llvm-6502/lib/Transforms/Scalar/InstructionCombining.cpp
Chris Lattner 50e60c7026 Quiet warnings on the persephone tester
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17821 91177308-0d34-0410-b5e6-96231b3b80d8
2004-11-15 05:54:07 +00:00

4255 lines
173 KiB
C++

//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG This pass is where algebraic
// simplification happens.
//
// This pass combines things like:
// %Y = add int %X, 1
// %Z = add int %Y, 1
// into:
// %Z = add int %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
// 1. If a binary operator has a constant operand, it is moved to the RHS
// 2. Bitwise operators with constant operands are always grouped so that
// shifts are performed first, then or's, then and's, then xor's.
// 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
// 4. All SetCC instructions on boolean values are replaced with logical ops
// 5. add X, X is represented as (X*2) => (X << 1)
// 6. Multiplies with a power-of-two constant argument are transformed into
// shifts.
// ... etc.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Scalar.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::PatternMatch;
namespace {
Statistic<> NumCombined ("instcombine", "Number of insts combined");
Statistic<> NumConstProp("instcombine", "Number of constant folds");
Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
class InstCombiner : public FunctionPass,
public InstVisitor<InstCombiner, Instruction*> {
// Worklist of all of the instructions that need to be simplified.
std::vector<Instruction*> WorkList;
TargetData *TD;
/// AddUsersToWorkList - When an instruction is simplified, add all users of
/// the instruction to the work lists because they might get more simplified
/// now.
///
void AddUsersToWorkList(Instruction &I) {
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
WorkList.push_back(cast<Instruction>(*UI));
}
/// AddUsesToWorkList - When an instruction is simplified, add operands to
/// the work lists because they might get more simplified now.
///
void AddUsesToWorkList(Instruction &I) {
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
WorkList.push_back(Op);
}
// removeFromWorkList - remove all instances of I from the worklist.
void removeFromWorkList(Instruction *I);
public:
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetData>();
AU.setPreservesCFG();
}
TargetData &getTargetData() const { return *TD; }
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid, I may be dead though
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitAdd(BinaryOperator &I);
Instruction *visitSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
Instruction *visitDiv(BinaryOperator &I);
Instruction *visitRem(BinaryOperator &I);
Instruction *visitAnd(BinaryOperator &I);
Instruction *visitOr (BinaryOperator &I);
Instruction *visitXor(BinaryOperator &I);
Instruction *visitSetCondInst(BinaryOperator &I);
Instruction *visitShiftInst(ShiftInst &I);
Instruction *visitCastInst(CastInst &CI);
Instruction *visitSelectInst(SelectInst &CI);
Instruction *visitCallInst(CallInst &CI);
Instruction *visitInvokeInst(InvokeInst &II);
Instruction *visitPHINode(PHINode &PN);
Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Instruction *visitAllocationInst(AllocationInst &AI);
Instruction *visitFreeInst(FreeInst &FI);
Instruction *visitLoadInst(LoadInst &LI);
Instruction *visitBranchInst(BranchInst &BI);
Instruction *visitSwitchInst(SwitchInst &SI);
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction &I) { return 0; }
private:
Instruction *visitCallSite(CallSite CS);
bool transformConstExprCastCall(CallSite CS);
public:
// InsertNewInstBefore - insert an instruction New before instruction Old
// in the program. Add the new instruction to the worklist.
//
Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
assert(New && New->getParent() == 0 &&
"New instruction already inserted into a basic block!");
BasicBlock *BB = Old.getParent();
BB->getInstList().insert(&Old, New); // Insert inst
WorkList.push_back(New); // Add to worklist
return New;
}
/// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
/// This also adds the cast to the worklist. Finally, this returns the
/// cast.
Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
if (V->getType() == Ty) return V;
Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
WorkList.push_back(C);
return C;
}
// ReplaceInstUsesWith - This method is to be used when an instruction is
// found to be dead, replacable with another preexisting expression. Here
// we add all uses of I to the worklist, replace all uses of I with the new
// value, then return I, so that the inst combiner will know that I was
// modified.
//
Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
AddUsersToWorkList(I); // Add all modified instrs to worklist
if (&I != V) {
I.replaceAllUsesWith(V);
return &I;
} else {
// If we are replacing the instruction with itself, this must be in a
// segment of unreachable code, so just clobber the instruction.
I.replaceAllUsesWith(UndefValue::get(I.getType()));
return &I;
}
}
// EraseInstFromFunction - When dealing with an instruction that has side
// effects or produces a void value, we can't rely on DCE to delete the
// instruction. Instead, visit methods should return the value returned by
// this function.
Instruction *EraseInstFromFunction(Instruction &I) {
assert(I.use_empty() && "Cannot erase instruction that is used!");
AddUsesToWorkList(I);
removeFromWorkList(&I);
I.getParent()->getInstList().erase(&I);
return 0; // Don't do anything with FI
}
private:
/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
/// InsertBefore instruction. This is specialized a bit to avoid inserting
/// casts that are known to not do anything...
///
Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
Instruction *InsertBefore);
// SimplifyCommutative - This performs a few simplifications for commutative
// operators.
bool SimplifyCommutative(BinaryOperator &I);
// FoldOpIntoPhi - Given a binary operator or cast instruction which has a
// PHI node as operand #0, see if we can fold the instruction into the PHI
// (which is only possible if all operands to the PHI are constants).
Instruction *FoldOpIntoPhi(Instruction &I);
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
// operator and they all are only used by the PHI, PHI together their
// inputs, and do the operation once, to the result of the PHI.
Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool Inside, Instruction &IB);
};
RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
}
// getComplexity: Assign a complexity or rank value to LLVM Values...
// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
static unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
return 3;
return 4;
}
if (isa<Argument>(V)) return 3;
return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}
// isOnlyUse - Return true if this instruction will be deleted if we stop using
// it.
static bool isOnlyUse(Value *V) {
return V->hasOneUse() || isa<Constant>(V);
}
// getPromotedType - Return the specified type promoted as it would be to pass
// though a va_arg area...
static const Type *getPromotedType(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::SByteTyID:
case Type::ShortTyID: return Type::IntTy;
case Type::UByteTyID:
case Type::UShortTyID: return Type::UIntTy;
case Type::FloatTyID: return Type::DoubleTy;
default: return Ty;
}
}
// SimplifyCommutative - This performs a few simplifications for commutative
// operators:
//
// 1. Order operands such that they are listed from right (least complex) to
// left (most complex). This puts constants before unary operators before
// binary operators.
//
// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
//
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
bool Changed = false;
if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
Changed = !I.swapOperands();
if (!I.isAssociative()) return Changed;
Instruction::BinaryOps Opcode = I.getOpcode();
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
if (isa<Constant>(I.getOperand(1))) {
Constant *Folded = ConstantExpr::get(I.getOpcode(),
cast<Constant>(I.getOperand(1)),
cast<Constant>(Op->getOperand(1)));
I.setOperand(0, Op->getOperand(0));
I.setOperand(1, Folded);
return true;
} else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
isOnlyUse(Op) && isOnlyUse(Op1)) {
Constant *C1 = cast<Constant>(Op->getOperand(1));
Constant *C2 = cast<Constant>(Op1->getOperand(1));
// Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
Op1->getOperand(0),
Op1->getName(), &I);
WorkList.push_back(New);
I.setOperand(0, New);
I.setOperand(1, Folded);
return true;
}
}
return Changed;
}
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
static inline Value *dyn_castNegVal(Value *V) {
if (BinaryOperator::isNeg(V))
return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));
// Constants can be considered to be negated values if they can be folded...
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getNeg(C);
return 0;
}
static inline Value *dyn_castNotVal(Value *V) {
if (BinaryOperator::isNot(V))
return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));
// Constants can be considered to be not'ed values...
if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
return ConstantExpr::getNot(C);
return 0;
}
// dyn_castFoldableMul - If this value is a multiply that can be folded into
// other computations (because it has a constant operand), return the
// non-constant operand of the multiply, and set CST to point to the multiplier.
// Otherwise, return null.
//
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
if (V->hasOneUse() && V->getType()->isInteger())
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (I->getOpcode() == Instruction::Mul)
if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
return I->getOperand(0);
if (I->getOpcode() == Instruction::Shl)
if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
// The multiplier is really 1 << CST.
Constant *One = ConstantInt::get(V->getType(), 1);
CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
return I->getOperand(0);
}
}
return 0;
}
// Log2 - Calculate the log base 2 for the specified value if it is exactly a
// power of 2.
static unsigned Log2(uint64_t Val) {
assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
unsigned Count = 0;
while (Val != 1) {
if (Val & 1) return 0; // Multiple bits set?
Val >>= 1;
++Count;
}
return Count;
}
// AddOne, SubOne - Add or subtract a constant one from an integer constant...
static ConstantInt *AddOne(ConstantInt *C) {
return cast<ConstantInt>(ConstantExpr::getAdd(C,
ConstantInt::get(C->getType(), 1)));
}
static ConstantInt *SubOne(ConstantInt *C) {
return cast<ConstantInt>(ConstantExpr::getSub(C,
ConstantInt::get(C->getType(), 1)));
}
// isTrueWhenEqual - Return true if the specified setcondinst instruction is
// true when both operands are equal...
//
static bool isTrueWhenEqual(Instruction &I) {
return I.getOpcode() == Instruction::SetEQ ||
I.getOpcode() == Instruction::SetGE ||
I.getOpcode() == Instruction::SetLE;
}
/// AssociativeOpt - Perform an optimization on an associative operator. This
/// function is designed to check a chain of associative operators for a
/// potential to apply a certain optimization. Since the optimization may be
/// applicable if the expression was reassociated, this checks the chain, then
/// reassociates the expression as necessary to expose the optimization
/// opportunity. This makes use of a special Functor, which must define
/// 'shouldApply' and 'apply' methods.
///
template<typename Functor>
Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
unsigned Opcode = Root.getOpcode();
Value *LHS = Root.getOperand(0);
// Quick check, see if the immediate LHS matches...
if (F.shouldApply(LHS))
return F.apply(Root);
// Otherwise, if the LHS is not of the same opcode as the root, return.
Instruction *LHSI = dyn_cast<Instruction>(LHS);
while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
// Should we apply this transform to the RHS?
bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
// If not to the RHS, check to see if we should apply to the LHS...
if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
ShouldApply = true;
}
// If the functor wants to apply the optimization to the RHS of LHSI,
// reassociate the expression from ((? op A) op B) to (? op (A op B))
if (ShouldApply) {
BasicBlock *BB = Root.getParent();
// Now all of the instructions are in the current basic block, go ahead
// and perform the reassociation.
Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
// First move the selected RHS to the LHS of the root...
Root.setOperand(0, LHSI->getOperand(1));
// Make what used to be the LHS of the root be the user of the root...
Value *ExtraOperand = TmpLHSI->getOperand(1);
if (&Root == TmpLHSI) {
Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
return 0;
}
Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
BasicBlock::iterator ARI = &Root; ++ARI;
BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
ARI = Root;
// Now propagate the ExtraOperand down the chain of instructions until we
// get to LHSI.
while (TmpLHSI != LHSI) {
Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
// Move the instruction to immediately before the chain we are
// constructing to avoid breaking dominance properties.
NextLHSI->getParent()->getInstList().remove(NextLHSI);
BB->getInstList().insert(ARI, NextLHSI);
ARI = NextLHSI;
Value *NextOp = NextLHSI->getOperand(1);
NextLHSI->setOperand(1, ExtraOperand);
TmpLHSI = NextLHSI;
ExtraOperand = NextOp;
}
// Now that the instructions are reassociated, have the functor perform
// the transformation...
return F.apply(Root);
}
LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
}
return 0;
}
// AddRHS - Implements: X + X --> X << 1
struct AddRHS {
Value *RHS;
AddRHS(Value *rhs) : RHS(rhs) {}
bool shouldApply(Value *LHS) const { return LHS == RHS; }
Instruction *apply(BinaryOperator &Add) const {
return new ShiftInst(Instruction::Shl, Add.getOperand(0),
ConstantInt::get(Type::UByteTy, 1));
}
};
// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
// iff C1&C2 == 0
struct AddMaskingAnd {
Constant *C2;
AddMaskingAnd(Constant *c) : C2(c) {}
bool shouldApply(Value *LHS) const {
ConstantInt *C1;
return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
ConstantExpr::getAnd(C1, C2)->isNullValue();
}
Instruction *apply(BinaryOperator &Add) const {
return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
}
};
static Value *FoldOperationIntoSelectOperand(Instruction &BI, Value *SO,
InstCombiner *IC) {
// Figure out if the constant is the left or the right argument.
bool ConstIsRHS = isa<Constant>(BI.getOperand(1));
Constant *ConstOperand = cast<Constant>(BI.getOperand(ConstIsRHS));
if (Constant *SOC = dyn_cast<Constant>(SO)) {
if (ConstIsRHS)
return ConstantExpr::get(BI.getOpcode(), SOC, ConstOperand);
return ConstantExpr::get(BI.getOpcode(), ConstOperand, SOC);
}
Value *Op0 = SO, *Op1 = ConstOperand;
if (!ConstIsRHS)
std::swap(Op0, Op1);
Instruction *New;
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&BI))
New = BinaryOperator::create(BO->getOpcode(), Op0, Op1);
else if (ShiftInst *SI = dyn_cast<ShiftInst>(&BI))
New = new ShiftInst(SI->getOpcode(), Op0, Op1);
else {
assert(0 && "Unknown binary instruction type!");
abort();
}
return IC->InsertNewInstBefore(New, BI);
}
/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
/// node as operand #0, see if we can fold the instruction into the PHI (which
/// is only possible if all operands to the PHI are constants).
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
PHINode *PN = cast<PHINode>(I.getOperand(0));
unsigned NumPHIValues = PN->getNumIncomingValues();
if (!PN->hasOneUse() || NumPHIValues == 0 ||
!isa<Constant>(PN->getIncomingValue(0))) return 0;
// Check to see if all of the operands of the PHI are constants. If not, we
// cannot do the transformation.
for (unsigned i = 1; i != NumPHIValues; ++i)
if (!isa<Constant>(PN->getIncomingValue(i)))
return 0;
// Okay, we can do the transformation: create the new PHI node.
