llvm-6502/lib/CodeGen/MIRParser/MIParser.cpp
Alex Lorenz c249168837 MIR Serialization: Serialize the sub register indices.
This commit serializes the sub register indices from the register machine
operands.

Reviewers: Duncan P. N. Exon Smith


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242084 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-13 23:24:34 +00:00

586 lines
19 KiB
C++

//===- MIParser.cpp - Machine instructions parser implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the parsing of machine instructions.
//
//===----------------------------------------------------------------------===//
#include "MIParser.h"
#include "MILexer.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
namespace {
/// A wrapper struct around the 'MachineOperand' struct that includes a source
/// range.
struct MachineOperandWithLocation {
MachineOperand Operand;
StringRef::iterator Begin;
StringRef::iterator End;
MachineOperandWithLocation(const MachineOperand &Operand,
StringRef::iterator Begin, StringRef::iterator End)
: Operand(Operand), Begin(Begin), End(End) {}
};
class MIParser {
SourceMgr &SM;
MachineFunction &MF;
SMDiagnostic &Error;
StringRef Source, CurrentSource;
MIToken Token;
const PerFunctionMIParsingState &PFS;
/// Maps from indices to unnamed global values and metadata nodes.
const SlotMapping &IRSlots;
/// Maps from instruction names to op codes.
StringMap<unsigned> Names2InstrOpCodes;
/// Maps from register names to registers.
StringMap<unsigned> Names2Regs;
/// Maps from register mask names to register masks.
StringMap<const uint32_t *> Names2RegMasks;
/// Maps from subregister names to subregister indices.
StringMap<unsigned> Names2SubRegIndices;
public:
MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
StringRef Source, const PerFunctionMIParsingState &PFS,
const SlotMapping &IRSlots);
void lex();
/// Report an error at the current location with the given message.
///
/// This function always return true.
bool error(const Twine &Msg);
/// Report an error at the given location with the given message.
///
/// This function always return true.
bool error(StringRef::iterator Loc, const Twine &Msg);
bool parse(MachineInstr *&MI);
bool parseMBB(MachineBasicBlock *&MBB);
bool parseRegister(unsigned &Reg);
bool parseRegisterFlag(unsigned &Flags);
bool parseSubRegisterIndex(unsigned &SubReg);
bool parseRegisterOperand(MachineOperand &Dest, bool IsDef = false);
bool parseImmediateOperand(MachineOperand &Dest);
bool parseMBBReference(MachineBasicBlock *&MBB);
bool parseMBBOperand(MachineOperand &Dest);
bool parseGlobalAddressOperand(MachineOperand &Dest);
bool parseMachineOperand(MachineOperand &Dest);
private:
/// Convert the integer literal in the current token into an unsigned integer.
///
/// Return true if an error occurred.
bool getUnsigned(unsigned &Result);
void initNames2InstrOpCodes();
/// Try to convert an instruction name to an opcode. Return true if the
/// instruction name is invalid.
bool parseInstrName(StringRef InstrName, unsigned &OpCode);
bool parseInstruction(unsigned &OpCode);
bool verifyImplicitOperands(ArrayRef<MachineOperandWithLocation> Operands,
const MCInstrDesc &MCID);
void initNames2Regs();
/// Try to convert a register name to a register number. Return true if the
/// register name is invalid.
bool getRegisterByName(StringRef RegName, unsigned &Reg);
void initNames2RegMasks();
/// Check if the given identifier is a name of a register mask.
///
/// Return null if the identifier isn't a register mask.
const uint32_t *getRegMask(StringRef Identifier);
void initNames2SubRegIndices();
/// Check if the given identifier is a name of a subregister index.
///
/// Return 0 if the name isn't a subregister index class.
unsigned getSubRegIndex(StringRef Name);
};
} // end anonymous namespace
MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
StringRef Source, const PerFunctionMIParsingState &PFS,
const SlotMapping &IRSlots)
: SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source),
Token(MIToken::Error, StringRef()), PFS(PFS), IRSlots(IRSlots) {}
void MIParser::lex() {
CurrentSource = lexMIToken(
CurrentSource, Token,
[this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
}
bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
Error = SMDiagnostic(
SM, SMLoc(),
SM.getMemoryBuffer(SM.getMainFileID())->getBufferIdentifier(), 1,
Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), Source, None, None);
return true;
}
bool MIParser::parse(MachineInstr *&MI) {
lex();
// Parse any register operands before '='
// TODO: Allow parsing of multiple operands before '='
MachineOperand MO = MachineOperand::CreateImm(0);
SmallVector<MachineOperandWithLocation, 8> Operands;
