mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
ddfd1377d2
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def and use lists of the BUNDLE instruction) and a pass to unpack bundles. - Teach more of MachineBasic and MachineInstr methods to be bundle aware. - Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to prevent IT blocks from being broken apart. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146542 91177308-0d34-0410-b5e6-96231b3b80d8
1865 lines
63 KiB
C++
1865 lines
63 KiB
C++
//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Methods common to all machine instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Metadata.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LeakDetector.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AddRegOperandToRegInfo - Add this register operand to the specified
|
|
/// MachineRegisterInfo. If it is null, then the next/prev fields should be
|
|
/// explicitly nulled out.
|
|
void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
|
|
assert(isReg() && "Can only add reg operand to use lists");
|
|
|
|
// If the reginfo pointer is null, just explicitly null out or next/prev
|
|
// pointers, to ensure they are not garbage.
|
|
if (RegInfo == 0) {
|
|
Contents.Reg.Prev = 0;
|
|
Contents.Reg.Next = 0;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, add this operand to the head of the registers use/def list.
|
|
MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
|
|
|
|
// For SSA values, we prefer to keep the definition at the start of the list.
|
|
// we do this by skipping over the definition if it is at the head of the
|
|
// list.
|
|
if (*Head && (*Head)->isDef())
|
|
Head = &(*Head)->Contents.Reg.Next;
|
|
|
|
Contents.Reg.Next = *Head;
|
|
if (Contents.Reg.Next) {
|
|
assert(getReg() == Contents.Reg.Next->getReg() &&
|
|
"Different regs on the same list!");
|
|
Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
|
|
}
|
|
|
|
Contents.Reg.Prev = Head;
|
|
*Head = this;
|
|
}
|
|
|
|
/// RemoveRegOperandFromRegInfo - Remove this register operand from the
|
|
/// MachineRegisterInfo it is linked with.
|
|
void MachineOperand::RemoveRegOperandFromRegInfo() {
|
|
assert(isOnRegUseList() && "Reg operand is not on a use list");
|
|
// Unlink this from the doubly linked list of operands.
|
|
MachineOperand *NextOp = Contents.Reg.Next;
|
|
*Contents.Reg.Prev = NextOp;
|
|
if (NextOp) {
|
|
assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
|
|
NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
|
|
}
|
|
Contents.Reg.Prev = 0;
|
|
Contents.Reg.Next = 0;
|
|
}
|
|
|
|
void MachineOperand::setReg(unsigned Reg) {
|
|
if (getReg() == Reg) return; // No change.
|
|
|
|
// Otherwise, we have to change the register. If this operand is embedded
|
|
// into a machine function, we need to update the old and new register's
|
|
// use/def lists.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent()) {
|
|
RemoveRegOperandFromRegInfo();
|
|
SmallContents.RegNo = Reg;
|
|
AddRegOperandToRegInfo(&MF->getRegInfo());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, just change the register, no problem. :)
|
|
SmallContents.RegNo = Reg;
|
|
}
|
|
|
|
void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
|
|
const TargetRegisterInfo &TRI) {
|
|
assert(TargetRegisterInfo::isVirtualRegister(Reg));
|
|
if (SubIdx && getSubReg())
|
|
SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
|
|
setReg(Reg);
|
|
if (SubIdx)
|
|
setSubReg(SubIdx);
|
|
}
|
|
|
|
void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
|
|
if (getSubReg()) {
|
|
Reg = TRI.getSubReg(Reg, getSubReg());
|
|
// Note that getSubReg() may return 0 if the sub-register doesn't exist.
|
|
// That won't happen in legal code.
|
|
setSubReg(0);
|
|
}
|
|
setReg(Reg);
|
|
}
|
|
|
|
/// ChangeToImmediate - Replace this operand with a new immediate operand of
|
|
/// the specified value. If an operand is known to be an immediate already,
|
|
/// the setImm method should be used.
|
|
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
|
|
// If this operand is currently a register operand, and if this is in a
|
|
// function, deregister the operand from the register's use/def list.
|
|
if (isReg() && getParent() && getParent()->getParent() &&
|
|
getParent()->getParent()->getParent())
|
|
RemoveRegOperandFromRegInfo();
|
|
|
|
OpKind = MO_Immediate;
|
|
Contents.ImmVal = ImmVal;
|
|
}
|
|
|
|
/// ChangeToRegister - Replace this operand with a new register operand of
|
|
/// the specified value. If an operand is known to be an register already,
|
|
/// the setReg method should be used.
|
|
void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
|
|
bool isKill, bool isDead, bool isUndef,
|
|
bool isDebug) {
|
|
// If this operand is already a register operand, use setReg to update the
|
|
// register's use/def lists.
|
|
if (isReg()) {
|
|
assert(!isEarlyClobber());
|
|
setReg(Reg);
|
|
} else {
|
|
// Otherwise, change this to a register and set the reg#.
|
|
OpKind = MO_Register;
|
|
SmallContents.RegNo = Reg;
|
|
|
|
// If this operand is embedded in a function, add the operand to the
|
|
// register's use/def list.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent())
|
|
AddRegOperandToRegInfo(&MF->getRegInfo());
|
|
}
|
|
|
|
IsDef = isDef;
|
|
IsImp = isImp;
|
|
IsKill = isKill;
|
|
IsDead = isDead;
|
|
IsUndef = isUndef;
|
|
IsInternalRead = false;
|
|
IsEarlyClobber = false;
|
|
IsDebug = isDebug;
|
|
SubReg = 0;
|
|
}
|
|
|
|
/// isIdenticalTo - Return true if this operand is identical to the specified
|
|
/// operand.
|
|
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
|
|
if (getType() != Other.getType() ||
|
|
getTargetFlags() != Other.getTargetFlags())
|
|
return false;
|
|
|
|
switch (getType()) {
|
|
default: llvm_unreachable("Unrecognized operand type");
|
|
case MachineOperand::MO_Register:
|
|
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
|
|
getSubReg() == Other.getSubReg();
|
|
case MachineOperand::MO_Immediate:
|
|
return getImm() == Other.getImm();
|
|
case MachineOperand::MO_CImmediate:
|
|
return getCImm() == Other.getCImm();
|
|
case MachineOperand::MO_FPImmediate:
|
|
return getFPImm() == Other.getFPImm();
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
return getMBB() == Other.getMBB();
|
|
case MachineOperand::MO_FrameIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
return !strcmp(getSymbolName(), Other.getSymbolName()) &&
|
|
getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_BlockAddress:
|
|
return getBlockAddress() == Other.getBlockAddress();
|
|
case MachineOperand::MO_MCSymbol:
|
|
return getMCSymbol() == Other.getMCSymbol();
|
|
case MachineOperand::MO_Metadata:
|
|
return getMetadata() == Other.getMetadata();
|
|
}
|
|
}
|
|
|
|
/// print - Print the specified machine operand.