PHINode *NewPN = new PHINode(I.getType(), I.getName());
I.setName("");
NewPN->op_reserve(PN->getNumOperands());
InsertNewInstBefore(NewPN, *PN);
// Next, add all of the operands to the PHI.
if (I.getNumOperands() == 2) {
Constant *C = cast<Constant>(I.getOperand(1));
for (unsigned i = 0; i != NumPHIValues; ++i) {
Constant *InV = cast<Constant>(PN->getIncomingValue(i));
NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C),
PN->getIncomingBlock(i));
}
} else {
assert(isa<CastInst>(I) && "Unary op should be a cast!");
const Type *RetTy = I.getType();
for (unsigned i = 0; i != NumPHIValues; ++i) {
Constant *InV = cast<Constant>(PN->getIncomingValue(i));
NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy),
PN->getIncomingBlock(i));
}
}
return ReplaceInstUsesWith(I, NewPN);
}
// FoldBinOpIntoSelect - Given an instruction with a select as one operand and a
// constant as the other operand, try to fold the binary operator into the
// select arguments.
static Instruction *FoldBinOpIntoSelect(Instruction &BI, SelectInst *SI,
InstCombiner *IC) {
// Don't modify shared select instructions
if (!SI->hasOneUse()) return 0;
Value *TV = SI->getOperand(1);
Value *FV = SI->getOperand(2);
if (isa<Constant>(TV) || isa<Constant>(FV)) {
Value *SelectTrueVal = FoldOperationIntoSelectOperand(BI, TV, IC);
Value *SelectFalseVal = FoldOperationIntoSelectOperand(BI, FV, IC);
return new SelectInst(SI->getCondition(), SelectTrueVal,
SelectFalseVal);
}
return 0;
}
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
// X + undef -> undef
if (isa<UndefValue>(RHS))
return ReplaceInstUsesWith(I, RHS);
// X + 0 --> X
if (!I.getType()->isFloatingPoint() && // -0 + +0 = +0, so it's not a noop
RHSC->isNullValue())
return ReplaceInstUsesWith(I, LHS);
// X + (signbit) --> X ^ signbit
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
uint64_t Val = CI->getRawValue() & (1ULL << NumBits)-1;
if (Val == (1ULL << (NumBits-1)))
return BinaryOperator::createXor(LHS, RHS);
}
if (isa<PHINode>(LHS))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
// X + X --> X << 1
if (I.getType()->isInteger()) {
if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
}
// -A + B --> B - A
if (Value *V = dyn_castNegVal(LHS))
return BinaryOperator::createSub(RHS, V);
// A + -B --> A - B
if (!isa<Constant>(RHS))
if (Value *V = dyn_castNegVal(RHS))
return BinaryOperator::createSub(LHS, V);
ConstantInt *C2;
if (Value *X = dyn_castFoldableMul(LHS, C2)) {
if (X == RHS) // X*C + X --> X * (C+1)
return BinaryOperator::createMul(RHS, AddOne(C2));
// X*C1 + X*C2 --> X * (C1+C2)
ConstantInt *C1;
if (X == dyn_castFoldableMul(RHS, C1))
return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
}
// X + X*C --> X * (C+1)
if (dyn_castFoldableMul(RHS, C2) == LHS)
return BinaryOperator::createMul(LHS, AddOne(C2));
// (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Value *X;
if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X
Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
return BinaryOperator::createSub(C, X);
}
// (X & FF00) + xx00 -> (X+xx00) & FF00
if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
if (Anded == CRHS) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
uint64_t AddRHSV = CRHS->getRawValue();
// Form a mask of all bits from the lowest bit added through the top.
uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
AddRHSHighBits &= (1ULL << C2->getType()->getPrimitiveSize()*8)-1;
// See if the and mask includes all of these bits.
uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
if (AddRHSHighBits == AddRHSHighBitsAnd) {
// Okay, the xform is safe. Insert the new add pronto.
Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
LHS->getName()), I);
return BinaryOperator::createAnd(NewAdd, C2);
}
}
}
// Try to fold constant add into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
}
return Changed ? &I : 0;
}
// isSignBit - Return true if the value represented by the constant only has the
// highest order bit set.
static bool isSignBit(ConstantInt *CI) {
unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
}
static unsigned getTypeSizeInBits(const Type *Ty) {
return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
}
/// RemoveNoopCast - Strip off nonconverting casts from the value.
///
static Value *RemoveNoopCast(Value *V) {
if (CastInst *CI = dyn_cast<CastInst>(V)) {
const Type *CTy = CI->getType();
const Type *OpTy = CI->getOperand(0)->getType();
if (CTy->isInteger() && OpTy->isInteger()) {
if (CTy->getPrimitiveSize() == OpTy->getPrimitiveSize())
return RemoveNoopCast(CI->getOperand(0));
} else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
return RemoveNoopCast(CI->getOperand(0));
}
return V;
}
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Op0 == Op1) // sub X, X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// If this is a 'B = x-(-A)', change to B = x+A...
if (Value *V = dyn_castNegVal(Op1))
return BinaryOperator::createAdd(Op0, V);
if (isa<UndefValue>(Op0))
return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
if (isa<UndefValue>(Op1))
return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
// Replace (-1 - A) with (~A)...
if (C->isAllOnesValue())
return BinaryOperator::createNot(Op1);
// C - ~X == X + (1+C)
Value *X;
if (match(Op1, m_Not(m_Value(X))))
return BinaryOperator::createAdd(X,
ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
// -((uint)X >> 31) -> ((int)X >> 31)
// -((int)X >> 31) -> ((uint)X >> 31)
if (C->isNullValue()) {
Value *NoopCastedRHS = RemoveNoopCast(Op1);
if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
if (SI->getOpcode() == Instruction::Shr)
if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
const Type *NewTy;
if (SI->getType()->isSigned())
NewTy = SI->getType()->getUnsignedVersion();
else
NewTy = SI->getType()->getSignedVersion();
// Check to see if we are shifting out everything but the sign bit.
if (CU->getValue() == SI->getType()->getPrimitiveSize()*8-1) {
// Ok, the transformation is safe. Insert a cast of the incoming
// value, then the new shift, then the new cast.
Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
SI->getOperand(0)->getName());
Value *InV = InsertNewInstBefore(FirstCast, I);
Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
CU, SI->getName());
if (NewShift->getType() == I.getType())
return NewShift;
else {
InV = InsertNewInstBefore(NewShift, I);
return new CastInst(NewShift, I.getType());
}
}
}
}
// Try to fold constant sub into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
if (Op1I->hasOneUse()) {
// Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
// is not used by anyone else...
//
if (Op1I->getOpcode() == Instruction::Sub &&
!Op1I->getType()->isFloatingPoint()) {
// Swap the two operands of the subexpr...
Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
Op1I->setOperand(0, IIOp1);
Op1I->setOperand(1, IIOp0);
// Create the new top level add instruction...
return BinaryOperator::createAdd(Op0, Op1);
}
// Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
//
if (Op1I->getOpcode() == Instruction::And &&
(Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
Value *NewNot =
InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
return BinaryOperator::createAnd(Op0, NewNot);
}
// -(X sdiv C) -> (X sdiv -C)
if (Op1I->getOpcode() == Instruction::Div)
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
if (CSI->getValue() == 0)
if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
return BinaryOperator::createDiv(Op1I->getOperand(0),
ConstantExpr::getNeg(DivRHS));
// X - X*C --> X * (1-C)
ConstantInt *C2;
if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Constant *CP1 =
ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
return BinaryOperator::createMul(Op0, CP1);
}
}
ConstantInt *C1;
if (Value *X = dyn_castFoldableMul(Op0, C1)) {
if (X == Op1) { // X*C - X --> X * (C-1)
Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
return BinaryOperator::createMul(Op1, CP1);
}
ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
if (X == dyn_castFoldableMul(Op1, C2))
return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
}
return 0;
}
/// isSignBitCheck - Given an exploded setcc instruction, return true if it is
/// really just returns true if the most significant (sign) bit is set.
static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
if (RHS->getType()->isSigned()) {
// True if source is LHS < 0 or LHS <= -1
return Opcode == Instruction::SetLT && RHS->isNullValue() ||
Opcode == Instruction::SetLE && RHS->isAllOnesValue();
} else {
ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
// True if source is LHS > 127 or LHS >= 128, where the constants depend on
// the size of the integer type.
if (Opcode == Instruction::SetGE)
return RHSC->getValue() == 1ULL<<(RHS->getType()->getPrimitiveSize()*8-1);
if (Opcode == Instruction::SetGT)
return RHSC->getValue() ==
(1ULL << (RHS->getType()->getPrimitiveSize()*8-1))-1;
}
return false;
}
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *Op0 = I.getOperand(0);
if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// Simplify mul instructions with a constant RHS...
if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
// ((X << C1)*C2) == (X * (C2 << C1))
if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
if (SI->getOpcode() == Instruction::Shl)
if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
return BinaryOperator::createMul(SI->getOperand(0),
ConstantExpr::getShl(CI, ShOp));
if (CI->isNullValue())
return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
if (CI->equalsInt(1)) // X * 1 == X
return ReplaceInstUsesWith(I, Op0);
if (CI->isAllOnesValue()) // X * -1 == 0 - X
return BinaryOperator::createNeg(Op0, I.getName());
int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
if (uint64_t C = Log2(Val)) // Replace X*(2^C) with X << C
return new ShiftInst(Instruction::Shl, Op0,
ConstantUInt::get(Type::UByteTy, C));
} else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
if (Op1F->isNullValue())
return ReplaceInstUsesWith(I, Op1);
// "In IEEE floating point, x*1 is not equivalent to x for nans. However,
// ANSI says we can drop signals, so we can do this anyway." (from GCC)
if (Op1F->getValue() == 1.0)
return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
}
// Try to fold constant mul into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
return BinaryOperator::createMul(Op0v, Op1v);
// If one of the operands of the multiply is a cast from a boolean value, then
// we know the bool is either zero or one, so this is a 'masking' multiply.
// See if we can simplify things based on how the boolean was originally
// formed.
CastInst *BoolCast = 0;
if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
if (CI->getOperand(0)->getType() == Type::BoolTy)
BoolCast = CI;
if (!BoolCast)
if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
if (CI->getOperand(0)->getType() == Type::BoolTy)
BoolCast = CI;
if (BoolCast) {
if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
const Type *SCOpTy = SCIOp0->getType();
// If the setcc is true iff the sign bit of X is set, then convert this
// multiply into a shift/and combination.
if (isa<ConstantInt>(SCIOp1) &&
isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
// Shift the X value right to turn it into "all signbits".
Constant *Amt = ConstantUInt::get(Type::UByteTy,
SCOpTy->getPrimitiveSize()*8-1);
if (SCIOp0->getType()->isUnsigned()) {
const Type *NewTy = SCIOp0->getType()->getSignedVersion();
SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
SCIOp0->getName()), I);
}
Value *V =
InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
BoolCast->getOperand(0)->getName()+
".mask"), I);
// If the multiply type is not the same as the source type, sign extend
// or truncate to the multiply type.
if (I.getType() != V->getType())
V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
return BinaryOperator::createAnd(V, OtherOp);
}
}
}
return Changed ? &I : 0;
}
Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
if (isa<UndefValue>(I.getOperand(0))) // undef / X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (isa<UndefValue>(I.getOperand(1)))
return ReplaceInstUsesWith(I, I.getOperand(1)); // X / undef -> undef
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
// div X, 1 == X
if (RHS->equalsInt(1))
return ReplaceInstUsesWith(I, I.getOperand(0));
// div X, -1 == -X
if (RHS->isAllOnesValue())
return BinaryOperator::createNeg(I.getOperand(0));
if (Instruction *LHS = dyn_cast<Instruction>(I.getOperand(0)))
if (LHS->getOpcode() == Instruction::Div)
if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
// (X / C1) / C2 -> X / (C1*C2)
return BinaryOperator::createDiv(LHS->getOperand(0),
ConstantExpr::getMul(RHS, LHSRHS));
}
// Check to see if this is an unsigned division with an exact power of 2,
// if so, convert to a right shift.
if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
if (uint64_t Val = C->getValue()) // Don't break X / 0
if (uint64_t C = Log2(Val))
return new ShiftInst(Instruction::Shr, I.getOperand(0),
ConstantUInt::get(Type::UByteTy, C));
// -X/C -> X/-C
if (RHS->getType()->isSigned())
if (Value *LHSNeg = dyn_castNegVal(I.getOperand(0)))
return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
if (isa<PHINode>(I.getOperand(0)) && !RHS->isNullValue())
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
// 0 / X == 0, we don't need to preserve faults!
if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
if (LHS->equalsInt(0))
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
return 0;
}
Instruction *InstCombiner::visitRem(BinaryOperator &I) {
if (I.getType()->isSigned())
if (Value *RHSNeg = dyn_castNegVal(I.getOperand(1)))
if (!isa<ConstantSInt>(RHSNeg) ||
cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
// X % -Y -> X % Y
AddUsesToWorkList(I);
I.setOperand(1, RHSNeg);
return &I;
}
if (isa<UndefValue>(I.getOperand(0))) // undef % X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (isa<UndefValue>(I.getOperand(1)))
return ReplaceInstUsesWith(I, I.getOperand(1)); // X % undef -> undef
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
if (RHS->equalsInt(1)) // X % 1 == 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// Check to see if this is an unsigned remainder with an exact power of 2,
// if so, convert to a bitwise and.
if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero)
if (!(Val & (Val-1))) // Power of 2
return BinaryOperator::createAnd(I.getOperand(0),
ConstantUInt::get(I.getType(), Val-1));
if (isa<PHINode>(I.getOperand(0)) && !RHS->isNullValue())
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
// 0 % X == 0, we don't need to preserve faults!
if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
if (LHS->equalsInt(0))
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
return 0;
}
// isMaxValueMinusOne - return true if this is Max-1
static bool isMaxValueMinusOne(const ConstantInt *C) {
if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
// Calculate -1 casted to the right type...
unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
uint64_t Val = ~0ULL; // All ones
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
return CU->getValue() == Val-1;
}
const ConstantSInt *CS = cast<ConstantSInt>(C);
// Calculate 0111111111..11111
unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
int64_t Val = INT64_MAX; // All ones
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
return CS->getValue() == Val-1;
}
// isMinValuePlusOne - return true if this is Min+1
static bool isMinValuePlusOne(const ConstantInt *C) {
if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
return CU->getValue() == 1;
const ConstantSInt *CS = cast<ConstantSInt>(C);
// Calculate 1111111111000000000000
unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
int64_t Val = -1; // All ones
Val <<= TypeBits-1; // Shift over to the right spot
return CS->getValue() == Val+1;
}
// isOneBitSet - Return true if there is exactly one bit set in the specified
// constant.
static bool isOneBitSet(const ConstantInt *CI) {
uint64_t V = CI->getRawValue();
return V && (V & (V-1)) == 0;
}
#if 0 // Currently unused
// isLowOnes - Return true if the constant is of the form 0+1+.
static bool isLowOnes(const ConstantInt *CI) {
uint64_t V = CI->getRawValue();
// There won't be bits set in parts that the type doesn't contain.
