLAGS registers.
|
|
///
|
|
/// This method returns null if the instruction has no implicit defs.
|
|
const uint16_t *getImplicitDefs() const { return ImplicitDefs; }
|
|
|
|
/// \brief Return the number of implicit defs this instruct has.
|
|
unsigned getNumImplicitDefs() const {
|
|
if (!ImplicitDefs)
|
|
return 0;
|
|
unsigned i = 0;
|
|
for (; ImplicitDefs[i]; ++i) /*empty*/
|
|
;
|
|
return i;
|
|
}
|
|
|
|
/// \brief Return true if this instruction implicitly
|
|
/// uses the specified physical register.
|
|
bool hasImplicitUseOfPhysReg(unsigned Reg) const {
|
|
if (const uint16_t *ImpUses = ImplicitUses)
|
|
for (; *ImpUses; ++ImpUses)
|
|
if (*ImpUses == Reg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Return true if this instruction implicitly
|
|
/// defines the specified physical register.
|
|
bool hasImplicitDefOfPhysReg(unsigned Reg,
|
|
const MCRegisterInfo *MRI = nullptr) const {
|
|
if (const uint16_t *ImpDefs = ImplicitDefs)
|
|
for (; *ImpDefs; ++ImpDefs)
|
|
if (*ImpDefs == Reg || (MRI && MRI->isSubRegister(Reg, *ImpDefs)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Return true if this instruction defines the specified physical
|
|
/// register, either explicitly or implicitly.
|
|
bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
|
|
const MCRegisterInfo &RI) const {
|
|
for (int i = 0, e = NumDefs; i != e; ++i)
|
|
if (MI.getOperand(i).isReg() &&
|
|
RI.isSubRegisterEq(Reg, MI.getOperand(i).getReg()))
|
|
return true;
|
|
return hasImplicitDefOfPhysReg(Reg, &RI);
|
|
}
|
|
|
|
/// \brief Return the scheduling class for this instruction. The
|
|
/// scheduling class is an index into the InstrItineraryData table. This
|
|
/// returns zero if there is no known scheduling information for the
|
|
/// instruction.
|
|
unsigned getSchedClass() const { return SchedClass; }
|
|
|
|
/// \brief Return the number of bytes in the encoding of this instruction,
|
|
/// or zero if the encoding size cannot be known from the opcode.
|
|
unsigned getSize() const { return Size; }
|
|
|
|
/// \brief Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int findFirstPredOperandIdx() const {
|
|
if (isPredicable()) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (OpInfo[i].isPredicate())
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|