|
|
///
|
|
void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
|
|
// If the instruction is embedded into a basic block, we can find the
|
|
// target info for the instruction.
|
|
if (!TM)
|
|
if (const MachineInstr *MI = getParent())
|
|
if (const MachineBasicBlock *MBB = MI->getParent())
|
|
if (const MachineFunction *MF = MBB->getParent())
|
|
TM = &MF->getTarget();
|
|
const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
|
|
|
|
switch (getType()) {
|
|
case MachineOperand::MO_Register:
|
|
OS << PrintReg(getReg(), TRI, getSubReg());
|
|
|
|
if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
|
|
isInternalRead() || isEarlyClobber()) {
|
|
OS << '<';
|
|
bool NeedComma = false;
|
|
if (isDef()) {
|
|
if (NeedComma) OS << ',';
|
|
if (isEarlyClobber())
|
|
OS << "earlyclobber,";
|
|
if (isImplicit())
|
|
OS << "imp-";
|
|
OS << "def";
|
|
NeedComma = true;
|
|
} else if (isImplicit()) {
|
|
OS << "imp-use";
|
|
NeedComma = true;
|
|
}
|
|
|
|
if (isKill() || isDead() || isUndef() || isInternalRead()) {
|
|
if (NeedComma) OS << ',';
|
|
NeedComma = false;
|
|
if (isKill()) {
|
|
OS << "kill";
|
|
NeedComma = true;
|
|
}
|
|
if (isDead()) {
|
|
OS << "dead";
|
|
NeedComma = true;
|
|
}
|
|
if (isUndef()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << "undef";
|
|
NeedComma = true;
|
|
}
|
|
if (isInternalRead()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << "internal";
|
|
NeedComma = true;
|
|
}
|
|
}
|
|
OS << '>';
|
|
}
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
OS << getImm();
|
|
break;
|
|
case MachineOperand::MO_CImmediate:
|
|
getCImm()->getValue().print(OS, false);
|
|
break;
|
|
case MachineOperand::MO_FPImmediate:
|
|
if (getFPImm()->getType()->isFloatTy())
|
|
OS << getFPImm()->getValueAPF().convertToFloat();
|
|
else
|
|
OS << getFPImm()->getValueAPF().convertToDouble();
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
OS << "<BB#" << getMBB()->getNumber() << ">";
|
|
break;
|
|
case MachineOperand::MO_FrameIndex:
|
|
OS << "<fi#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
OS << "<cp#" << getIndex();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
OS << "<jt#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
OS << "<ga:";
|
|
WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
OS << "<es:" << getSymbolName();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_BlockAddress:
|
|
OS << '<';
|
|
WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_Metadata:
|
|
OS << '<';
|
|
WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_MCSymbol:
|
|
OS << "<MCSym=" << *getMCSymbol() << '>';
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unrecognized operand type");
|
|
}
|
|
|
|
if (unsigned TF = getTargetFlags())
|
|
OS << "[TF=" << TF << ']';
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineMemOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getAddrSpace - Return the LLVM IR address space number that this pointer
|
|
/// points into.
|
|
unsigned MachinePointerInfo::getAddrSpace() const {
|
|
if (V == 0) return 0;
|
|
return cast<PointerType>(V->getType())->getAddressSpace();
|
|
}
|
|
|
|
/// getConstantPool - Return a MachinePointerInfo record that refers to the
|
|
/// constant pool.
|
|
MachinePointerInfo MachinePointerInfo::getConstantPool() {
|
|
return MachinePointerInfo(PseudoSourceValue::getConstantPool());
|
|
}
|
|
|
|
/// getFixedStack - Return a MachinePointerInfo record that refers to the
|
|
/// the specified FrameIndex.
|
|
MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
|
|
return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
|
|
}
|
|
|
|
MachinePointerInfo MachinePointerInfo::getJumpTable() {
|
|
return MachinePointerInfo(PseudoSourceValue::getJumpTable());
|
|
}
|
|
|
|
MachinePointerInfo MachinePointerInfo::getGOT() {
|
|
return MachinePointerInfo(PseudoSourceValue::getGOT());
|
|
}
|
|
|
|
MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
|
|
return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
|
|
}
|
|
|
|
MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
|
|
uint64_t s, unsigned int a,
|
|
const MDNode *TBAAInfo)
|
|
: PtrInfo(ptrinfo), Size(s),
|
|
Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
|
|
TBAAInfo(TBAAInfo) {
|
|
assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
|
|
"invalid pointer value");
|
|
assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
|
|
assert((isLoad() || isStore()) && "Not a load/store!");
|
|
}
|
|
|
|
/// Profile - Gather unique data for the object.
|
|
///
|
|
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(getOffset());
|
|
ID.AddInteger(Size);
|
|
ID.AddPointer(getValue());
|
|
ID.AddInteger(Flags);
|
|
}
|
|
|
|
void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
|
|
// The Value and Offset may differ due to CSE. But the flags and size
|
|
// should be the same.
|
|
assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
|
|
assert(MMO->getSize() == getSize() && "Size mismatch!");
|
|
|
|
if (MMO->getBaseAlignment() >= getBaseAlignment()) {
|
|
// Update the alignment value.
|
|
Flags = (Flags & ((1 << MOMaxBits) - 1)) |
|
|
((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
|
|
// Also update the base and offset, because the new alignment may
|
|
// not be applicable with the old ones.
|
|
PtrInfo = MMO->PtrInfo;
|
|
}
|
|
}
|
|
|
|
/// getAlignment - Return the minimum known alignment in bytes of the
|
|
/// actual memory reference.
|
|
uint64_t MachineMemOperand::getAlignment() const {
|
|
return MinAlign(getBaseAlignment(), getOffset());
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
|
|
assert((MMO.isLoad() || MMO.isStore()) &&
|
|
"SV has to be a load, store or both.");
|
|
|
|
if (MMO.isVolatile())
|
|
OS << "Volatile ";
|
|
|
|
if (MMO.isLoad())
|
|
OS << "LD";
|
|
if (MMO.isStore())
|
|
OS << "ST";
|
|
OS << MMO.getSize();
|
|
|
|
// Print the address information.
|
|
OS << "[";
|
|
if (!MMO.getValue())
|
|
OS << "<unknown>";
|
|
else
|
|
WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
|
|
|
|
// If the alignment of the memory reference itself differs from the alignment
|
|
// of the base pointer, print the base alignment explicitly, next to the base
|
|
// pointer.
|
|
if (MMO.getBaseAlignment() != MMO.getAlignment())
|
|
OS << "(align=" << MMO.getBaseAlignment() << ")";
|
|
|
|
if (MMO.getOffset() != 0)
|
|
OS << "+" << MMO.getOffset();
|
|
OS << "]";
|
|
|
|
// Print the alignment of the reference.