V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
uint64_t U = V+1; // If it is low ones, this should be a power of two.
return U && V && (U & V) == 0;
}
#endif
// isHighOnes - Return true if the constant is of the form 1+0+.
// This is the same as lowones(~X).
static bool isHighOnes(const ConstantInt *CI) {
uint64_t V = ~CI->getRawValue();
// There won't be bits set in parts that the type doesn't contain.
V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
uint64_t U = V+1; // If it is low ones, this should be a power of two.
return U && V && (U & V) == 0;
}
/// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits
/// are carefully arranged to allow folding of expressions such as:
///
/// (A < B) | (A > B) --> (A != B)
///
/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
/// represents that the comparison is true if A == B, and bit value '1' is true
/// if A < B.
///
static unsigned getSetCondCode(const SetCondInst *SCI) {
switch (SCI->getOpcode()) {
// False -> 0
case Instruction::SetGT: return 1;
case Instruction::SetEQ: return 2;
case Instruction::SetGE: return 3;
case Instruction::SetLT: return 4;
case Instruction::SetNE: return 5;
case Instruction::SetLE: return 6;
// True -> 7
default:
assert(0 && "Invalid SetCC opcode!");
return 0;
}
}
/// getSetCCValue - This is the complement of getSetCondCode, which turns an
/// opcode and two operands into either a constant true or false, or a brand new
/// SetCC instruction.
static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
switch (Opcode) {
case 0: return ConstantBool::False;
case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
case 7: return ConstantBool::True;
default: assert(0 && "Illegal SetCCCode!"); return 0;
}
}
// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
struct FoldSetCCLogical {
InstCombiner &IC;
Value *LHS, *RHS;
FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
: IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
bool shouldApply(Value *V) const {
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
return false;
}
Instruction *apply(BinaryOperator &Log) const {
SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
if (SCI->getOperand(0) != LHS) {
assert(SCI->getOperand(1) == LHS);
SCI->swapOperands(); // Swap the LHS and RHS of the SetCC
}
unsigned LHSCode = getSetCondCode(SCI);
unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
unsigned Code;
switch (Log.getOpcode()) {
case Instruction::And: Code = LHSCode & RHSCode; break;
case Instruction::Or: Code = LHSCode | RHSCode; break;
case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
default: assert(0 && "Illegal logical opcode!"); return 0;
}
Value *RV = getSetCCValue(Code, LHS, RHS);
if (Instruction *I = dyn_cast<Instruction>(RV))
return I;
// Otherwise, it's a constant boolean value...
return IC.ReplaceInstUsesWith(Log, RV);
}
};
// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
// guaranteed to be either a shift instruction or a binary operator.
Instruction *InstCombiner::OptAndOp(Instruction *Op,
ConstantIntegral *OpRHS,
ConstantIntegral *AndRHS,
BinaryOperator &TheAnd) {
Value *X = Op->getOperand(0);
Constant *Together = 0;
if (!isa<ShiftInst>(Op))
Together = ConstantExpr::getAnd(AndRHS, OpRHS);
switch (Op->getOpcode()) {
case Instruction::Xor:
if (Together->isNullValue()) {
// (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
return BinaryOperator::createAnd(X, AndRHS);
} else if (Op->hasOneUse()) {
// (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
std::string OpName = Op->getName(); Op->setName("");
Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
InsertNewInstBefore(And, TheAnd);
return BinaryOperator::createXor(And, Together);
}
break;
case Instruction::Or:
// (X | C1) & C2 --> X & C2 iff C1 & C1 == 0
if (Together->isNullValue())
return BinaryOperator::createAnd(X, AndRHS);
else {
if (Together == AndRHS) // (X | C) & C --> C
return ReplaceInstUsesWith(TheAnd, AndRHS);
if (Op->hasOneUse() && Together != OpRHS) {
// (X | C1) & C2 --> (X | (C1&C2)) & C2
std::string Op0Name = Op->getName(); Op->setName("");
Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
InsertNewInstBefore(Or, TheAnd);
return BinaryOperator::createAnd(Or, AndRHS);
}
}
break;
case Instruction::Add:
if (Op->hasOneUse()) {
// Adding a one to a single bit bit-field should be turned into an XOR
// of the bit. First thing to check is to see if this AND is with a
// single bit constant.
uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
// Clear bits that are not part of the constant.
AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1;
// If there is only one bit set...
if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
// Ok, at this point, we know that we are masking the result of the
// ADD down to exactly one bit. If the constant we are adding has
// no bits set below this bit, then we can eliminate the ADD.
uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
// Check to see if any bits below the one bit set in AndRHSV are set.
if ((AddRHS & (AndRHSV-1)) == 0) {
// If not, the only thing that can effect the output of the AND is
// the bit specified by AndRHSV. If that bit is set, the effect of
// the XOR is to toggle the bit. If it is clear, then the ADD has
// no effect.
if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
TheAnd.setOperand(0, X);
return &TheAnd;
} else {
std::string Name = Op->getName(); Op->setName("");
// Pull the XOR out of the AND.
Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
InsertNewInstBefore(NewAnd, TheAnd);
return BinaryOperator::createXor(NewAnd, AndRHS);
}
}
}
}
break;
case Instruction::Shl: {
// We know that the AND will not produce any of the bits shifted in, so if
// the anded constant includes them, clear them now!
//
Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
if (CI == ShlMask) { // Masking out bits that the shift already masks
return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
} else if (CI != AndRHS) { // Reducing bits set in and.
TheAnd.setOperand(1, CI);
return &TheAnd;
}
break;
}
case Instruction::Shr:
// We know that the AND will not produce any of the bits shifted in, so if
// the anded constant includes them, clear them now! This only applies to
// unsigned shifts, because a signed shr may bring in set bits!
//
if (AndRHS->getType()->isUnsigned()) {
Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
if (CI == ShrMask) { // Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op);
} else if (CI != AndRHS) {
TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
return &TheAnd;
}
} else { // Signed shr.
// See if this is shifting in some sign extension, then masking it out
// with an and.
if (Op->hasOneUse()) {
Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
if (CI == AndRHS) { // Masking out bits shifted in.
// Make the argument unsigned.
Value *ShVal = Op->getOperand(0);
ShVal = InsertCastBefore(ShVal,
ShVal->getType()->getUnsignedVersion(),
TheAnd);
ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
OpRHS, Op->getName()),
TheAnd);
Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
TheAnd.getName()),
TheAnd);
return new CastInst(ShVal, Op->getType());
}
}
}
break;
}
return 0;
}
/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. IB is the location to
/// insert new instructions.
Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool Inside, Instruction &IB) {
assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
"Lo is not <= Hi in range emission code!");
if (Inside) {
if (Lo == Hi) // Trivially false.
return new SetCondInst(Instruction::SetNE, V, V);
if (cast<ConstantIntegral>(Lo)->isMinValue())
return new SetCondInst(Instruction::SetLT, V, Hi);
Constant *AddCST = ConstantExpr::getNeg(Lo);
Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
InsertNewInstBefore(Add, IB);
// Convert to unsigned for the comparison.
const Type *UnsType = Add->getType()->getUnsignedVersion();
Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
AddCST = ConstantExpr::getAdd(AddCST, Hi);
AddCST = ConstantExpr::getCast(AddCST, UnsType);
return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
}
if (Lo == Hi) // Trivially true.
return new SetCondInst(Instruction::SetEQ, V, V);
Hi = SubOne(cast<ConstantInt>(Hi));
if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
return new SetCondInst(Instruction::SetGT, V, Hi);
// Emit X-Lo > Hi-Lo-1
Constant *AddCST = ConstantExpr::getNeg(Lo);
Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
InsertNewInstBefore(Add, IB);
// Convert to unsigned for the comparison.
const Type *UnsType = Add->getType()->getUnsignedVersion();
Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
AddCST = ConstantExpr::getAdd(AddCST, Hi);
AddCST = ConstantExpr::getCast(AddCST, UnsType);
return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
}
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op1)) // X & undef -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// and X, X = X and X, 0 == 0
if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
return ReplaceInstUsesWith(I, Op1);
// and X, -1 == X
if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
if (RHS->isAllOnesValue())
return ReplaceInstUsesWith(I, Op0);
// Optimize a variety of ((val OP C1) & C2) combinations...
if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
Instruction *Op0I = cast<Instruction>(Op0);
Value *X = Op0I->getOperand(0);
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
if (Instruction *Res = OptAndOp(Op0I, Op0CI, RHS, I))
return Res;
}
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
Value *Op0NotVal = dyn_castNotVal(Op0);
Value *Op1NotVal = dyn_castNotVal(Op1);
if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// (~A & ~B) == (~(A | B)) - De Morgan's Law
if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
I.getName()+".demorgan");
InsertNewInstBefore(Or, I);
return BinaryOperator::createNot(Or);
}
if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
// (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
return R;
Value *LHSVal, *RHSVal;
ConstantInt *LHSCst, *RHSCst;
Instruction::BinaryOps LHSCC, RHSCC;
if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
if (LHSVal == RHSVal && // Found (X setcc C1) & (X setcc C2)
// Set[GL]E X, CST is folded to Set[GL]T elsewhere.
LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
// Ensure that the larger constant is on the RHS.
Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
SetCondInst *LHS = cast<SetCondInst>(Op0);
if (cast<ConstantBool>(Cmp)->getValue()) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
std::swap(LHSCC, RHSCC);
}
// At this point, we know we have have two setcc instructions
// comparing a value against two constants and and'ing the result
// together. Because of the above check, we know that we only have
// SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
// FoldSetCCLogical check above), that the two constants are not
// equal.
assert(LHSCst != RHSCst && "Compares not folded above?");
switch (LHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ: // (X == 13 & X == 15) -> false
case Instruction::SetGT: // (X == 13 & X > 15) -> false
return ReplaceInstUsesWith(I, ConstantBool::False);
case Instruction::SetNE: // (X == 13 & X != 15) -> X == 13
case Instruction::SetLT: // (X == 13 & X < 15) -> X == 13
return ReplaceInstUsesWith(I, LHS);
}
case Instruction::SetNE:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetLT:
if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
break; // (X != 13 & X < 15) -> no change
case Instruction::SetEQ: // (X != 13 & X == 15) -> X == 15
case Instruction::SetGT: // (X != 13 & X > 15) -> X > 15
return ReplaceInstUsesWith(I, RHS);
case Instruction::SetNE:
if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
LHSVal->getName()+".off");
InsertNewInstBefore(Add, I);
const Type *UnsType = Add->getType()->getUnsignedVersion();
Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
AddCST = ConstantExpr::getCast(AddCST, UnsType);
return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
}
break; // (X != 13 & X != 15) -> no change
}
break;
case Instruction::SetLT:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ: // (X < 13 & X == 15) -> false
case Instruction::SetGT: // (X < 13 & X > 15) -> false
return ReplaceInstUsesWith(I, ConstantBool::False);
case Instruction::SetNE: // (X < 13 & X != 15) -> X < 13
case Instruction::SetLT: // (X < 13 & X < 15) -> X < 13
return ReplaceInstUsesWith(I, LHS);
}
case Instruction::SetGT:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ: // (X > 13 & X == 15) -> X > 13
return ReplaceInstUsesWith(I, LHS);
case Instruction::SetGT: // (X > 13 & X > 15) -> X > 15
return ReplaceInstUsesWith(I, RHS);
case Instruction::SetNE:
if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
break; // (X > 13 & X != 15) -> no change
case Instruction::SetLT: // (X > 13 & X < 15) -> (X-14) <u 1
return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
}
}
}
}
return Changed ? &I : 0;
}
Instruction *InstCombiner::visitOr(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op1))
return ReplaceInstUsesWith(I, // X | undef -> -1
ConstantIntegral::getAllOnesValue(I.getType()));
// or X, X = X or X, 0 == X
if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
return ReplaceInstUsesWith(I, Op0);
// or X, -1 == -1
if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
if (RHS->isAllOnesValue())
return ReplaceInstUsesWith(I, Op1);
ConstantInt *C1; Value *X;
// (X & C1) | C2 --> (X | C2) & (C1|C2)
if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
std::string Op0Name = Op0->getName(); Op0->setName("");
Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
InsertNewInstBefore(Or, I);
return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
}
// (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
std::string Op0Name = Op0->getName(); Op0->setName("");
Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
InsertNewInstBefore(Or, I);
return BinaryOperator::createXor(Or,
ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
}
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
// (A & C1)|(A & C2) == A & (C1|C2)
Value *A, *B; ConstantInt *C1, *C2;
if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) && A == B)
return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
if (A == Op1) // ~A | A == -1
return ReplaceInstUsesWith(I,
ConstantIntegral::getAllOnesValue(I.getType()));
} else {
A = 0;
}
if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
if (Op0 == B)
return ReplaceInstUsesWith(I,
ConstantIntegral::getAllOnesValue(I.getType()));
// (~A | ~B) == (~(A & B)) - De Morgan's Law
if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
I.getName()+".demorgan"), I);
return BinaryOperator::createNot(And);
}
}
// (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
return R;
Value *LHSVal, *RHSVal;
ConstantInt *LHSCst, *RHSCst;
Instruction::BinaryOps LHSCC, RHSCC;
if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
if (LHSVal == RHSVal && // Found (X setcc C1) | (X setcc C2)
// Set[GL]E X, CST is folded to Set[GL]T elsewhere.
LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
// Ensure that the larger constant is on the RHS.
Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
SetCondInst *LHS = cast<SetCondInst>(Op0);
if (cast<ConstantBool>(Cmp)->getValue()) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
std::swap(LHSCC, RHSCC);
}
// At this point, we know we have have two setcc instructions
// comparing a value against two constants and or'ing the result
// together. Because of the above check, we know that we only have
// SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
// FoldSetCCLogical check above), that the two constants are not
// equal.
assert(LHSCst != RHSCst && "Compares not folded above?");
switch (LHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ:
if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
LHSVal->getName()+".off");
InsertNewInstBefore(Add, I);
const Type *UnsType = Add->getType()->getUnsignedVersion();
Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
AddCST = ConstantExpr::getCast(AddCST, UnsType);
return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
}
break; // (X == 13 | X == 15) -> no change
case Instruction::SetGT:
if (LHSCst == SubOne(RHSCst)) // (X == 13 | X > 14) -> X > 13
return new SetCondInst(Instruction::SetGT, LHSVal, LHSCst);
break; // (X == 13 | X > 15) -> no change
case Instruction::SetNE: // (X == 13 | X != 15) -> X != 15
case Instruction::SetLT: // (X == 13 | X < 15) -> X < 15
return ReplaceInstUsesWith(I, RHS);
}
break;
case Instruction::SetNE:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetLT: // (X != 13 | X < 15) -> X < 15
return ReplaceInstUsesWith(I, RHS);
case Instruction::SetEQ: // (X != 13 | X == 15) -> X != 13
case Instruction::SetGT: // (X != 13 | X > 15) -> X != 13
return ReplaceInstUsesWith(I, LHS);
case Instruction::SetNE: // (X != 13 | X != 15) -> true
return ReplaceInstUsesWith(I, ConstantBool::True);
}
break;
case Instruction::SetLT:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ: // (X < 13 | X == 14) -> no change
break;
case Instruction::SetGT: // (X < 13 | X > 15) -> (X-13) > 2
return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
case Instruction::SetNE: // (X < 13 | X != 15) -> X != 15
case Instruction::SetLT: // (X < 13 | X < 15) -> X < 15
return ReplaceInstUsesWith(I, RHS);
}
break;
case Instruction::SetGT:
switch (RHSCC) {
default: assert(0 && "Unknown integer condition code!");
case Instruction::SetEQ: // (X > 13 | X == 15) -> X > 13
case Instruction::SetGT: // (X > 13 | X > 15) -> X > 13
return ReplaceInstUsesWith(I, LHS);
case Instruction::SetNE: // (X > 13 | X != 15) -> true
case Instruction::SetLT: // (X > 13 | X < 15) -> true
return ReplaceInstUsesWith(I, ConstantBool::True);
}
}
}
}
return Changed ? &I : 0;
}
// XorSelf - Implements: X ^ X --> 0
struct XorSelf {
Value *RHS;
XorSelf(Value *rhs) : RHS(rhs) {}
bool shouldApply(Value *LHS) const { return LHS == RHS; }
Instruction *apply(BinaryOperator &Xor) const {
return &Xor;
}
};
Instruction *InstCombiner::visitXor(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op1))
return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
// xor X, X = 0, even if X is nested in a sequence of Xor's.
if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
assert(Result == &I && "AssociativeOpt didn't work?");
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
// xor X, 0 == X
if (RHS->isNullValue())
return ReplaceInstUsesWith(I, Op0);
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
// xor (setcc A, B), true = not (setcc A, B) = setncc A, B
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
if (RHS == ConstantBool::True && SCI->hasOneUse())
return new SetCondInst(SCI->getInverseCondition(),
SCI->getOperand(0), SCI->getOperand(1));
// ~(c-X) == X-c-1 == X+(-c-1)
if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
ConstantInt::get(I.getType(), 1));
return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
}
// ~(~X & Y) --> (X | ~Y)
if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
Instruction *NotY =
BinaryOperator::createNot(Op0I->getOperand(1),
Op0I->getOperand(1)->getName()+".not");
InsertNewInstBefore(NotY, I);
return BinaryOperator::createOr(Op0NotVal, NotY);
}
}
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
switch (Op0I->getOpcode()) {
case Instruction::Add:
// ~(X-c) --> (-c-1)-X
if (RHS->isAllOnesValue()) {
Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
return BinaryOperator::createSub(
ConstantExpr::getSub(NegOp0CI,
ConstantInt::get(I.getType(), 1)),
Op0I->getOperand(0));
}
break;
case Instruction::And:
// (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
if (ConstantExpr::getAnd(RHS, Op0CI)->isNullValue())
return BinaryOperator::createOr(Op0, RHS);
break;
case Instruction::Or:
// (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
if (ConstantExpr::getAnd(RHS, Op0CI) == RHS)
return BinaryOperator::createAnd(Op0, ConstantExpr::getNot(RHS));
break;
default: break;
}
}
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
}
if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
if (X == Op1)
return ReplaceInstUsesWith(I,
ConstantIntegral::getAllOnesValue(I.getType()));
if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
if (X == Op0)
return ReplaceInstUsesWith(I,
ConstantIntegral::getAllOnesValue(I.getType()));
if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
if (Op1I->getOpcode() == Instruction::Or) {
if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B
cast<BinaryOperator>(Op1I)->swapOperands();
I.swapOperands();
std::swap(Op0, Op1);
} else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B
I.swapOperands();
std::swap(Op0, Op1);
}
} else if (Op1I->getOpcode() == Instruction::Xor) {
if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B
return ReplaceInstUsesWith(I, Op1I->getOperand(1));
else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B
return ReplaceInstUsesWith(I, Op1I->getOperand(0));
}
if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
cast<BinaryOperator>(Op0I)->swapOperands();
if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
Op1->getName()+".not"), I);
return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
}
} else if (Op0I->getOpcode() == Instruction::Xor) {
if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B
return ReplaceInstUsesWith(I, Op0I->getOperand(1));
else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B
return ReplaceInstUsesWith(I, Op0I->getOperand(0));
}
// (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Value *A, *B; ConstantInt *C1, *C2;
if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) &&
ConstantExpr::getAnd(C1, C2)->isNullValue())
return BinaryOperator::createOr(Op0, Op1);
// (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
return R;
return Changed ? &I : 0;
}
/// MulWithOverflow - Compute Result = In1*In2, returning true if the result
/// overflowed for this type.
static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
ConstantInt *In2) {
Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
}
static bool isPositive(ConstantInt *C) {
return cast<ConstantSInt>(C)->getValue() >= 0;
}
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
/// overflowed for this type.
static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
ConstantInt *In2) {
Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
if (In1->getType()->isUnsigned())
return cast<ConstantUInt>(Result)->getValue() <
cast<ConstantUInt>(In1)->getValue();
if (isPositive(In1) != isPositive(In2))
return false;
if (isPositive(In1))
return cast<ConstantSInt>(Result)->getValue() <
cast<ConstantSInt>(In1)->getValue();
return cast<ConstantSInt>(Result)->getValue() >
cast<ConstantSInt>(In1)->getValue();
}
Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
const Type *Ty = Op0->getType();
// setcc X, X
if (Op0 == Op1)
return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
if (isa<UndefValue>(Op1)) // X setcc undef -> undef
return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
// setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
// addresses never equal each other! We already know that Op0 != Op1.
if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
isa<ConstantPointerNull>(Op0)) &&
(isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
isa<ConstantPointerNull>(Op1)))
return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
// setcc's with boolean values can always be turned into bitwise operations
if (Ty == Type::BoolTy) {
switch (I.getOpcode()) {
default: assert(0 && "Invalid setcc instruction!");
case Instruction::SetEQ: { // seteq bool %A, %B -> ~(A^B)
Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
InsertNewInstBefore(Xor, I);
return BinaryOperator::createNot(Xor);
}
case Instruction::SetNE:
return BinaryOperator::createXor(Op0, Op1);
case Instruction::SetGT:
std::swap(Op0, Op1); // Change setgt -> setlt
// FALL THROUGH
case Instruction::SetLT: { // setlt bool A, B -> ~X & Y
Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
InsertNewInstBefore(Not, I);
return BinaryOperator::createAnd(Not, Op1);
}
case Instruction::SetGE:
std::swap(Op0, Op1); // Change setge -> setle
// FALL THROUGH
case Instruction::SetLE: { // setle bool %A, %B -> ~A | B
Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
InsertNewInstBefore(Not, I);
return BinaryOperator::createOr(Not, Op1);
}
}
}
// See if we are doing a comparison between a constant and an instruction that
// can be folded into the comparison.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
// Check to see if we are comparing against the minimum or maximum value...
if (CI->isMinValue()) {
if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE
return ReplaceInstUsesWith(I, ConstantBool::False);
if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE
return ReplaceInstUsesWith(I, ConstantBool::True);
if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN
return BinaryOperator::createSetEQ(Op0, Op1);
if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN
return BinaryOperator::createSetNE(Op0, Op1);
} else if (CI->isMaxValue()) {
if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE
return ReplaceInstUsesWith(I, ConstantBool::False);
if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE
return ReplaceInstUsesWith(I, ConstantBool::True);
if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX
return BinaryOperator::createSetEQ(Op0, Op1);
if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX
return BinaryOperator::createSetNE(Op0, Op1);
// Comparing against a value really close to min or max?
} else if (isMinValuePlusOne(CI)) {
if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN
return BinaryOperator::createSetEQ(Op0, SubOne(CI));
if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN
return BinaryOperator::createSetNE(Op0, SubOne(CI));
} else if (isMaxValueMinusOne(CI)) {
if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX
return BinaryOperator::createSetEQ(Op0, AddOne(CI));
if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX
return BinaryOperator::createSetNE(Op0, AddOne(CI));
}
// If we still have a setle or setge instruction, turn it into the
// appropriate setlt or setgt instruction. Since the border cases have
// already been handled above, this requires little checking.
//
if (I.getOpcode() == Instruction::SetLE)
return BinaryOperator::createSetLT(Op0, AddOne(CI));
if (I.getOpcode() == Instruction::SetGE)
return BinaryOperator::createSetGT(Op0, SubOne(CI));
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
switch (LHSI->getOpcode()) {
case Instruction::PHI:
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
case Instruction::And:
if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
LHSI->getOperand(0)->hasOneUse()) {
// If this is: (X >> C1) & C2 != C3 (where any shift and any compare
// could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
// happens a LOT in code produced by the C front-end, for bitfield
// access.
ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
ConstantUInt *ShAmt;
ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
const Type *Ty = LHSI->getType();
// We can fold this as long as we can't shift unknown bits
// into the mask. This can only happen with signed shift
// rights, as they sign-extend.
if (ShAmt) {
bool CanFold = Shift->getOpcode() != Instruction::Shr ||
Shift->getType()->isUnsigned();
if (!CanFold) {
// To test for the bad case of the signed shr, see if any
// of the bits shifted in could be tested after the mask.
Constant *OShAmt = ConstantUInt::get(Type::UByteTy,
Ty->getPrimitiveSize()*8-ShAmt->getValue());
Constant *ShVal =
ConstantExpr::getShl(ConstantInt::getAllOnesValue(Ty), OShAmt);
if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
CanFold = true;
}
if (CanFold) {
Constant *NewCst;
if (Shift->getOpcode() == Instruction::Shl)
NewCst = ConstantExpr::getUShr(CI, ShAmt);
else
NewCst = ConstantExpr::getShl(CI, ShAmt);
// Check to see if we are shifting out any of the bits being
// compared.
if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
// If we shifted bits out, the fold is not going to work out.
// As a special case, check to see if this means that the
// result is always true or false now.
if (I.getOpcode() == Instruction::SetEQ)
return ReplaceInstUsesWith(I, ConstantBool::False);
if (I.getOpcode() == Instruction::SetNE)
return ReplaceInstUsesWith(I, ConstantBool::True);
} else {
I.setOperand(1, NewCst);
Constant *NewAndCST;
if (Shift->getOpcode() == Instruction::Shl)
NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
else
NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
LHSI->setOperand(1, NewAndCST);
LHSI->setOperand(0, Shift->getOperand(0));
WorkList.push_back(Shift); // Shift is dead.
AddUsesToWorkList(I);
return &I;
}
}
}
}
break;
case Instruction::Cast: { // (setcc (cast X to larger), CI)
const Type *SrcTy = LHSI->getOperand(0)->getType();
if (SrcTy->isIntegral() && LHSI->getType()->isIntegral()) {
unsigned SrcBits = SrcTy->getPrimitiveSize()*8;
if (SrcTy == Type::BoolTy) SrcBits = 1;
unsigned DestBits = LHSI->getType()->getPrimitiveSize()*8;
if (LHSI->getType() == Type::BoolTy) DestBits = 1;
if (SrcBits < DestBits &&
// FIXME: Reenable the code below for < and >. However, we have
// to handle the cases when the source of the cast and the dest of
// the cast have different signs. e.g:
// (cast sbyte %X to uint) >u 255U -> X <s (sbyte)0
(I.getOpcode() == Instruction::SetEQ ||
I.getOpcode() == Instruction::SetNE)) {
// Check to see if the comparison is always true or false.
Constant *NewCst = ConstantExpr::getCast(CI, SrcTy);
if (ConstantExpr::getCast(NewCst, LHSI->getType()) != CI) {
switch (I.getOpcode()) {
default: assert(0 && "unknown integer comparison");
#if 0
case Instruction::SetLT: {
Constant *Max = ConstantIntegral::getMaxValue(SrcTy);
Max = ConstantExpr::getCast(Max, LHSI->getType());
return ReplaceInstUsesWith(I, ConstantExpr::getSetLT(Max, CI));
}
case Instruction::SetGT: {
Constant *Min = ConstantIntegral::getMinValue(SrcTy);
Min = ConstantExpr::getCast(Min, LHSI->getType());
return ReplaceInstUsesWith(I, ConstantExpr::getSetGT(Min, CI));
}
#endif
case Instruction::SetEQ:
return ReplaceInstUsesWith(I, ConstantBool::False);
case Instruction::SetNE:
return ReplaceInstUsesWith(I, ConstantBool::True);
}
}
return new SetCondInst(I.getOpcode(), LHSI->getOperand(0), NewCst);
}
}
break;
}
case Instruction::Shl: // (setcc (shl X, ShAmt), CI)
if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
switch (I.getOpcode()) {
default: break;
case Instruction::SetEQ:
case Instruction::SetNE: {
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
Constant *Comp =
ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
if (Comp != CI) {// Comparing against a bit that we know is zero.
bool IsSetNE = I.getOpcode() == Instruction::SetNE;
Constant *Cst = ConstantBool::get(IsSetNE);
return ReplaceInstUsesWith(I, Cst);
}
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
unsigned ShAmtVal = ShAmt->getValue();
unsigned TypeBits = CI->getType()->getPrimitiveSize()*8;
uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
Constant *Mask;
if (CI->getType()->isUnsigned()) {
Mask = ConstantUInt::get(CI->getType(), Val);
} else if (ShAmtVal != 0) {
Mask = ConstantSInt::get(CI->getType(), Val);
} else {
Mask = ConstantInt::getAllOnesValue(CI->getType());
}
Instruction *AndI =
BinaryOperator::createAnd(LHSI->getOperand(0),
Mask, LHSI->getName()+".mask");
Value *And = InsertNewInstBefore(AndI, I);
return new SetCondInst(I.getOpcode(), And,
ConstantExpr::getUShr(CI, ShAmt));
}
}
}
}
break;
case Instruction::Shr: // (setcc (shr X, ShAmt), CI)
if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
switch (I.getOpcode()) {
default: break;
case Instruction::SetEQ:
case Instruction::SetNE: {
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
Constant *Comp =
ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
if (Comp != CI) {// Comparing against a bit that we know is zero.
bool IsSetNE = I.getOpcode() == Instruction::SetNE;
Constant *Cst = ConstantBool::get(IsSetNE);
return ReplaceInstUsesWith(I, Cst);
}
if (LHSI->hasOneUse() || CI->isNullValue()) {
unsigned ShAmtVal = ShAmt->getValue();
// Otherwise strength reduce the shift into an and.
uint64_t Val = ~0ULL; // All ones.
Val <<= ShAmtVal; // Shift over to the right spot.
Constant *Mask;
if (CI->getType()->isUnsigned()) {
unsigned TypeBits = CI->getType()->getPrimitiveSize()*8;
Val &= (1ULL << TypeBits)-1;
Mask = ConstantUInt::get(CI->getType(), Val);
} else {
Mask = ConstantSInt::get(CI->getType(), Val);
}
Instruction *AndI =
BinaryOperator::createAnd(LHSI->getOperand(0),
Mask, LHSI->getName()+".mask");
Value *And = InsertNewInstBefore(AndI, I);
return new SetCondInst(I.getOpcode(), And,
ConstantExpr::getShl(CI, ShAmt));
}
break;
}
}
}
break;
case Instruction::Div:
// Fold: (div X, C1) op C2 -> range check
if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
// Fold this div into the comparison, producing a range check.
// Determine, based on the divide type, what the range is being
// checked. If there is an overflow on the low or high side, remember
// it, otherwise compute the range [low, hi) bounding the new value.
bool LoOverflow = false, HiOverflow = 0;
ConstantInt *LoBound = 0, *HiBound = 0;
ConstantInt *Prod;
bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
Instruction::BinaryOps Opcode = I.getOpcode();
if (DivRHS->isNullValue()) { // Don't hack on divide by zeros.
} else if (LHSI->getType()->isUnsigned()) { // udiv
LoBound = Prod;
LoOverflow = ProdOV;
HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
} else if (isPositive(DivRHS)) { // Divisor is > 0.
if (CI->isNullValue()) { // (X / pos) op 0
// Can't overflow.
LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
HiBound = DivRHS;
} else if (isPositive(CI)) { // (X / pos) op pos
LoBound = Prod;
LoOverflow = ProdOV;
HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
} else { // (X / pos) op neg
Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
LoOverflow = AddWithOverflow(LoBound, Prod,
cast<ConstantInt>(DivRHSH));
HiBound = Prod;
HiOverflow = ProdOV;
}
} else { // Divisor is < 0.
if (CI->isNullValue()) { // (X / neg) op 0
LoBound = AddOne(DivRHS);
HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
} else if (isPositive(CI)) { // (X / neg) op pos
HiOverflow = LoOverflow = ProdOV;
if (!LoOverflow)
LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
HiBound = AddOne(Prod);
} else { // (X / neg) op neg
LoBound = Prod;
LoOverflow = HiOverflow = ProdOV;
HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
}
// Dividing by a negate swaps the condition.
Opcode = SetCondInst::getSwappedCondition(Opcode);
}
if (LoBound) {
Value *X = LHSI->getOperand(0);
switch (Opcode) {
default: assert(0 && "Unhandled setcc opcode!");
case Instruction::SetEQ:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(I, ConstantBool::False);
else if (HiOverflow)
return new SetCondInst(Instruction::SetGE, X, LoBound);
else if (LoOverflow)
return new SetCondInst(Instruction::SetLT, X, HiBound);
else
return InsertRangeTest(X, LoBound, HiBound, true, I);
case Instruction::SetNE:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(I, ConstantBool::True);
else if (HiOverflow)
return new SetCondInst(Instruction::SetLT, X, LoBound);
else if (LoOverflow)
return new SetCondInst(Instruction::SetGE, X, HiBound);
else
return InsertRangeTest(X, LoBound, HiBound, false, I);
case Instruction::SetLT:
if (LoOverflow)
return ReplaceInstUsesWith(I, ConstantBool::False);
return new SetCondInst(Instruction::SetLT, X, LoBound);
case Instruction::SetGT:
if (HiOverflow)
return ReplaceInstUsesWith(I, ConstantBool::False);
return new SetCondInst(Instruction::SetGE, X, HiBound);
}
}
}
break;
case Instruction::Select:
// If either operand of the select is a constant, we can fold the
// comparison into the select arms, which will cause one to be
// constant folded and the select turned into a bitwise or.
Value *Op1 = 0, *Op2 = 0;
if (LHSI->hasOneUse()) {
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
// Fold the known value into the constant operand.
Op1 = ConstantExpr::get(I.getOpcode(), C, CI);
// Insert a new SetCC of the other select operand.
Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
LHSI->getOperand(2), CI,
I.getName()), I);
} else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
// Fold the known value into the constant operand.
Op2 = ConstantExpr::get(I.getOpcode(), C, CI);
// Insert a new SetCC of the other select operand.
Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
LHSI->getOperand(1), CI,
I.getName()), I);
}
}
if (Op1)
return new SelectInst(LHSI->getOperand(0), Op1, Op2);
break;
}
// Simplify seteq and setne instructions...
if (I.getOpcode() == Instruction::SetEQ ||
I.getOpcode() == Instruction::SetNE) {
bool isSetNE = I.getOpcode() == Instruction::SetNE;
// If the first operand is (and|or|xor) with a constant, and the second
// operand is a constant, simplify a bit.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
switch (BO->getOpcode()) {
case Instruction::Rem:
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
BO->hasOneUse() &&
cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1)
if (unsigned L2 =
Log2(cast<ConstantSInt>(BO->getOperand(1))->getValue())) {
const Type *UTy = BO->getType()->getUnsignedVersion();
Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
UTy, "tmp"), I);
Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
RHSCst, BO->getName()), I);
return BinaryOperator::create(I.getOpcode(), NewRem,
Constant::getNullValue(UTy));
}
break;
case Instruction::Add:
// Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (BO->hasOneUse())
return new SetCondInst(I.getOpcode(), BO->getOperand(0),
ConstantExpr::getSub(CI, BOp1C));
} else if (CI->isNullValue()) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
if (Value *NegVal = dyn_castNegVal(BOp1))
return new SetCondInst(I.getOpcode(), BOp0, NegVal);
else if (Value *NegVal = dyn_castNegVal(BOp0))
return new SetCondInst(I.getOpcode(), NegVal, BOp1);
else if (BO->hasOneUse()) {
Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
BO->setName("");
InsertNewInstBefore(Neg, I);
return new SetCondInst(I.getOpcode(), BOp0, Neg);
}
}
break;
case Instruction::Xor:
// For the xor case, we can xor two constants together, eliminating
// the explicit xor.
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
ConstantExpr::getXor(CI, BOC));
// FALLTHROUGH
case Instruction::Sub:
// Replace (([sub|xor] A, B) != 0) with (A != B)
if (CI->isNullValue())
return new SetCondInst(I.getOpcode(), BO->getOperand(0),
BO->getOperand(1));
break;
case Instruction::Or:
// If bits are being or'd in that are not present in the constant we
// are comparing against, then the comparison could never succeed!
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Constant *NotCI = ConstantExpr::getNot(CI);
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
}
break;
case Instruction::And:
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// If bits are being compared against that are and'd out, then the
// comparison can never succeed!
if (!ConstantExpr::getAnd(CI,
ConstantExpr::getNot(BOC))->isNullValue())
return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (CI == BOC && isOneBitSet(CI))
return new SetCondInst(isSetNE ? Instruction::SetEQ :
Instruction::SetNE, Op0,
Constant::getNullValue(CI->getType()));
// Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
// to be a signed value as appropriate.
if (isSignBit(BOC)) {
Value *X = BO->getOperand(0);
// If 'X' is not signed, insert a cast now...
if (!BOC->getType()->isSigned()) {
const Type *DestTy = BOC->getType()->getSignedVersion();
X = InsertCastBefore(X, DestTy, I);
}
return new SetCondInst(isSetNE ? Instruction::SetLT :
Instruction::SetGE, X,
Constant::getNullValue(X->getType()));
}
// ((X & ~7) == 0) --> X < 8
if (CI->isNullValue() && isHighOnes(BOC)) {
Value *X = BO->getOperand(0);
Constant *NegX = ConstantExpr::getNeg(BOC);
// If 'X' is signed, insert a cast now.
if (NegX->getType()->isSigned()) {
const Type *DestTy = NegX->getType()->getUnsignedVersion();
X = InsertCastBefore(X, DestTy, I);
NegX = ConstantExpr::getCast(NegX, DestTy);
}
return new SetCondInst(isSetNE ? Instruction::SetGE :
Instruction::SetLT, X, NegX);
}
}
default: break;
}
}
} else { // Not a SetEQ/SetNE
// If the LHS is a cast from an integral value of the same size,
if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
Value *CastOp = Cast->getOperand(0);
const Type *SrcTy = CastOp->getType();
unsigned SrcTySize = SrcTy->getPrimitiveSize();
if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
SrcTySize == Cast->getType()->getPrimitiveSize()) {
assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) &&
"Source and destination signednesses should differ!");
if (Cast->getType()->isSigned()) {
// If this is a signed comparison, check for comparisons in the
// vicinity of zero.
if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
// X < 0 => x > 127
return BinaryOperator::createSetGT(CastOp,
ConstantUInt::get(SrcTy, (1ULL << (SrcTySize*8-1))-1));
else if (I.getOpcode() == Instruction::SetGT &&
cast<ConstantSInt>(CI)->getValue() == -1)
// X > -1 => x < 128
return BinaryOperator::createSetLT(CastOp,
ConstantUInt::get(SrcTy, 1ULL << (SrcTySize*8-1)));
} else {
ConstantUInt *CUI = cast<ConstantUInt>(CI);
if (I.getOpcode() == Instruction::SetLT &&
CUI->getValue() == 1ULL << (SrcTySize*8-1))
// X < 128 => X > -1
return BinaryOperator::createSetGT(CastOp,
ConstantSInt::get(SrcTy, -1));
else if (I.getOpcode() == Instruction::SetGT &&
CUI->getValue() == (1ULL << (SrcTySize*8-1))-1)
// X > 127 => X < 0
return BinaryOperator::createSetLT(CastOp,
Constant::getNullValue(SrcTy));
}
}
}
}
}
// Test to see if the operands of the setcc are casted versions of other
// values. If the cast can be stripped off both arguments, we do so now.
if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
Value *CastOp0 = CI->getOperand(0);
if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
(isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
(I.getOpcode() == Instruction::SetEQ ||
I.getOpcode() == Instruction::SetNE)) {
// We keep moving the cast from the left operand over to the right
// operand, where it can often be eliminated completely.
Op0 = CastOp0;
// If operand #1 is a cast instruction, see if we can eliminate it as
// well.
if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
Op0->getType()))
Op1 = CI2->getOperand(0);
// If Op1 is a constant, we can fold the cast into the constant.
if (Op1->getType() != Op0->getType())
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
} else {
// Otherwise, cast the RHS right before the setcc
Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
InsertNewInstBefore(cast<Instruction>(Op1), I);
}
return BinaryOperator::create(I.getOpcode(), Op0, Op1);
}
// Handle the special case of: setcc (cast bool to X), <cst>
// This comes up when you have code like
// int X = A < B;
// if (X) ...
// For generality, we handle any zero-extension of any operand comparison
// with a constant.
if (ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(Op1)) {
const Type *SrcTy = CastOp0->getType();
const Type *DestTy = Op0->getType();
if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
(SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) {
// Ok, we have an expansion of operand 0 into a new type. Get the
// constant value, masink off bits which are not set in the RHS. These
// could be set if the destination value is signed.
uint64_t ConstVal = ConstantRHS->getRawValue();
ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1;
// If the constant we are comparing it with has high bits set, which
// don't exist in the original value, the values could never be equal,
// because the source would be zero extended.
unsigned SrcBits =
SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8;
bool HasSignBit = ConstVal & (1ULL << (DestTy->getPrimitiveSize()*8-1));
if (ConstVal & ~((1ULL << SrcBits)-1)) {
switch (I.getOpcode()) {
default: assert(0 && "Unknown comparison type!");
case Instruction::SetEQ:
return ReplaceInstUsesWith(I, ConstantBool::False);
case Instruction::SetNE:
return ReplaceInstUsesWith(I, ConstantBool::True);
case Instruction::SetLT:
case Instruction::SetLE:
if (DestTy->isSigned() && HasSignBit)
return ReplaceInstUsesWith(I, ConstantBool::False);
return ReplaceInstUsesWith(I, ConstantBool::True);
case Instruction::SetGT:
case Instruction::SetGE:
if (DestTy->isSigned() && HasSignBit)
return ReplaceInstUsesWith(I, ConstantBool::True);
return ReplaceInstUsesWith(I, ConstantBool::False);
}
}
// Otherwise, we can replace the setcc with a setcc of the smaller
// operand value.
Op1 = ConstantExpr::getCast(cast<Constant>(Op1), SrcTy);
return BinaryOperator::create(I.getOpcode(), CastOp0, Op1);
}
}
}
return Changed ? &I : 0;
}
Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
assert(I.getOperand(1)->getType() == Type::UByteTy);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
bool isLeftShift = I.getOpcode() == Instruction::Shl;
// shl X, 0 == X and shr X, 0 == X
// shl 0, X == 0 and shr 0, X == 0
if (Op1 == Constant::getNullValue(Type::UByteTy) ||
Op0 == Constant::getNullValue(Op0->getType()))
return ReplaceInstUsesWith(I, Op0);
if (isa<UndefValue>(Op0)) { // undef >>s X -> undef
if (!isLeftShift && I.getType()->isSigned())
return ReplaceInstUsesWith(I, Op0);
else // undef << X -> 0 AND undef >>u X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
if (isa<UndefValue>(Op1)) {
if (isLeftShift || I.getType()->isUnsigned())
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
else
return ReplaceInstUsesWith(I, Op0); // X >>s undef -> X
}
// shr int -1, X = -1 (for any arithmetic shift rights of ~0)
if (!isLeftShift)
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
if (CSI->isAllOnesValue())
return ReplaceInstUsesWith(I, CSI);
// Try to fold constant and into select arguments.
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
// shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
// of a signed value.
//
unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
if (CUI->getValue() >= TypeBits) {
if (!Op0->getType()->isSigned() || isLeftShift)
return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
else {
I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
return &I;
}
}
// ((X*C1) << C2) == (X * (C1 << C2))
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
if (BO->getOpcode() == Instruction::Mul && isLeftShift)
if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
return BinaryOperator::createMul(BO->getOperand(0),
ConstantExpr::getShl(BOOp, CUI));
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
return R;
if (isa<PHINode>(Op0))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
// If the operand is an bitwise operator with a constant RHS, and the
// shift is the only use, we can pull it out of the shift.
if (Op0->hasOneUse())
if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
bool isValid = true; // Valid only for And, Or, Xor
bool highBitSet = false; // Transform if high bit of constant set?
switch (Op0BO->getOpcode()) {
default: isValid = false; break; // Do not perform transform!
case Instruction::Add:
isValid = isLeftShift;
break;
case Instruction::Or:
case Instruction::Xor:
highBitSet = false;
break;
case Instruction::And:
highBitSet = true;
break;
}
// If this is a signed shift right, and the high bit is modified
// by the logical operation, do not perform the transformation.