|
|
if (MMO.getBaseAlignment() != MMO.getAlignment() ||
|
|
MMO.getBaseAlignment() != MMO.getSize())
|
|
OS << "(align=" << MMO.getAlignment() << ")";
|
|
|
|
// Print TBAA info.
|
|
if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
|
|
OS << "(tbaa=";
|
|
if (TBAAInfo->getNumOperands() > 0)
|
|
WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
|
|
else
|
|
OS << "<unknown>";
|
|
OS << ")";
|
|
}
|
|
|
|
// Print nontemporal info.
|
|
if (MMO.isNonTemporal())
|
|
OS << "(nontemporal)";
|
|
|
|
return OS;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineInstr Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
|
|
/// MCID NULL and no operands.
|
|
MachineInstr::MachineInstr()
|
|
: MCID(0), Flags(0), AsmPrinterFlags(0),
|
|
MemRefs(0), MemRefsEnd(0),
|
|
Parent(0) {
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
void MachineInstr::addImplicitDefUseOperands() {
|
|
if (MCID->ImplicitDefs)
|
|
for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
|
|
addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
|
|
if (MCID->ImplicitUses)
|
|
for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
|
|
addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
|
|
}
|
|
|
|
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
|
|
/// implicit operands. It reserves space for the number of operands specified by
|
|
/// the MCInstrDesc.
|
|
MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
|
|
: MCID(&tid), Flags(0), AsmPrinterFlags(0),
|
|
MemRefs(0), MemRefsEnd(0), Parent(0) {
|
|
unsigned NumImplicitOps = 0;
|
|
if (!NoImp)
|
|
NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + MCID->getNumOperands());
|
|
if (!NoImp)
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
/// MachineInstr ctor - As above, but with a DebugLoc.
|
|
MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
|
|
bool NoImp)
|
|
: MCID(&tid), Flags(0), AsmPrinterFlags(0),
|
|
MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
|
|
unsigned NumImplicitOps = 0;
|
|
if (!NoImp)
|
|
NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + MCID->getNumOperands());
|
|
if (!NoImp)
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
/// MachineInstr ctor - Work exactly the same as the ctor two above, except
|
|
/// that the MachineInstr is created and added to the end of the specified
|
|
/// basic block.
|
|
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
|
|
: MCID(&tid), Flags(0), AsmPrinterFlags(0),
|
|
MemRefs(0), MemRefsEnd(0), Parent(0) {
|
|
assert(MBB && "Cannot use inserting ctor with null basic block!");
|
|
unsigned NumImplicitOps =
|
|
MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + MCID->getNumOperands());
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
MBB->push_back(this); // Add instruction to end of basic block!
|
|
}
|
|
|
|
/// MachineInstr ctor - As above, but with a DebugLoc.
|
|
///
|
|
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
|
|
const MCInstrDesc &tid)
|
|
: MCID(&tid), Flags(0), AsmPrinterFlags(0),
|
|
MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
|
|
assert(MBB && "Cannot use inserting ctor with null basic block!");
|
|
unsigned NumImplicitOps =
|
|
MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + MCID->getNumOperands());
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
MBB->push_back(this); // Add instruction to end of basic block!
|
|
}
|
|
|
|
/// MachineInstr ctor - Copies MachineInstr arg exactly
|
|
///
|
|
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
|
|
: MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
|
|
MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
|
|
Parent(0), debugLoc(MI.getDebugLoc()) {
|
|
Operands.reserve(MI.getNumOperands());
|
|
|
|
// Add operands
|
|
for (unsigned i = 0; i != MI.getNumOperands(); ++i)
|
|
addOperand(MI.getOperand(i));
|
|
|
|
// Copy all the flags.
|
|
Flags = MI.Flags;
|
|
|
|
// Set parent to null.
|
|
Parent = 0;
|
|
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
MachineInstr::~MachineInstr() {
|
|
LeakDetector::removeGarbageObject(this);
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
|
|
assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
|
|
"Reg operand def/use list corrupted");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// getRegInfo - If this instruction is embedded into a MachineFunction,
|
|
/// return the MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *MachineInstr::getRegInfo() {
|
|
if (MachineBasicBlock *MBB = getParent())
|
|
return &MBB->getParent()->getRegInfo();
|
|
return 0;
|
|
}
|
|
|
|
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands already be on their use lists.
|
|
void MachineInstr::RemoveRegOperandsFromUseLists() {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
}
|
|
|
|
/// AddRegOperandsToUseLists - Add all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands not be on their use lists yet.
|
|
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].AddRegOperandToRegInfo(&RegInfo);
|
|
}
|
|
}
|
|
|
|
|
|
/// addOperand - Add the specified operand to the instruction. If it is an
|
|
/// implicit operand, it is added to the end of the operand list. If it is
|
|
/// an explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
void MachineInstr::addOperand(const MachineOperand &Op) {
|
|
assert(MCID && "Cannot add operands before providing an instr descriptor");
|
|
bool isImpReg = Op.isReg() && Op.isImplicit();
|
|
MachineRegisterInfo *RegInfo = getRegInfo();
|
|
|
|
// If the Operands backing store is reallocated, all register operands must
|
|
// be removed and re-added to RegInfo. It is storing pointers to operands.
|
|
bool Reallocate = RegInfo &&
|
|
!Operands.empty() && Operands.size() == Operands.capacity();
|
|
|
|
// Find the insert location for the new operand. Implicit registers go at
|
|
// the end, everything goes before the implicit regs.
|
|
unsigned OpNo = Operands.size();
|
|
|
|
// Remove all the implicit operands from RegInfo if they need to be shifted.
|
|
// FIXME: Allow mixed explicit and implicit operands on inline asm.
|
|
// InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
|
|
// implicit-defs, but they must not be moved around. See the FIXME in
|
|
// InstrEmitter.cpp.
|
|
if (!isImpReg && !isInlineAsm()) {
|
|
while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
|
|
--OpNo;
|
|
if (RegInfo)
|
|
Operands[OpNo].RemoveRegOperandFromRegInfo();
|
|
}
|
|
}
|
|
|
|
// OpNo now points as the desired insertion point. Unless this is a variadic
|
|
// instruction, only implicit regs are allowed beyond MCID->getNumOperands().
|
|
assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
|
|
"Trying to add an operand to a machine instr that is already done!");
|
|
|
|
// All operands from OpNo have been removed from RegInfo. If the Operands
|
|
// backing store needs to be reallocated, we also need to remove any other
|
|
// register operands.
|
|
if (Reallocate)
|
|
for (unsigned i = 0; i != OpNo; ++i)
|
|
if (Operands[i].isReg())
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
|
|
// Insert the new operand at OpNo.
|
|
Operands.insert(Operands.begin() + OpNo, Op);
|
|
Operands[OpNo].ParentMI = this;
|
|
|
|
// The Operands backing store has now been reallocated, so we can re-add the
|
|
// operands before OpNo.