// The highBitSet boolean indicates the value of the high bit of
// the constant which would cause it to be modified for this
// operation.
//
if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
uint64_t Val = Op0C->getRawValue();
isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
}
if (isValid) {
Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, CUI);
Instruction *NewShift =
new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
Op0BO->getName());
Op0BO->setName("");
InsertNewInstBefore(NewShift, I);
return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
NewRHS);
}
}
// If this is a shift of a shift, see if we can fold the two together...
if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
if (ConstantUInt *ShiftAmt1C =
dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
unsigned ShiftAmt1 = ShiftAmt1C->getValue();
unsigned ShiftAmt2 = CUI->getValue();
// Check for (A << c1) << c2 and (A >> c1) >> c2
if (I.getOpcode() == Op0SI->getOpcode()) {
unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift...
if (Op0->getType()->getPrimitiveSize()*8 < Amt)
Amt = Op0->getType()->getPrimitiveSize()*8;
return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
ConstantUInt::get(Type::UByteTy, Amt));
}
// Check for (A << c1) >> c2 or visaversa. If we are dealing with
// signed types, we can only support the (A >> c1) << c2 configuration,
// because it can not turn an arbitrary bit of A into a sign bit.
if (I.getType()->isUnsigned() || isLeftShift) {
// Calculate bitmask for what gets shifted off the edge...
Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
if (isLeftShift)
C = ConstantExpr::getShl(C, ShiftAmt1C);
else
C = ConstantExpr::getShr(C, ShiftAmt1C);
Instruction *Mask =
BinaryOperator::createAnd(Op0SI->getOperand(0), C,
Op0SI->getOperand(0)->getName()+".mask");
InsertNewInstBefore(Mask, I);
// Figure out what flavor of shift we should use...
if (ShiftAmt1 == ShiftAmt2)
return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2
else if (ShiftAmt1 < ShiftAmt2) {
return new ShiftInst(I.getOpcode(), Mask,
ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
} else {
return new ShiftInst(Op0SI->getOpcode(), Mask,
ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
}
}
}
}
return 0;
}
enum CastType {
Noop = 0,
Truncate = 1,
Signext = 2,
Zeroext = 3
};
/// getCastType - In the future, we will split the cast instruction into these
/// various types. Until then, we have to do the analysis here.
static CastType getCastType(const Type *Src, const Type *Dest) {
assert(Src->isIntegral() && Dest->isIntegral() &&
"Only works on integral types!");
unsigned SrcSize = Src->getPrimitiveSize()*8;
if (Src == Type::BoolTy) SrcSize = 1;
unsigned DestSize = Dest->getPrimitiveSize()*8;
if (Dest == Type::BoolTy) DestSize = 1;
if (SrcSize == DestSize) return Noop;
if (SrcSize > DestSize) return Truncate;
if (Src->isSigned()) return Signext;
return Zeroext;
}
// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
// instruction.
//
static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
const Type *DstTy, TargetData *TD) {
// It is legal to eliminate the instruction if casting A->B->A if the sizes
// are identical and the bits don't get reinterpreted (for example
// int->float->int would not be allowed).
if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
return true;
// If we are casting between pointer and integer types, treat pointers as
// integers of the appropriate size for the code below.
if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
// Allow free casting and conversion of sizes as long as the sign doesn't
// change...
if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
CastType FirstCast = getCastType(SrcTy, MidTy);
CastType SecondCast = getCastType(MidTy, DstTy);
// Capture the effect of these two casts. If the result is a legal cast,
// the CastType is stored here, otherwise a special code is used.
static const unsigned CastResult[] = {
// First cast is noop
0, 1, 2, 3,
// First cast is a truncate
1, 1, 4, 4, // trunc->extend is not safe to eliminate
// First cast is a sign ext
2, 5, 2, 4, // signext->zeroext never ok
// First cast is a zero ext
3, 5, 3, 3,
};
unsigned Result = CastResult[FirstCast*4+SecondCast];
switch (Result) {
default: assert(0 && "Illegal table value!");
case 0:
case 1:
case 2:
case 3:
// FIXME: in the future, when LLVM has explicit sign/zeroextends and
// truncates, we could eliminate more casts.
return (unsigned)getCastType(SrcTy, DstTy) == Result;
case 4:
return false; // Not possible to eliminate this here.
case 5:
// Sign or zero extend followed by truncate is always ok if the result
// is a truncate or noop.
CastType ResultCast = getCastType(SrcTy, DstTy);
if (ResultCast == Noop || ResultCast == Truncate)
return true;
// Otherwise we are still growing the value, we are only safe if the
// result will match the sign/zeroextendness of the result.
return ResultCast == FirstCast;
}
}
return false;
}
static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
if (V->getType() == Ty || isa<Constant>(V)) return false;
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
TD))
return false;
return true;
}
/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
/// InsertBefore instruction. This is specialized a bit to avoid inserting
/// casts that are known to not do anything...
///
Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
Instruction *InsertBefore) {
if (V->getType() == DestTy) return V;
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getCast(C, DestTy);
CastInst *CI = new CastInst(V, DestTy, V->getName());
InsertNewInstBefore(CI, *InsertBefore);
return CI;
}
// CastInst simplification
//
Instruction *InstCombiner::visitCastInst(CastInst &CI) {
Value *Src = CI.getOperand(0);
// If the user is casting a value to the same type, eliminate this cast
// instruction...
if (CI.getType() == Src->getType())
return ReplaceInstUsesWith(CI, Src);
if (isa<UndefValue>(Src)) // cast undef -> undef
return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
// If casting the result of another cast instruction, try to eliminate this
// one!
//
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {
if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(),
CSrc->getType(), CI.getType(), TD)) {
// This instruction now refers directly to the cast's src operand. This
// has a good chance of making CSrc dead.
CI.setOperand(0, CSrc->getOperand(0));
return &CI;
}
// If this is an A->B->A cast, and we are dealing with integral types, try
// to convert this into a logical 'and' instruction.
//
if (CSrc->getOperand(0)->getType() == CI.getType() &&
CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
assert(CSrc->getType() != Type::ULongTy &&
"Cannot have type bigger than ulong!");
uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
return BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
}
}
// If this is a cast to bool, turn it into the appropriate setne instruction.
if (CI.getType() == Type::BoolTy)
return BinaryOperator::createSetNE(CI.getOperand(0),
Constant::getNullValue(CI.getOperand(0)->getType()));
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
//
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
bool AllZeroOperands = true;
for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
if (!isa<Constant>(GEP->getOperand(i)) ||
!cast<Constant>(GEP->getOperand(i))->isNullValue()) {
AllZeroOperands = false;
break;
}
if (AllZeroOperands) {
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
}
// If we are casting a malloc or alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
//
if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
if (AI->hasOneUse() && !AI->isArrayAllocation())
if (const PointerType *PTy = dyn_cast<PointerType>(CI.getType())) {
// Get the type really allocated and the type casted to...
const Type *AllocElTy = AI->getAllocatedType();
const Type *CastElTy = PTy->getElementType();
if (AllocElTy->isSized() && CastElTy->isSized()) {
unsigned AllocElTySize = TD->getTypeSize(AllocElTy);
unsigned CastElTySize = TD->getTypeSize(CastElTy);
// If the allocation is for an even multiple of the cast type size
if (CastElTySize && (AllocElTySize % CastElTySize == 0)) {
Value *Amt = ConstantUInt::get(Type::UIntTy,
AllocElTySize/CastElTySize);
std::string Name = AI->getName(); AI->setName("");
AllocationInst *New;
if (isa<MallocInst>(AI))
New = new MallocInst(CastElTy, Amt, Name);
else
New = new AllocaInst(CastElTy, Amt, Name);
InsertNewInstBefore(New, *AI);
return ReplaceInstUsesWith(CI, New);
}
}
}
if (isa<PHINode>(Src))
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
// If the source value is an instruction with only this use, we can attempt to
// propagate the cast into the instruction. Also, only handle integral types
// for now.
if (Instruction *SrcI = dyn_cast<Instruction>(Src))
if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
CI.getType()->isInteger()) { // Don't mess with casts to bool here
const Type *DestTy = CI.getType();
unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
unsigned DestBitSize = getTypeSizeInBits(DestTy);
Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
switch (SrcI->getOpcode()) {
case Instruction::Add:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// If we are discarding information, or just changing the sign, rewrite.
if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
// Don't insert two casts if they cannot be eliminated. We allow two
// casts to be inserted if the sizes are the same. This could only be
// converting signedness, which is a noop.
if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
!ValueRequiresCast(Op0, DestTy, TD)) {
Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
return BinaryOperator::create(cast<BinaryOperator>(SrcI)
->getOpcode(), Op0c, Op1c);
}
}
break;
case Instruction::Shl:
// Allow changing the sign of the source operand. Do not allow changing
// the size of the shift, UNLESS the shift amount is a constant. We
// mush not change variable sized shifts to a smaller size, because it
// is undefined to shift more bits out than exist in the value.
if (DestBitSize == SrcBitSize ||
(DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
return new ShiftInst(Instruction::Shl, Op0c, Op1);
}
break;
}
}
return 0;
}
/// GetSelectFoldableOperands - We want to turn code that looks like this:
/// %C = or %A, %B
/// %D = select %cond, %C, %A
/// into:
/// %C = select %cond, %B, 0
/// %D = or %A, %C
///
/// Assuming that the specified instruction is an operand to the select, return
/// a bitmask indicating which operands of this instruction are foldable if they
/// equal the other incoming value of the select.
///
static unsigned GetSelectFoldableOperands(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
return 3; // Can fold through either operand.
case Instruction::Sub: // Can only fold on the amount subtracted.
case Instruction::Shl: // Can only fold on the shift amount.
case Instruction::Shr:
return 1;
default:
return 0; // Cannot fold
}
}
/// GetSelectFoldableConstant - For the same transformation as the previous
/// function, return the identity constant that goes into the select.
static Constant *GetSelectFoldableConstant(Instruction *I) {
switch (I->getOpcode()) {
default: assert(0 && "This cannot happen!"); abort();
case Instruction::Add:
case Instruction::Sub:
case Instruction::Or:
case Instruction::Xor:
return Constant::getNullValue(I->getType());
case Instruction::Shl:
case Instruction::Shr:
return Constant::getNullValue(Type::UByteTy);
case Instruction::And:
return ConstantInt::getAllOnesValue(I->getType());
case Instruction::Mul:
return ConstantInt::get(I->getType(), 1);
}
}
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *CondVal = SI.getCondition();
Value *TrueVal = SI.getTrueValue();
Value *FalseVal = SI.getFalseValue();
// select true, X, Y -> X
// select false, X, Y -> Y
if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
if (C == ConstantBool::True)
return ReplaceInstUsesWith(SI, TrueVal);
else {
assert(C == ConstantBool::False);
return ReplaceInstUsesWith(SI, FalseVal);
}
// select C, X, X -> X
if (TrueVal == FalseVal)
return ReplaceInstUsesWith(SI, TrueVal);
if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
return ReplaceInstUsesWith(SI, FalseVal);
if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
return ReplaceInstUsesWith(SI, TrueVal);
if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
if (isa<Constant>(TrueVal))
return ReplaceInstUsesWith(SI, TrueVal);
else
return ReplaceInstUsesWith(SI, FalseVal);
}
if (SI.getType() == Type::BoolTy)
if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
if (C == ConstantBool::True) {
// Change: A = select B, true, C --> A = or B, C
return BinaryOperator::createOr(CondVal, FalseVal);
} else {
// Change: A = select B, false, C --> A = and !B, C
Value *NotCond =
InsertNewInstBefore(BinaryOperator::createNot(CondVal,
"not."+CondVal->getName()), SI);
return BinaryOperator::createAnd(NotCond, FalseVal);
}
} else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
if (C == ConstantBool::False) {
// Change: A = select B, C, false --> A = and B, C
return BinaryOperator::createAnd(CondVal, TrueVal);
} else {
// Change: A = select B, C, true --> A = or !B, C
Value *NotCond =
InsertNewInstBefore(BinaryOperator::createNot(CondVal,
"not."+CondVal->getName()), SI);
return BinaryOperator::createOr(NotCond, TrueVal);
}
}
// Selecting between two integer constants?
if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
// select C, 1, 0 -> cast C to int
if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
return new CastInst(CondVal, SI.getType());
} else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
// select C, 0, 1 -> cast !C to int
Value *NotCond =
InsertNewInstBefore(BinaryOperator::createNot(CondVal,
"not."+CondVal->getName()), SI);
return new CastInst(NotCond, SI.getType());
}
// If one of the constants is zero (we know they can't both be) and we
// have a setcc instruction with zero, and we have an 'and' with the
// non-constant value, eliminate this whole mess. This corresponds to
// cases like this: ((X & 27) ? 27 : 0)
if (TrueValC->isNullValue() || FalseValC->isNullValue())
if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
if ((IC->getOpcode() == Instruction::SetEQ ||
IC->getOpcode() == Instruction::SetNE) &&
isa<ConstantInt>(IC->getOperand(1)) &&
cast<Constant>(IC->getOperand(1))->isNullValue())
if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
if (ICA->getOpcode() == Instruction::And &&
isa<ConstantInt>(ICA->getOperand(1)) &&
(ICA->getOperand(1) == TrueValC ||
ICA->getOperand(1) == FalseValC) &&
isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
// Okay, now we know that everything is set up, we just don't
// know whether we have a setne or seteq and whether the true or
// false val is the zero.
bool ShouldNotVal = !TrueValC->isNullValue();
ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
Value *V = ICA;
if (ShouldNotVal)
V = InsertNewInstBefore(BinaryOperator::create(
Instruction::Xor, V, ICA->getOperand(1)), SI);
return ReplaceInstUsesWith(SI, V);
}
}
// See if we are selecting two values based on a comparison of the two values.
if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
// Transform (X == Y) ? X : Y -> Y
if (SCI->getOpcode() == Instruction::SetEQ)
return ReplaceInstUsesWith(SI, FalseVal);
// Transform (X != Y) ? X : Y -> X
if (SCI->getOpcode() == Instruction::SetNE)
return ReplaceInstUsesWith(SI, TrueVal);
// NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
} else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
// Transform (X == Y) ? Y : X -> X
if (SCI->getOpcode() == Instruction::SetEQ)
return ReplaceInstUsesWith(SI, FalseVal);
// Transform (X != Y) ? Y : X -> Y
if (SCI->getOpcode() == Instruction::SetNE)
return ReplaceInstUsesWith(SI, TrueVal);
// NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
}
}
// See if we can fold the select into one of our operands.
if (SI.getType()->isInteger()) {
// See the comment above GetSelectFoldableOperands for a description of the
// transformation we are doing here.
if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
!isa<Constant>(FalseVal))
if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
unsigned OpToFold = 0;
if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
OpToFold = 1;
} else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
OpToFold = 2;
}
if (OpToFold) {
Constant *C = GetSelectFoldableConstant(TVI);
std::string Name = TVI->getName(); TVI->setName("");
Instruction *NewSel =
new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
Name);
InsertNewInstBefore(NewSel, SI);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
else {
assert(0 && "Unknown instruction!!");
}
}
}
if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
!isa<Constant>(TrueVal))
if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
unsigned OpToFold = 0;
if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
OpToFold = 1;
} else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
OpToFold = 2;
}
if (OpToFold) {
Constant *C = GetSelectFoldableConstant(FVI);
std::string Name = FVI->getName(); FVI->setName("");
Instruction *NewSel =
new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
Name);
InsertNewInstBefore(NewSel, SI);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
else {
assert(0 && "Unknown instruction!!");
}
}
}
}
return 0;
}
// CallInst simplification
//
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Intrinsics cannot occur in an invoke, so handle them here instead of in
// visitCallSite.