|
|
if (Reallocate)
|
|
for (unsigned i = 0; i != OpNo; ++i)
|
|
if (Operands[i].isReg())
|
|
Operands[i].AddRegOperandToRegInfo(RegInfo);
|
|
|
|
// When adding a register operand, tell RegInfo about it.
|
|
if (Operands[OpNo].isReg()) {
|
|
// Add the new operand to RegInfo, even when RegInfo is NULL.
|
|
// This will initialize the linked list pointers.
|
|
Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
|
|
// If the register operand is flagged as early, mark the operand as such.
|
|
if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
|
|
Operands[OpNo].setIsEarlyClobber(true);
|
|
}
|
|
|
|
// Re-add all the implicit ops.
|
|
if (RegInfo) {
|
|
for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].isReg() && "Should only be an implicit reg!");
|
|
Operands[i].AddRegOperandToRegInfo(RegInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
///
|
|
void MachineInstr::RemoveOperand(unsigned OpNo) {
|
|
assert(OpNo < Operands.size() && "Invalid operand number");
|
|
|
|
// Special case removing the last one.
|
|
if (OpNo == Operands.size()-1) {
|
|
// If needed, remove from the reg def/use list.
|
|
if (Operands.back().isReg() && Operands.back().isOnRegUseList())
|
|
Operands.back().RemoveRegOperandFromRegInfo();
|
|
|
|
Operands.pop_back();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are removing an interior operand. If we have reginfo to
|
|
// update, remove all operands that will be shifted down from their reg lists,
|
|
// move everything down, then re-add them.
|
|
MachineRegisterInfo *RegInfo = getRegInfo();
|
|
if (RegInfo) {
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
}
|
|
|
|
Operands.erase(Operands.begin()+OpNo);
|
|
|
|
if (RegInfo) {
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].AddRegOperandToRegInfo(RegInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// addMemOperand - Add a MachineMemOperand to the machine instruction.
|
|
/// This function should be used only occasionally. The setMemRefs function
|
|
/// is the primary method for setting up a MachineInstr's MemRefs list.
|
|
void MachineInstr::addMemOperand(MachineFunction &MF,
|
|
MachineMemOperand *MO) {
|
|
mmo_iterator OldMemRefs = MemRefs;
|
|
mmo_iterator OldMemRefsEnd = MemRefsEnd;
|
|
|
|
size_t NewNum = (MemRefsEnd - MemRefs) + 1;
|
|
mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
|
|
mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
|
|
|
|
std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
|
|
NewMemRefs[NewNum - 1] = MO;
|
|
|
|
MemRefs = NewMemRefs;
|
|
MemRefsEnd = NewMemRefsEnd;
|
|
}
|
|
|
|
bool
|
|
MachineInstr::hasProperty(unsigned MCFlag, QueryType Type) const {
|
|
if (Type == IgnoreBundle || !isBundle())
|
|
return getDesc().getFlags() & (1 << MCFlag);
|
|
|
|
const MachineBasicBlock *MBB = getParent();
|
|
MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
|
|
while (MII != MBB->end() && MII->isInsideBundle()) {
|
|
if (MII->getDesc().getFlags() & (1 << MCFlag)) {
|
|
if (Type == AnyInBundle)
|
|
return true;
|
|
} else {
|
|
if (Type == AllInBundle)
|
|
return false;
|
|
}
|
|
++MII;
|
|
}
|
|
|
|
return Type == AllInBundle;
|
|
}
|
|
|
|
bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
|
|
MICheckType Check) const {
|
|
// If opcodes or number of operands are not the same then the two
|
|
// instructions are obviously not identical.
|
|
if (Other->getOpcode() != getOpcode() ||
|
|
Other->getNumOperands() != getNumOperands())
|
|
return false;
|
|
|
|
if (isBundle()) {
|
|
// Both instructions are bundles, compare MIs inside the bundle.
|
|
MachineBasicBlock::const_instr_iterator I1 = *this;
|
|
MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
|
|
MachineBasicBlock::const_instr_iterator I2 = *Other;
|
|
MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
|
|
while (++I1 != E1 && I1->isInsideBundle()) {
|
|
++I2;
|
|
if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check operands to make sure they match.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
const MachineOperand &OMO = Other->getOperand(i);
|
|
if (!MO.isReg()) {
|
|
if (!MO.isIdenticalTo(OMO))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// Clients may or may not want to ignore defs when testing for equality.
|
|
// For example, machine CSE pass only cares about finding common
|
|
// subexpressions, so it's safe to ignore virtual register defs.
|
|
if (MO.isDef()) {
|
|
if (Check == IgnoreDefs)
|
|
continue;
|
|
else if (Check == IgnoreVRegDefs) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
|
|
TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
|
|
if (MO.getReg() != OMO.getReg())
|
|
return false;
|
|
} else {
|
|
if (!MO.isIdenticalTo(OMO))
|
|
return false;
|
|
if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!MO.isIdenticalTo(OMO))
|
|
return false;
|
|
if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
|
|
return false;
|
|
}
|
|
}
|
|
// If DebugLoc does not match then two dbg.values are not identical.
|
|
if (isDebugValue())
|
|
if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
|
|
&& getDebugLoc() != Other->getDebugLoc())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// removeFromParent - This method unlinks 'this' from the containing basic
|
|
/// block, and returns it, but does not delete it.
|
|
MachineInstr *MachineInstr::removeFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
|
|
// If it's a bundle then remove the MIs inside the bundle as well.
|
|
if (isBundle()) {
|
|
MachineBasicBlock *MBB = getParent();
|
|
MachineBasicBlock::instr_iterator MII = *this; ++MII;
|
|
MachineBasicBlock::instr_iterator E = MBB->instr_end();
|
|
while (MII != E && MII->isInsideBundle()) {
|
|
MachineInstr *MI = &*MII;
|
|
++MII;
|
|
MBB->remove(MI);
|
|
}
|
|
}
|
|
getParent()->remove(this);
|
|
return this;
|
|
}
|
|
|
|
|
|
/// eraseFromParent - This method unlinks 'this' from the containing basic
|
|
/// block, and deletes it.
|
|
void MachineInstr::eraseFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
// If it's a bundle then remove the MIs inside the bundle as well.
|
|
if (isBundle()) {
|
|
MachineBasicBlock *MBB = getParent();
|
|
MachineBasicBlock::instr_iterator MII = *this; ++MII;
|
|
MachineBasicBlock::instr_iterator E = MBB->instr_end();
|
|
while (MII != E && MII->isInsideBundle()) {
|
|
MachineInstr *MI = &*MII;
|
|
++MII;
|
|
MBB->erase(MI);
|
|
}
|
|
}
|
|
getParent()->erase(this);
|
|
}
|
|
|
|
|
|
/// getNumExplicitOperands - Returns the number of non-implicit operands.