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&CI)) {
bool Changed = false;
// memmove/cpy/set of zero bytes is a noop.
if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
// FIXME: Increase alignment here.
if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
if (CI->getRawValue() == 1) {
// Replace the instruction with just byte operations. We would
// transform other cases to loads/stores, but we don't know if
// alignment is sufficient.
}
}
// If we have a memmove and the source operation is a constant global,
// then the source and dest pointers can't alias, so we can change this
// into a call to memcpy.
if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI))
if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
if (GVSrc->isConstant()) {
Module *M = CI.getParent()->getParent()->getParent();
Function *MemCpy = M->getOrInsertFunction("llvm.memcpy",
CI.getCalledFunction()->getFunctionType());
CI.setOperand(0, MemCpy);
Changed = true;
}
if (Changed) return &CI;
}
return visitCallSite(&CI);
}
// InvokeInst simplification
//
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
return visitCallSite(&II);
}
// visitCallSite - Improvements for call and invoke instructions.
//
Instruction *InstCombiner::visitCallSite(CallSite CS) {
bool Changed = false;
// If the callee is a constexpr cast of a function, attempt to move the cast
// to the arguments of the call/invoke.
if (transformConstExprCastCall(CS)) return 0;
Value *Callee = CS.getCalledValue();
if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
// This instruction is not reachable, just remove it. We insert a store to
// undef so that we know that this code is not reachable, despite the fact
// that we can't modify the CFG here.
new StoreInst(ConstantBool::True,
UndefValue::get(PointerType::get(Type::BoolTy)),
CS.getInstruction());
if (!CS.getInstruction()->use_empty())
CS.getInstruction()->
replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
// Don't break the CFG, insert a dummy cond branch.
new BranchInst(II->getNormalDest(), II->getUnwindDest(),
ConstantBool::True, II);
}
return EraseInstFromFunction(*CS.getInstruction());
}
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
if (FTy->isVarArg()) {
// See if we can optimize any arguments passed through the varargs area of
// the call.
for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
E = CS.arg_end(); I != E; ++I)
if (CastInst *CI = dyn_cast<CastInst>(*I)) {
// If this cast does not effect the value passed through the varargs
// area, we can eliminate the use of the cast.
Value *Op = CI->getOperand(0);
if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
*I = Op;
Changed = true;
}
}
}
return Changed ? CS.getInstruction() : 0;
}
// transformConstExprCastCall - If the callee is a constexpr cast of a function,
// attempt to move the cast to the arguments of the call/invoke.
//
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
return false;
Function *Callee = cast<Function>(CE->getOperand(0));
Instruction *Caller = CS.getInstruction();
// Okay, this is a cast from a function to a different type. Unless doing so
// would cause a type conversion of one of our arguments, change this call to
// be a direct call with arguments casted to the appropriate types.
//
const FunctionType *FT = Callee->getFunctionType();
const Type *OldRetTy = Caller->getType();
// Check to see if we are changing the return type...
if (OldRetTy != FT->getReturnType()) {
if (Callee->isExternal() &&
!OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
!Caller->use_empty())
return false; // Cannot transform this return value...
// If the callsite is an invoke instruction, and the return value is used by
// a PHI node in a successor, we cannot change the return type of the call
// because there is no place to put the cast instruction (without breaking
// the critical edge). Bail out in this case.
if (!Caller->use_empty())
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
UI != E; ++UI)
if (PHINode *PN = dyn_cast<PHINode>(*UI))
if (PN->getParent() == II->getNormalDest() ||
PN->getParent() == II->getUnwindDest())
return false;
}
unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
CallSite::arg_iterator AI = CS.arg_begin();
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
const Type *ParamTy = FT->getParamType(i);
bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
if (Callee->isExternal() && !isConvertible) return false;
}
if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
Callee->isExternal())
return false; // Do not delete arguments unless we have a function body...
// Okay, we decided that this is a safe thing to do: go ahead and start
// inserting cast instructions as necessary...
std::vector<Value*> Args;
Args.reserve(NumActualArgs);
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
const Type *ParamTy = FT->getParamType(i);
if ((*AI)->getType() == ParamTy) {
Args.push_back(*AI);
} else {
Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
*Caller));
}
}
// If the function takes more arguments than the call was taking, add them
// now...
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
Args.push_back(Constant::getNullValue(FT->getParamType(i)));
// If we are removing arguments to the function, emit an obnoxious warning...
if (FT->getNumParams() < NumActualArgs)
if (!FT->isVarArg()) {
std::cerr << "WARNING: While resolving call to function '"
<< Callee->getName() << "' arguments were dropped!\n";
} else {
// Add all of the arguments in their promoted form to the arg list...
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
const Type *PTy = getPromotedType((*AI)->getType());
if (PTy != (*AI)->getType()) {
// Must promote to pass through va_arg area!
Instruction *Cast = new CastInst(*AI, PTy, "tmp");
InsertNewInstBefore(Cast, *Caller);
Args.push_back(Cast);
} else {
Args.push_back(*AI);
}
}
}
if (FT->getReturnType() == Type::VoidTy)
Caller->setName(""); // Void type should not have a name...
Instruction *NC;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
Args, Caller->getName(), Caller);
} else {
NC = new CallInst(Callee, Args, Caller->getName(), Caller);
}
// Insert a cast of the return type as necessary...
Value *NV = NC;
if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
if (NV->getType() != Type::VoidTy) {
NV = NC = new CastInst(NC, Caller->getType(), "tmp");
// If this is an invoke instruction, we should insert it after the first
// non-phi, instruction in the normal successor block.
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
BasicBlock::iterator I = II->getNormalDest()->begin();
while (isa<PHINode>(I)) ++I;
InsertNewInstBefore(NC, *I);
} else {
// Otherwise, it's a call, just insert cast right after the call instr
InsertNewInstBefore(NC, *Caller);
}
AddUsersToWorkList(*Caller);
} else {
NV = UndefValue::get(Caller->getType());
}
}
if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
Caller->replaceAllUsesWith(NV);
Caller->getParent()->getInstList().erase(Caller);
removeFromWorkList(Caller);
return true;
}
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
// operator and they all are only used by the PHI, PHI together their
// inputs, and do the operation once, to the result of the PHI.
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
// Scan the instruction, looking for input operations that can be folded away.
// If all input operands to the phi are the same instruction (e.g. a cast from
// the same type or "+42") we can pull the operation through the PHI, reducing
// code size and simplifying code.
Constant *ConstantOp = 0;
const Type *CastSrcTy = 0;
if (isa<CastInst>(FirstInst)) {
CastSrcTy = FirstInst->getOperand(0)->getType();
} else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
// Can fold binop or shift if the RHS is a constant.
ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
if (ConstantOp == 0) return 0;
} else {
return 0; // Cannot fold this operation.
}
// Check to see if all arguments are the same operation.
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
return 0;
if (CastSrcTy) {
if (I->getOperand(0)->getType() != CastSrcTy)
return 0; // Cast operation must match.
} else if (I->getOperand(1) != ConstantOp) {
return 0;
}
}
// Okay, they are all the same operation. Create a new PHI node of the
// correct type, and PHI together all of the LHS's of the instructions.
PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
PN.getName()+".in");
NewPN->op_reserve(PN.getNumOperands());
Value *InVal = FirstInst->getOperand(0);
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
// Add all operands to the new PHI.
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
if (NewInVal != InVal)
InVal = 0;
NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
}
Value *PhiVal;
if (InVal) {
// The new PHI unions all of the same values together. This is really
// common, so we handle it intelligently here for compile-time speed.
PhiVal = InVal;
delete NewPN;
} else {
InsertNewInstBefore(NewPN, PN);
PhiVal = NewPN;
}
// Insert and return the new operation.
if (isa<CastInst>(FirstInst))
return new CastInst(PhiVal, PN.getType());
else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
else
return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
PhiVal, ConstantOp);
}
// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
if (Value *V = hasConstantValue(&PN)) {
// If V is an instruction, we have to be certain that it dominates PN.
// However, because we don't have dom info, we can't do a perfect job.
if (Instruction *I = dyn_cast<Instruction>(V)) {
// We know that the instruction dominates the PHI if there are no undef
// values coming in.
if (I->getParent() != &I->getParent()->getParent()->front() ||
isa<InvokeInst>(I))
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
if (isa<UndefValue>(PN.getIncomingValue(i))) {
V = 0;
break;
}
}
if (V)
return ReplaceInstUsesWith(PN, V);
}
// If the only user of this instruction is a cast instruction, and all of the
// incoming values are constants, change this PHI to merge together the casted
// constants.
if (PN.hasOneUse())
if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
if (CI->getType() != PN.getType()) { // noop casts will be folded
bool AllConstant = true;
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
if (!isa<Constant>(PN.getIncomingValue(i))) {
AllConstant = false;
break;
}
if (AllConstant) {
// Make a new PHI with all casted values.
PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
PN.getIncomingBlock(i));
}
// Update the cast instruction.
CI->setOperand(0, New);
WorkList.push_back(CI); // revisit the cast instruction to fold.
WorkList.push_back(New); // Make sure to revisit the new Phi
return &PN; // PN is now dead!
}
}
// If all PHI operands are the same operation, pull them through the PHI,
// reducing code size.
if (isa<Instruction>(PN.getIncomingValue(0)) &&
PN.getIncomingValue(0)->hasOneUse())
if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
return Result;
return 0;
}
static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
Instruction *InsertPoint,
InstCombiner *IC) {
unsigned PS = IC->getTargetData().getPointerSize();
const Type *VTy = V->getType();
if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
// We must insert a cast to ensure we sign-extend.
V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
V->getName()), *InsertPoint);
return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
*InsertPoint);
}
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Value *PtrOp = GEP.getOperand(0);
// Is it 'getelementptr %P, long 0' or 'getelementptr %P'
// If so, eliminate the noop.
if (GEP.getNumOperands() == 1)
return ReplaceInstUsesWith(GEP, PtrOp);
if (isa<UndefValue>(GEP.getOperand(0)))
return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
bool HasZeroPointerIndex = false;
if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
HasZeroPointerIndex = C->isNullValue();
if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
return ReplaceInstUsesWith(GEP, PtrOp);
// Eliminate unneeded casts for indices.
bool MadeChange = false;
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
if (isa<SequentialType>(*GTI)) {
if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
Value *Src = CI->getOperand(0);
const Type *SrcTy = Src->getType();
const Type *DestTy = CI->getType();
if (Src->getType()->isInteger()) {
if (SrcTy->getPrimitiveSize() == DestTy->getPrimitiveSize()) {
// We can always eliminate a cast from ulong or long to the other.
// We can always eliminate a cast from uint to int or the other on
// 32-bit pointer platforms.
if (DestTy->getPrimitiveSize() >= TD->getPointerSize()) {
MadeChange = true;
GEP.setOperand(i, Src);
}
} else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
SrcTy->getPrimitiveSize() == 4) {
// We can always eliminate a cast from int to [u]long. We can
// eliminate a cast from uint to [u]long iff the target is a 32-bit
// pointer target.
if (SrcTy->isSigned() ||
SrcTy->getPrimitiveSize() >= TD->getPointerSize()) {
MadeChange = true;
GEP.setOperand(i, Src);
}
}
}
}
// If we are using a wider index than needed for this platform, shrink it
// to what we need. If the incoming value needs a cast instruction,
// insert it. This explicit cast can make subsequent optimizations more
// obvious.
Value *Op = GEP.getOperand(i);
if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
if (Constant *C = dyn_cast<Constant>(Op)) {
GEP.setOperand(i, ConstantExpr::getCast(C,
TD->getIntPtrType()->getSignedVersion()));
MadeChange = true;
} else {
Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
Op->getName()), GEP);
GEP.setOperand(i, Op);
MadeChange = true;
}
// If this is a constant idx, make sure to canonicalize it to be a signed
// operand, otherwise CSE and other optimizations are pessimized.
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
GEP.setOperand(i, ConstantExpr::getCast(CUI,
CUI->getType()->getSignedVersion()));
MadeChange = true;
}
}
if (MadeChange) return &GEP;
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
//
std::vector<Value*> SrcGEPOperands;
if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(PtrOp)) {
SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PtrOp)) {
if (CE->getOpcode() == Instruction::GetElementPtr)
SrcGEPOperands.assign(CE->op_begin(), CE->op_end());
}
if (!SrcGEPOperands.empty()) {
// Note that if our source is a gep chain itself that we wait for that
// chain to be resolved before we perform this transformation. This
// avoids us creating a TON of code in some cases.
//
if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
return 0; // Wait until our source is folded to completion.
std::vector<Value *> Indices;
// Find out whether the last index in the source GEP is a sequential idx.
bool EndsWithSequential = false;
for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
EndsWithSequential = !isa<StructType>(*I);
// Can we combine the two pointer arithmetics offsets?
if (EndsWithSequential) {
// Replace: gep (gep %P, long B), long A, ...
// With: T = long A+B; gep %P, T, ...
//
Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
if (SO1 == Constant::getNullValue(SO1->getType())) {
Sum = GO1;
} else if (GO1 == Constant::getNullValue(GO1->getType())) {
Sum = SO1;
} else {
// If they aren't the same type, convert both to an integer of the
// target's pointer size.
if (SO1->getType() != GO1->getType()) {
if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
} else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
} else {
unsigned PS = TD->getPointerSize();
if (SO1->getType()->getPrimitiveSize() == PS) {
// Convert GO1 to SO1's type.
GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
} else if (GO1->getType()->getPrimitiveSize() == PS) {
// Convert SO1 to GO1's type.
SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
} else {
const Type *PT = TD->getIntPtrType();
SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
}
}
}
if (isa<Constant>(SO1) && isa<Constant>(GO1))
Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
else {
Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
InsertNewInstBefore(cast<Instruction>(Sum), GEP);
}
}
// Recycle the GEP we already have if possible.
if (SrcGEPOperands.size() == 2) {
GEP.setOperand(0, SrcGEPOperands[0]);
GEP.setOperand(1, Sum);
return &GEP;
} else {
Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
SrcGEPOperands.end()-1);
Indices.push_back(Sum);
Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
}
} else if (isa<Constant>(*GEP.idx_begin()) &&
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
SrcGEPOperands.size() != 1) {
// Otherwise we can do the fold if the first index of the GEP is a zero
Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
SrcGEPOperands.end());
Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
}
if (!Indices.empty())
return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
// GEP of global variable. If all of the indices for this GEP are
// constants, we can promote this to a constexpr instead of an instruction.
// Scan for nonconstants...
std::vector<Constant*> Indices;
User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
for (; I != E && isa<Constant>(*I); ++I)
Indices.push_back(cast<Constant>(*I));
if (I == E) { // If they are all constants...
Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
// Replace all uses of the GEP with the new constexpr...
return ReplaceInstUsesWith(GEP, CE);
}
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PtrOp)) {
if (CE->getOpcode() == Instruction::Cast) {
if (HasZeroPointerIndex) {
// transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
// into : GEP [10 x ubyte]* X, long 0, ...
//
// This occurs when the program declares an array extern like "int X[];"
//
Constant *X = CE->getOperand(0);
const PointerType *CPTy = cast<PointerType>(CE->getType());
if (const PointerType *XTy = dyn_cast<PointerType>(X->getType()))
if (const ArrayType *XATy =
dyn_cast<ArrayType>(XTy->getElementType()))
if (const ArrayType *CATy =
dyn_cast<ArrayType>(CPTy->getElementType()))
if (CATy->getElementType() == XATy->getElementType()) {
// At this point, we know that the cast source type is a pointer
// to an array of the same type as the destination pointer
// array. Because the array type is never stepped over (there
// is a leading zero) we can fold the cast into this GEP.
GEP.setOperand(0, X);
return &GEP;
}
}
}
}
return 0;
}
Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
// Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
if (AI.isArrayAllocation()) // Check C != 1
if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
AllocationInst *New = 0;
// Create and insert the replacement instruction...
if (isa<MallocInst>(AI))
New = new MallocInst(NewTy, 0, AI.getName());
else {
assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
New = new AllocaInst(NewTy, 0, AI.getName());
}
InsertNewInstBefore(New, AI);
// Scan to the end of the allocation instructions, to skip over a block of
// allocas if possible...
//
BasicBlock::iterator It = New;
while (isa<AllocationInst>(*It)) ++It;
// Now that I is pointing to the first non-allocation-inst in the block,
// insert our getelementptr instruction...
//
std::vector<Value*> Idx(2, Constant::getNullValue(Type::IntTy));
Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);
// Now make everything use the getelementptr instead of the original
// allocation.
return ReplaceInstUsesWith(AI, V);
} else if (isa<UndefValue>(AI.getArraySize())) {
return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
}
// If alloca'ing a zero byte object, replace the alloca with a null pointer.
// Note that we only do this for alloca's, because malloc should allocate and
// return a unique pointer, even for a zero byte allocation.
if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
TD->getTypeSize(AI.getAllocatedType()) == 0)
return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
return 0;
}
Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
Value *Op = FI.getOperand(0);
// Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
if (CastInst *CI = dyn_cast<CastInst>(Op))
if (isa<PointerType>(CI->getOperand(0)->getType())) {
FI.setOperand(0, CI->getOperand(0));
return &FI;
}
// free undef -> unreachable.
if (isa<UndefValue>(Op)) {
// Insert a new store to null because we cannot modify the CFG here.
new StoreInst(ConstantBool::True,
UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
return EraseInstFromFunction(FI);
}
// If we have 'free null' delete the instruction. This can happen in stl code
// when lots of inlining happens.
if (isa<ConstantPointerNull>(Op))
return EraseInstFromFunction(FI);
return 0;
}
/// GetGEPGlobalInitializer - Given a constant, and a getelementptr
/// constantexpr, return the constant value being addressed by the constant
/// expression, or null if something is funny.
///
static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
return 0; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing...
gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
for (++I; I != E; ++I)
if (const StructType *STy = dyn_cast<StructType>(*I)) {
ConstantUInt *CU = cast<ConstantUInt>(I.getOperand());
assert(CU->getValue() < STy->getNumElements() &&
"Struct index out of range!");
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
C = CS->getOperand(CU->getValue());
} else if (isa<ConstantAggregateZero>(C)) {
C = Constant::getNullValue(STy->getElementType(CU->getValue()));
} else if (isa<UndefValue>(C)) {
C = UndefValue::get(STy->getElementType(CU->getValue()));
} else {
return 0;
}
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
const ArrayType *ATy = cast<ArrayType>(*I);
if ((uint64_t)CI->getRawValue() >= ATy->getNumElements()) return 0;
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
C = CA->getOperand(CI->getRawValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(ATy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(ATy->getElementType());
else
return 0;
} else {
return 0;
}
return C;
}
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
User *CI = cast<User>(LI.getOperand(0));
const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
if (const PointerType *SrcTy =
dyn_cast<PointerType>(CI->getOperand(0)->getType())) {
const Type *SrcPTy = SrcTy->getElementType();
if (SrcPTy->isSized() && DestPTy->isSized() &&
IC.getTargetData().getTypeSize(SrcPTy) ==
IC.getTargetData().getTypeSize(DestPTy) &&
(SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
(DestPTy->isInteger() || isa<PointerType>(DestPTy))) {
// Okay, we are casting from one integer or pointer type to another of
// the same size. Instead of casting the pointer before the load, cast
// the result of the loaded value.
Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CI->getOperand(0),
CI->getName(),
LI.isVolatile()),LI);
// Now cast the result of the load.
return new CastInst(NewLoad, LI.getType());
}
}
return 0;
}
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
/// from this value cannot trap. If it is not obviously safe to load from the
/// specified pointer, we do a quick local scan of the basic block containing
/// ScanFrom, to determine if the address is already accessed.
static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
// If it is an alloca or global variable, it is always safe to load from.
if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
// Otherwise, be a little bit agressive by scanning the local block where we
// want to check to see if the pointer is already being loaded or stored
// from/to. If so, the previous load or store would have already trapped,
// so there is no harm doing an extra load (also, CSE will later eliminate
// the load entirely).
BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
while (BBI != E) {
--BBI;
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI->getOperand(0) == V) return true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
if (SI->getOperand(1) == V) return true;
}
return false;
}
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
if (Constant *C = dyn_cast<Constant>(Op)) {
if ((C->isNullValue() || isa<UndefValue>(C)) &&
!LI.isVolatile()) { // load null/undef -> undef
// Insert a new store to null instruction before the load to indicate that
// this code is not reachable. We do this instead of inserting an
// unreachable instruction directly because we cannot modify the CFG.
new StoreInst(UndefValue::get(LI.getType()), C, &LI);
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
// Instcombine load (constant global) into the value loaded.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
if (GV->isConstant() && !GV->isExternal())
return ReplaceInstUsesWith(LI, GV->getInitializer());
// Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && !GV->isExternal())
if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
return ReplaceInstUsesWith(LI, V);
} else if (CE->getOpcode() == Instruction::Cast) {
if (Instruction *Res = InstCombineLoadCast(*this, LI))
return Res;
}
}
// load (cast X) --> cast (load X) iff safe
if (CastInst *CI = dyn_cast<CastInst>(Op))
if (Instruction *Res = InstCombineLoadCast(*this, LI))
return Res;
if (!LI.isVolatile() && Op->hasOneUse()) {
// Change select and PHI nodes to select values instead of addresses: this
// helps alias analysis out a lot, allows many others simplifications, and
// exposes redundancy in the code.
//
// Note that we cannot do the transformation unless we know that the
// introduced loads cannot trap! Something like this is valid as long as
// the condition is always false: load (select bool %C, int* null, int* %G),
// but it would not be valid if we transformed it to load from null
// unconditionally.
//
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
SI->getOperand(1)->getName()+".val"), LI);
Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
SI->getOperand(2)->getName()+".val"), LI);
return new SelectInst(SI->getCondition(), V1, V2);
}
// load (select (cond, null, P)) -> load P
if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
if (C->isNullValue()) {
LI.setOperand(0, SI->getOperand(2));
return &LI;
}
// load (select (cond, P, null)) -> load P
if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
if (C->isNullValue()) {
LI.setOperand(0, SI->getOperand(1));
return &LI;
}
} else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
// load (phi (&V1, &V2, &V3)) --> phi(load &V1, load &V2, load &V3)
bool Safe = PN->getParent() == LI.getParent();
// Scan all of the instructions between the PHI and the load to make
// sure there are no instructions that might possibly alter the value
// loaded from the PHI.
if (Safe) {
BasicBlock::iterator I = &LI;
for (--I; !isa<PHINode>(I); --I)
if (isa<StoreInst>(I) || isa<CallInst>(I)) {
Safe = false;
break;
}
}
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
PN->getIncomingBlock(i)->getTerminator()))
Safe = false;
if (Safe) {
// Create the PHI.
PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
InsertNewInstBefore(NewPN, *PN);
std::map<BasicBlock*,Value*> LoadMap; // Don't insert duplicate loads
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *BB = PN->getIncomingBlock(i);
Value *&TheLoad = LoadMap[BB];
if (TheLoad == 0) {
Value *InVal = PN->getIncomingValue(i);
TheLoad = InsertNewInstBefore(new LoadInst(InVal,
InVal->getName()+".val"),
*BB->getTerminator());
}
NewPN->addIncoming(TheLoad, BB);
}
return ReplaceInstUsesWith(LI, NewPN);
}
}
}
return 0;
}
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
// Change br (not X), label True, label False to: br X, label False, True
Value *X;
BasicBlock *TrueDest;
BasicBlock *FalseDest;
if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
!isa<Constant>(X)) {
// Swap Destinations and condition...
BI.setCondition(X);
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
return &BI;
}
// Cannonicalize setne -> seteq
Instruction::BinaryOps Op; Value *Y;
if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
TrueDest, FalseDest)))
if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
SetCondInst *I = cast<SetCondInst>(BI.getCondition());
std::string Name = I->getName(); I->setName("");
Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
Value *NewSCC = BinaryOperator::create(NewOpcode, X, Y, Name, I);
// Swap Destinations and condition...
BI.setCondition(NewSCC);
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
removeFromWorkList(I);
I->getParent()->getInstList().erase(I);
WorkList.push_back(cast<Instruction>(NewSCC));
return &BI;
}
return 0;
}
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
Value *Cond = SI.getCondition();
if (Instruction *I = dyn_cast<Instruction>(Cond)) {
if (I->getOpcode() == Instruction::Add)
if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
// change 'switch (X+4) case 1:' into 'switch (X) case -3'
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
AddRHS));
SI.setOperand(0, I->getOperand(0));
WorkList.push_back(I);
return &SI;
}
}
return 0;
}
void InstCombiner::removeFromWorkList(Instruction *I) {
WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
WorkList.end());
}
bool InstCombiner::runOnFunction(Function &F) {
bool Changed = false;
TD = &getAnalysis<TargetData>();
for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
WorkList.push_back(&*i);
while (!WorkList.empty()) {
Instruction *I = WorkList.back(); // Get an instruction from the worklist
WorkList.pop_back();
// Check to see if we can DCE or ConstantPropagate the instruction...
// Check to see if we can DIE the instruction...
if (isInstructionTriviallyDead(I)) {
// Add operands to the worklist...
if (I->getNumOperands() < 4)
AddUsesToWorkList(*I);
++NumDeadInst;
I->getParent()->getInstList().erase(I);
removeFromWorkList(I);
continue;
}
// Instruction isn't dead, see if we can constant propagate it...
if (Constant *C = ConstantFoldInstruction(I)) {
if (isa<GetElementPtrInst>(I) &&
cast<Constant>(I->getOperand(0))->isNullValue() &&
!isa<ConstantPointerNull>(C)) {
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12'
bool isFoldableGEP = true;
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(I->getOperand(i)))
isFoldableGEP = false;
if (isFoldableGEP) {
uint64_t Offset = TD->getIndexedOffset(I->getOperand(0)->getType(),
std::vector<Value*>(I->op_begin()+1, I->op_end()));
C = ConstantUInt::get(Type::ULongTy, Offset);
C = ConstantExpr::getCast(C, TD->getIntPtrType());
C = ConstantExpr::getCast(C, I->getType());
}
}
// Add operands to the worklist...
AddUsesToWorkList(*I);
ReplaceInstUsesWith(*I, C);
++NumConstProp;
I->getParent()->getInstList().erase(I);
removeFromWorkList(I);
continue;
}
// Now that we have an instruction, try combining it to simplify it...
if (Instruction *Result = visit(*I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
if (Result != I) {
DEBUG(std::cerr << "IC: Old = " << *I
<< " New = " << *Result);
// Everything uses the new instruction now.
I->replaceAllUsesWith(Result);
// Push the new instruction and any users onto the worklist.
WorkList.push_back(Result);
AddUsersToWorkList(*Result);
// Move the name to the new instruction first...
std::string OldName = I->getName(); I->setName("");
Result->setName(OldName);
// Insert the new instruction into the basic block...
BasicBlock *InstParent = I->getParent();
BasicBlock::iterator InsertPos = I;
if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
++InsertPos;
InstParent->getInstList().insert(InsertPos, Result);
// Make sure that we reprocess all operands now that we reduced their
// use counts.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
WorkList.push_back(OpI);
// Instructions can end up on the worklist more than once. Make sure
// we do not process an instruction that has been deleted.
removeFromWorkList(I);
// Erase the old instruction.
InstParent->getInstList().erase(I);
} else {
DEBUG(std::cerr << "IC: MOD = " << *I);
// If the instruction was modified, it's possible that it is now dead.
// if so, remove it.
if (isInstructionTriviallyDead(I)) {
// Make sure we process all operands now that we are reducing their
// use counts.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
WorkList.push_back(OpI);
// Instructions may end up in the worklist more than once. Erase all
// occurrances of this instruction.
removeFromWorkList(I);
I->getParent()->getInstList().erase(I);
} else {
WorkList.push_back(Result);
AddUsersToWorkList(*Result);
}
}
Changed = true;
}
}
return Changed;
}
FunctionPass *llvm::createInstructionCombiningPass() {
return new InstCombiner();
}