|
|
///
|
|
unsigned MachineInstr::getNumExplicitOperands() const {
|
|
unsigned NumOperands = MCID->getNumOperands();
|
|
if (!MCID->isVariadic())
|
|
return NumOperands;
|
|
|
|
for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isImplicit())
|
|
NumOperands++;
|
|
}
|
|
return NumOperands;
|
|
}
|
|
|
|
bool MachineInstr::isStackAligningInlineAsm() const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
|
|
unsigned *GroupNo) const {
|
|
assert(isInlineAsm() && "Expected an inline asm instruction");
|
|
assert(OpIdx < getNumOperands() && "OpIdx out of range");
|
|
|
|
// Ignore queries about the initial operands.
|
|
if (OpIdx < InlineAsm::MIOp_FirstOperand)
|
|
return -1;
|
|
|
|
unsigned Group = 0;
|
|
unsigned NumOps;
|
|
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
|
|
i += NumOps) {
|
|
const MachineOperand &FlagMO = getOperand(i);
|
|
// If we reach the implicit register operands, stop looking.
|
|
if (!FlagMO.isImm())
|
|
return -1;
|
|
NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
|
|
if (i + NumOps > OpIdx) {
|
|
if (GroupNo)
|
|
*GroupNo = Group;
|
|
return i;
|
|
}
|
|
++Group;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
const TargetRegisterClass*
|
|
MachineInstr::getRegClassConstraint(unsigned OpIdx,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const {
|
|
// Most opcodes have fixed constraints in their MCInstrDesc.
|
|
if (!isInlineAsm())
|
|
return TII->getRegClass(getDesc(), OpIdx, TRI);
|
|
|
|
if (!getOperand(OpIdx).isReg())
|
|
return NULL;
|
|
|
|
// For tied uses on inline asm, get the constraint from the def.
|
|
unsigned DefIdx;
|
|
if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
|
|
OpIdx = DefIdx;
|
|
|
|
// Inline asm stores register class constraints in the flag word.
|
|
int FlagIdx = findInlineAsmFlagIdx(OpIdx);
|
|
if (FlagIdx < 0)
|
|
return NULL;
|
|
|
|
unsigned Flag = getOperand(FlagIdx).getImm();
|
|
unsigned RCID;
|
|
if (InlineAsm::hasRegClassConstraint(Flag, RCID))
|
|
return TRI->getRegClass(RCID);
|
|
|
|
// Assume that all registers in a memory operand are pointers.
|
|
if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
|
|
return TRI->getPointerRegClass();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/// getBundleSize - Return the number of instructions inside the MI bundle.
|
|
unsigned MachineInstr::getBundleSize() const {
|
|
assert(isBundle() && "Expecting a bundle");
|
|
|
|
MachineBasicBlock::const_instr_iterator I = *this;
|
|
unsigned Size = 0;
|
|
while ((++I)->isInsideBundle()) {
|
|
++Size;
|
|
}
|
|
assert(Size > 1 && "Malformed bundle");
|
|
|
|
return Size;
|
|
}
|
|
|
|
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
|
|
/// the specific register or -1 if it is not found. It further tightens
|
|
/// the search criteria to a use that kills the register if isKill is true.
|
|
int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
|
|
const TargetRegisterInfo *TRI) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (MOReg == Reg ||
|
|
(TRI &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg) &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg) &&
|
|
TRI->isSubRegister(MOReg, Reg)))
|
|
if (!isKill || MO.isKill())
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
|
|
/// indicating if this instruction reads or writes Reg. This also considers
|
|
/// partial defines.
|
|
std::pair<bool,bool>
|
|
MachineInstr::readsWritesVirtualRegister(unsigned Reg,
|
|
SmallVectorImpl<unsigned> *Ops) const {
|
|
bool PartDef = false; // Partial redefine.
|
|
bool FullDef = false; // Full define.
|
|
bool Use = false;
|
|
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
continue;
|
|
if (Ops)
|
|
Ops->push_back(i);
|
|
if (MO.isUse())
|
|
Use |= !MO.isUndef();
|
|
else if (MO.getSubReg() && !MO.isUndef())
|
|
// A partial <def,undef> doesn't count as reading the register.
|
|
PartDef = true;
|
|
else
|
|
FullDef = true;
|
|
}
|
|
// A partial redefine uses Reg unless there is also a full define.
|
|
return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
|
|
}
|
|
|
|
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
|
|
/// the specified register or -1 if it is not found. If isDead is true, defs
|
|
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
|
|
/// also checks if there is a def of a super-register.
|
|
int
|
|
MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
|
|
const TargetRegisterInfo *TRI) const {
|
|
bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
bool Found = (MOReg == Reg);
|
|
if (!Found && TRI && isPhys &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg)) {
|
|
if (Overlap)
|
|
Found = TRI->regsOverlap(MOReg, Reg);
|
|
else
|
|
Found = TRI->isSubRegister(MOReg, Reg);
|
|
}
|
|
if (Found && (!isDead || MO.isDead()))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// findFirstPredOperandIdx() - Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int MachineInstr::findFirstPredOperandIdx() const {
|
|
// Don't call MCID.findFirstPredOperandIdx() because this variant
|
|
// is sometimes called on an instruction that's not yet complete, and
|
|
// so the number of operands is less than the MCID indicates. In
|
|
// particular, the PTX target does this.
|
|
const MCInstrDesc &MCID = getDesc();
|
|
if (MCID.isPredicable()) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (MCID.OpInfo[i].isPredicate())
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/// isRegTiedToUseOperand - Given the index of a register def operand,
|
|
/// check if the register def is tied to a source operand, due to either
|
|
/// two-address elimination or inline assembly constraints. Returns the
|
|
/// first tied use operand index by reference is UseOpIdx is not null.
|
|
bool MachineInstr::
|
|
isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
|
|
if (isInlineAsm()) {
|
|
assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
|
|
const MachineOperand &MO = getOperand(DefOpIdx);
|
|
if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
|
|
return false;
|
|
// Determine the actual operand index that corresponds to this index.
|
|
unsigned DefNo = 0;
|
|
int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
|
|
if (FlagIdx < 0)
|
|
return false;
|
|
|
|
// Which part of the group is DefOpIdx?
|
|
unsigned DefPart = DefOpIdx - (FlagIdx + 1);
|
|
|
|
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
|
|
i != e; ++i) {
|
|
const MachineOperand &FMO = getOperand(i);
|
|
if (!FMO.isImm())
|
|
continue;
|
|
if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
|
|
continue;
|
|
unsigned Idx;
|
|
if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
|
|
Idx == DefNo) {
|
|
if (UseOpIdx)
|
|
*UseOpIdx = (unsigned)i + 1 + DefPart;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
|
|
const MCInstrDesc &MCID = getDesc();
|
|
for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.isUse() &&
|
|
MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
|
|
if (UseOpIdx)
|
|
*UseOpIdx = (unsigned)i;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isRegTiedToDefOperand - Return true if the operand of the specified index
|
|
/// is a register use and it is tied to an def operand. It also returns the def
|
|
/// operand index by reference.
|
|
bool MachineInstr::
|
|
isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
|
|
if (isInlineAsm()) {
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
|
|
return false;
|
|
|
|
// Find the flag operand corresponding to UseOpIdx
|
|
int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
|
|
if (FlagIdx < 0)
|
|
return false;
|
|
|
|
const MachineOperand &UFMO = getOperand(FlagIdx);
|
|
unsigned DefNo;
|
|
if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
|
|
if (!DefOpIdx)
|
|
return true;
|
|
|
|
unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
|
|
// Remember to adjust the index. First operand is asm string, second is
|
|
// the HasSideEffects and AlignStack bits, then there is a flag for each.
|
|
while (DefNo) {
|
|
const MachineOperand &FMO = getOperand(DefIdx);
|
|
assert(FMO.isImm());
|
|
// Skip over this def.
|
|
DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
|
|
--DefNo;
|
|
}
|
|
*DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const MCInstrDesc &MCID = getDesc();
|
|
if (UseOpIdx >= MCID.getNumOperands())
|
|
return false;
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
return false;
|
|
int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
|
|
if (DefIdx == -1)
|
|
return false;
|
|
if (DefOpIdx)
|
|
*DefOpIdx = (unsigned)DefIdx;
|
|
return true;
|
|
}
|
|
|
|
/// clearKillInfo - Clears kill flags on all operands.
|
|
///
|
|
void MachineInstr::clearKillInfo() {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.isUse())
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
|
|
/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
|
|
///
|
|
void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
|
|
continue;
|
|
for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
|
|
MachineOperand &MOp = getOperand(j);
|
|
if (!MOp.isIdenticalTo(MO))
|
|
continue;
|
|
if (MO.isKill())
|
|
MOp.setIsKill();
|
|
else
|
|
MOp.setIsDead();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// copyPredicates - Copies predicate operand(s) from MI.
|
|
void MachineInstr::copyPredicates(const MachineInstr *MI) {
|
|
assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
|
|
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if (!MCID.isPredicable())
|
|
return;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (MCID.OpInfo[i].isPredicate()) {
|
|
// Predicated operands must be last operands.
|
|
addOperand(MI->getOperand(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineInstr::substituteRegister(unsigned FromReg,
|
|
unsigned ToReg,
|
|
unsigned SubIdx,
|
|
const TargetRegisterInfo &RegInfo) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
|
|
if (SubIdx)
|
|
ToReg = RegInfo.getSubReg(ToReg, SubIdx);
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != FromReg)
|
|
continue;
|
|
MO.substPhysReg(ToReg, RegInfo);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != FromReg)
|
|
continue;
|
|
MO.substVirtReg(ToReg, SubIdx, RegInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isSafeToMove - Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
|
|
AliasAnalysis *AA,
|
|
bool &SawStore) const {
|
|
// Ignore stuff that we obviously can't move.
|
|
if (mayStore() || isCall()) {
|
|
SawStore = true;
|
|
return false;
|
|
}
|
|
|
|
if (isLabel() || isDebugValue() ||
|
|
isTerminator() || hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// See if this instruction does a load. If so, we have to guarantee that the
|
|
// loaded value doesn't change between the load and the its intended
|
|
// destination. The check for isInvariantLoad gives the targe the chance to
|
|
// classify the load as always returning a constant, e.g. a constant pool
|
|
// load.
|
|
if (mayLoad() && !isInvariantLoad(AA))
|
|
// Otherwise, this is a real load. If there is a store between the load and
|
|
// end of block, or if the load is volatile, we can't move it.
|
|
return !SawStore && !hasVolatileMemoryRef();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isSafeToReMat - Return true if it's safe to rematerialize the specified
|
|
/// instruction which defined the specified register instead of copying it.
|
|
bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
|
|
AliasAnalysis *AA,
|
|
unsigned DstReg) const {
|
|
bool SawStore = false;
|
|
if (!TII->isTriviallyReMaterializable(this, AA) ||
|
|
!isSafeToMove(TII, AA, SawStore))
|
|
return false;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
// FIXME: For now, do not remat any instruction with register operands.
|
|
// Later on, we can loosen the restriction is the register operands have
|
|
// not been modified between the def and use. Note, this is different from
|
|
// MachineSink because the code is no longer in two-address form (at least
|
|
// partially).
|
|
if (MO.isUse())
|
|
return false;
|
|
else if (!MO.isDead() && MO.getReg() != DstReg)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// hasVolatileMemoryRef - Return true if this instruction may have a
|
|
/// volatile memory reference, or if the information describing the
|
|
/// memory reference is not available. Return false if it is known to
|
|
/// have no volatile memory references.
|
|
bool MachineInstr::hasVolatileMemoryRef() const {
|
|
// An instruction known never to access memory won't have a volatile access.
|
|
if (!mayStore() &&
|
|
!mayLoad() &&
|
|
!isCall() &&
|
|
!hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// Otherwise, if the instruction has no memory reference information,
|
|
// conservatively assume it wasn't preserved.
|
|
if (memoperands_empty())
|
|
return true;
|
|
|
|
// Check the memory reference information for volatile references.
|
|
for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
|
|
if ((*I)->isVolatile())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isInvariantLoad - Return true if this instruction is loading from a
|
|
/// location whose value is invariant across the function. For example,
|
|
/// loading a value from the constant pool or from the argument area
|
|
/// of a function if it does not change. This should only return true of
|
|
/// *all* loads the instruction does are invariant (if it does multiple loads).
|
|
bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
|
|
// If the instruction doesn't load at all, it isn't an invariant load.
|
|
if (!mayLoad())
|
|
return false;
|
|
|
|
// If the instruction has lost its memoperands, conservatively assume that
|
|
// it may not be an invariant load.
|
|
if (memoperands_empty())
|
|
return false;
|
|
|
|
const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
|
|
|
|
for (mmo_iterator I = memoperands_begin(),
|
|
E = memoperands_end(); I != E; ++I) {
|
|
if ((*I)->isVolatile()) return false;
|
|
if ((*I)->isStore()) return false;
|
|
if ((*I)->isInvariant()) return true;
|
|
|
|
if (const Value *V = (*I)->getValue()) {
|
|
// A load from a constant PseudoSourceValue is invariant.
|
|
if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
|
|
if (PSV->isConstant(MFI))
|
|
continue;
|
|
// If we have an AliasAnalysis, ask it whether the memory is constant.
|
|
if (AA && AA->pointsToConstantMemory(
|
|
AliasAnalysis::Location(V, (*I)->getSize(),
|
|
(*I)->getTBAAInfo())))
|
|
continue;
|
|
}
|
|
|
|
// Otherwise assume conservatively.
|
|
return false;
|
|
}
|
|
|
|
// Everything checks out.
|
|
return true;
|
|
}
|
|
|
|
/// isConstantValuePHI - If the specified instruction is a PHI that always
|
|
/// merges together the same virtual register, return the register, otherwise
|
|
/// return 0.
|
|
unsigned MachineInstr::isConstantValuePHI() const {
|
|
if (!isPHI())
|
|
return 0;
|
|
assert(getNumOperands() >= 3 &&
|
|
"It's illegal to have a PHI without source operands");
|
|
|
|
unsigned Reg = getOperand(1).getReg();
|
|
for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
|
|
if (getOperand(i).getReg() != Reg)
|
|
return 0;
|
|
return Reg;
|
|
}
|
|
|
|
bool MachineInstr::hasUnmodeledSideEffects() const {
|
|
if (hasProperty(MCID::UnmodeledSideEffects))
|
|
return true;
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
|
|
///
|
|
bool MachineInstr::allDefsAreDead() const {
|
|
for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.isUse())
|
|
continue;
|
|
if (!MO.isDead())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// copyImplicitOps - Copy implicit register operands from specified
|
|
/// instruction to this instruction.
|
|
void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
|
|
for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
|
|
i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isImplicit())
|
|
addOperand(MO);
|
|
}
|
|
}
|
|
|
|
void MachineInstr::dump() const {
|
|
dbgs() << " " << *this;
|
|
}
|
|
|
|
static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
|
|
raw_ostream &CommentOS) {
|
|
const LLVMContext &Ctx = MF->getFunction()->getContext();
|
|
if (!DL.isUnknown()) { // Print source line info.
|
|
DIScope Scope(DL.getScope(Ctx));
|
|
// Omit the directory, because it's likely to be long and uninteresting.
|
|
if (Scope.Verify())
|
|
CommentOS << Scope.getFilename();
|
|
else
|
|
CommentOS << "<unknown>";
|
|
CommentOS << ':' << DL.getLine();
|
|
if (DL.getCol() != 0)
|
|
CommentOS << ':' << DL.getCol();
|
|
DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
|
|
if (!InlinedAtDL.isUnknown()) {
|
|
CommentOS << " @[ ";
|
|
printDebugLoc(InlinedAtDL, MF, CommentOS);
|
|
CommentOS << " ]";
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
|
|
// We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
|
|
const MachineFunction *MF = 0;
|
|
const MachineRegisterInfo *MRI = 0;
|
|
if (const MachineBasicBlock *MBB = getParent()) {
|
|
MF = MBB->getParent();
|
|
if (!TM && MF)
|
|
TM = &MF->getTarget();
|
|
if (MF)
|
|
MRI = &MF->getRegInfo();
|
|
}
|
|
|
|
// Save a list of virtual registers.
|
|
SmallVector<unsigned, 8> VirtRegs;
|
|
|
|
// Print explicitly defined operands on the left of an assignment syntax.
|
|
unsigned StartOp = 0, e = getNumOperands();
|
|
for (; StartOp < e && getOperand(StartOp).isReg() &&
|
|
getOperand(StartOp).isDef() &&
|
|
!getOperand(StartOp).isImplicit();
|
|
++StartOp) {
|
|
if (StartOp != 0) OS << ", ";
|
|
getOperand(StartOp).print(OS, TM);
|
|
unsigned Reg = getOperand(StartOp).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
VirtRegs.push_back(Reg);
|
|
}
|
|
|
|
if (StartOp != 0)
|
|
OS << " = ";
|
|
|
|
// Print the opcode name.
|
|
OS << getDesc().getName();
|
|
|
|
// Print the rest of the operands.
|
|
bool OmittedAnyCallClobbers = false;
|
|
bool FirstOp = true;
|
|
unsigned AsmDescOp = ~0u;
|
|
unsigned AsmOpCount = 0;
|
|
|
|
if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
|
|
// Print asm string.
|
|
OS << " ";
|
|
getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
|
|
|
|
// Print HasSideEffects, IsAlignStack
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
|
|
OS << " [sideeffect]";
|
|
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
|
|
OS << " [alignstack]";
|
|
|
|
StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
|
|
FirstOp = false;
|
|
}
|
|
|
|
|
|
for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
|
|
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
VirtRegs.push_back(MO.getReg());
|
|
|
|
// Omit call-clobbered registers which aren't used anywhere. This makes
|
|
// call instructions much less noisy on targets where calls clobber lots
|
|
// of registers. Don't rely on MO.isDead() because we may be called before
|
|
// LiveVariables is run, or we may be looking at a non-allocatable reg.
|
|
if (MF && isCall() &&
|
|
MO.isReg() && MO.isImplicit() && MO.isDef()) {
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
|
|
bool HasAliasLive = false;
|
|
for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
|
|
unsigned AliasReg = *Alias; ++Alias)
|
|
if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
|
|
HasAliasLive = true;
|
|
break;
|
|
}
|
|
if (!HasAliasLive) {
|
|
OmittedAnyCallClobbers = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FirstOp) FirstOp = false; else OS << ",";
|
|
OS << " ";
|
|
if (i < getDesc().NumOperands) {
|
|
const MCOperandInfo &MCOI = getDesc().OpInfo[i];
|
|
if (MCOI.isPredicate())
|
|
OS << "pred:";
|
|
if (MCOI.isOptionalDef())
|
|
OS << "opt:";
|
|
}
|
|
if (isDebugValue() && MO.isMetadata()) {
|
|
// Pretty print DBG_VALUE instructions.
|
|
const MDNode *MD = MO.getMetadata();
|
|
if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
|
|
OS << "!\"" << MDS->getString() << '\"';
|
|
else
|
|
MO.print(OS, TM);
|
|
} else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
|
|
OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
|
|
} else if (i == AsmDescOp && MO.isImm()) {
|
|
// Pretty print the inline asm operand descriptor.
|
|
OS << '$' << AsmOpCount++;
|
|
unsigned Flag = MO.getImm();
|
|
switch (InlineAsm::getKind(Flag)) {
|
|
case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
|
|
case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
|
|
case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
|
|
case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
|
|
case InlineAsm::Kind_Imm: OS << ":[imm"; break;
|
|
case InlineAsm::Kind_Mem: OS << ":[mem"; break;
|
|
default: OS << ":[??" << InlineAsm::getKind(Flag); break;
|
|
}
|
|
|
|
unsigned RCID = 0;
|
|
if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
|
|
if (TM)
|
|
OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
|
|
else
|
|
OS << ":RC" << RCID;
|
|
}
|
|
|
|
unsigned TiedTo = 0;
|
|
if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
|
|
OS << " tiedto:$" << TiedTo;
|
|
|
|
OS << ']';
|
|
|
|
// Compute the index of the next operand descriptor.
|
|
AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
|
|
} else
|
|
MO.print(OS, TM);
|
|
}
|
|
|
|
// Briefly indicate whether any call clobbers were omitted.
|
|
if (OmittedAnyCallClobbers) {
|
|
if (!FirstOp) OS << ",";
|
|
OS << " ...";
|
|
}
|
|
|
|
bool HaveSemi = false;
|
|
if (Flags) {
|
|
if (!HaveSemi) OS << ";"; HaveSemi = true;
|
|
OS << " flags: ";
|
|
|
|
if (Flags & FrameSetup)
|
|
OS << "FrameSetup";
|
|
}
|
|
|
|
if (!memoperands_empty()) {
|
|
if (!HaveSemi) OS << ";"; HaveSemi = true;
|
|
|
|
OS << " mem:";
|
|
for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
|
|
i != e; ++i) {
|
|
OS << **i;
|
|
if (llvm::next(i) != e)
|
|
OS << " ";
|
|
}
|
|
}
|
|
|
|
// Print the regclass of any virtual registers encountered.
|
|
if (MRI && !VirtRegs.empty()) {
|
|
if (!HaveSemi) OS << ";"; HaveSemi = true;
|
|
for (unsigned i = 0; i != VirtRegs.size(); ++i) {
|
|
const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
|
|
OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
|
|
for (unsigned j = i+1; j != VirtRegs.size();) {
|
|
if (MRI->getRegClass(VirtRegs[j]) != RC) {
|
|
++j;
|
|
continue;
|
|
}
|
|
if (VirtRegs[i] != VirtRegs[j])
|
|
OS << "," << PrintReg(VirtRegs[j]);
|
|
VirtRegs.erase(VirtRegs.begin()+j);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print debug location information.
|
|
if (isDebugValue() && getOperand(e - 1).isMetadata()) {
|
|
if (!HaveSemi) OS << ";"; HaveSemi = true;
|
|
DIVariable DV(getOperand(e - 1).getMetadata());
|
|
OS << " line no:" << DV.getLineNumber();
|
|
if (MDNode *InlinedAt = DV.getInlinedAt()) {
|
|
DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
|
|
if (!InlinedAtDL.isUnknown()) {
|
|
OS << " inlined @[ ";
|
|
printDebugLoc(InlinedAtDL, MF, OS);
|
|
OS << " ]";
|
|
}
|
|
}
|
|
} else if (!debugLoc.isUnknown() && MF) {
|
|
if (!HaveSemi) OS << ";"; HaveSemi = true;
|
|
OS << " dbg:";
|
|
printDebugLoc(debugLoc, MF, OS);
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
|
|
bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (Reg == IncomingReg) {
|
|
if (!Found) {
|
|
if (MO.isKill())
|
|
// The register is already marked kill.
|
|
return true;
|
|
if (isPhysReg && isRegTiedToDefOperand(i))
|
|
// Two-address uses of physregs must not be marked kill.
|
|
return true;
|
|
MO.setIsKill();
|
|
Found = true;
|
|
}
|
|
} else if (hasAliases && MO.isKill() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// A super-register kill already exists.
|
|
if (RegInfo->isSuperRegister(IncomingReg, Reg))
|
|
return true;
|
|
if (RegInfo->isSubRegister(IncomingReg, Reg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded kill operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsKill(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is killed. Add a
|
|
// new implicit operand if required.
|
|
if (!Found && AddIfNotFound) {
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
false /*IsDef*/,
|
|
true /*IsImp*/,
|
|
true /*IsKill*/));
|
|
return true;
|
|
}
|
|
return Found;
|
|
}
|
|
|
|
bool MachineInstr::addRegisterDead(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
|
|
bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (Reg == IncomingReg) {
|
|
MO.setIsDead();
|
|
Found = true;
|
|
} else if (hasAliases && MO.isDead() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// There exists a super-register that's marked dead.
|
|
if (RegInfo->isSuperRegister(IncomingReg, Reg))
|
|
return true;
|
|
if (RegInfo->getSubRegisters(IncomingReg) &&
|
|
RegInfo->getSuperRegisters(Reg) &&
|
|
RegInfo->isSubRegister(IncomingReg, Reg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded dead operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsDead(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is dead. Add a
|
|
// new implicit operand if required.
|
|
if (Found || !AddIfNotFound)
|
|
return Found;
|
|
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/,
|
|
false /*IsKill*/,
|
|
true /*IsDead*/));
|
|
return true;
|
|
}
|
|
|
|
void MachineInstr::addRegisterDefined(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
|
|
MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
|
|
if (MO)
|
|
return;
|
|
} else {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
|
|
MO.getSubReg() == 0)
|
|
return;
|
|
}
|
|
}
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/));
|
|
}
|
|
|
|
void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
|
|
const TargetRegisterInfo &TRI) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
bool Dead = true;
|
|
for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
|
|
E = UsedRegs.end(); I != E; ++I)
|
|
if (TRI.regsOverlap(*I, Reg)) {
|
|
Dead = false;
|
|
break;
|
|
}
|
|
// If there are no uses, including partial uses, the def is dead.
|
|
if (Dead) MO.setIsDead();
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
|
|
unsigned Hash = MI->getOpcode() * 37;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
uint64_t Key = (uint64_t)MO.getType() << 32;
|
|
switch (MO.getType()) {
|
|
default: break;
|
|
case MachineOperand::MO_Register:
|
|
if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
continue; // Skip virtual register defs.
|
|
Key |= MO.getReg();
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
Key |= MO.getImm();
|
|
break;
|
|
case MachineOperand::MO_FrameIndex:
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
Key |= MO.getIndex();
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
|
|
break;
|
|
case MachineOperand::MO_BlockAddress:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
|
|
break;
|
|
case MachineOperand::MO_MCSymbol:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
|
|
break;
|
|
}
|
|
Key += ~(Key << 32);
|
|
Key ^= (Key >> 22);
|
|
Key += ~(Key << 13);
|
|
Key ^= (Key >> 8);
|
|
Key += (Key << 3);
|
|
Key ^= (Key >> 15);
|
|
Key += ~(Key << 27);
|
|
Key ^= (Key >> 31);
|
|
Hash = (unsigned)Key + Hash * 37;
|
|
}
|
|
return Hash;
|
|
}
|
|
|
|
void MachineInstr::emitError(StringRef Msg) const {
|
|
// Find the source location cookie.
|
|
unsigned LocCookie = 0;
|
|
const MDNode *LocMD = 0;
|
|
for (unsigned i = getNumOperands(); i != 0; --i) {
|
|
if (getOperand(i-1).isMetadata() &&
|
|
(LocMD = getOperand(i-1).getMetadata()) &&
|
|
LocMD->getNumOperands() != 0) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
|
|
LocCookie = CI->getZExtValue();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (const MachineBasicBlock *MBB = getParent())
|
|
if (const MachineFunction *MF = MBB->getParent())
|
|
return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
|
|
report_fatal_error(Msg);
|
|
}
|