if (Token.isRegister() || Token.isRegisterFlag()) {
auto Loc = Token.location();
if (parseRegisterOperand(MO, /*IsDef=*/true))
return true;
Operands.push_back(MachineOperandWithLocation(MO, Loc, Token.location()));
if (Token.isNot(MIToken::equal))
return error("expected '='");
lex();
}
unsigned OpCode;
if (Token.isError() || parseInstruction(OpCode))
return true;
// TODO: Parse the instruction flags and memory operands.
// Parse the remaining machine operands.
while (Token.isNot(MIToken::Eof)) {
auto Loc = Token.location();
if (parseMachineOperand(MO))
return true;
Operands.push_back(MachineOperandWithLocation(MO, Loc, Token.location()));
if (Token.is(MIToken::Eof))
break;
if (Token.isNot(MIToken::comma))
return error("expected ',' before the next machine operand");
lex();
}
const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
if (!MCID.isVariadic()) {
// FIXME: Move the implicit operand verification to the machine verifier.
if (verifyImplicitOperands(Operands, MCID))
return true;
}
// TODO: Check for extraneous machine operands.
MI = MF.CreateMachineInstr(MCID, DebugLoc(), /*NoImplicit=*/true);
for (const auto &Operand : Operands)
MI->addOperand(MF, Operand.Operand);
return false;
}
bool MIParser::parseMBB(MachineBasicBlock *&MBB) {
lex();
if (Token.isNot(MIToken::MachineBasicBlock))
return error("expected a machine basic block reference");
if (parseMBBReference(MBB))
return true;
lex();
if (Token.isNot(MIToken::Eof))
return error(
"expected end of string after the machine basic block reference");
return false;
}
static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
assert(MO.isImplicit());
return MO.isDef() ? "implicit-def" : "implicit";
}
static std::string getRegisterName(const TargetRegisterInfo *TRI,
unsigned Reg) {
assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
return StringRef(TRI->getName(Reg)).lower();
}
bool MIParser::verifyImplicitOperands(
ArrayRef<MachineOperandWithLocation> Operands, const MCInstrDesc &MCID) {
if (MCID.isCall())
// We can't verify call instructions as they can contain arbitrary implicit
// register and register mask operands.
return false;
// Gather all the expected implicit operands.
SmallVector<MachineOperand, 4> ImplicitOperands;
if (MCID.ImplicitDefs)
for (const uint16_t *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
ImplicitOperands.push_back(
MachineOperand::CreateReg(*ImpDefs, true, true));
if (MCID.ImplicitUses)
for (const uint16_t *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
ImplicitOperands.push_back(
MachineOperand::CreateReg(*ImpUses, false, true));
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
size_t I = ImplicitOperands.size(), J = Operands.size();
while (I) {
--I;
if (J) {
--J;
const auto &ImplicitOperand = ImplicitOperands[I];
const auto &Operand = Operands[J].Operand;
if (ImplicitOperand.isIdenticalTo(Operand))
continue;
if (Operand.isReg() && Operand.isImplicit()) {
return error(Operands[J].Begin,
Twine("expected an implicit register operand '") +
printImplicitRegisterFlag(ImplicitOperand) + " %" +
getRegisterName(TRI, ImplicitOperand.getReg()) + "'");
}
}
// TODO: Fix source location when Operands[J].end is right before '=', i.e:
// insead of reporting an error at this location:
// %eax = MOV32r0
// ^
// report the error at the following location:
// %eax = MOV32r0
// ^
return error(J < Operands.size() ? Operands[J].End : Token.location(),
Twine("missing implicit register operand '") +
printImplicitRegisterFlag(ImplicitOperands[I]) + " %" +
getRegisterName(TRI, ImplicitOperands[I].getReg()) + "'");
}
return false;
}
bool MIParser::parseInstruction(unsigned &OpCode) {
if (Token.isNot(MIToken::Identifier))
return error("expected a machine instruction");
StringRef InstrName = Token.stringValue();
if (parseInstrName(InstrName, OpCode))
return error(Twine("unknown machine instruction name '") + InstrName + "'");
lex();
return false;
}
bool MIParser::parseRegister(unsigned &Reg) {
switch (Token.kind()) {
case MIToken::underscore:
Reg = 0;
break;
case MIToken::NamedRegister: {
StringRef Name = Token.stringValue();
if (getRegisterByName(Name, Reg))
return error(Twine("unknown register name '") + Name + "'");
break;
}
case MIToken::VirtualRegister: {
unsigned ID;
if (getUnsigned(ID))
return true;
const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
if (RegInfo == PFS.VirtualRegisterSlots.end())
return error(Twine("use of undefined virtual register '%") + Twine(ID) +
"'");
Reg = RegInfo->second;
break;
}
// TODO: Parse other register kinds.
default:
llvm_unreachable("The current token should be a register");
}
return false;
}
bool MIParser::parseRegisterFlag(unsigned &Flags) {
switch (Token.kind()) {
case MIToken::kw_implicit:
Flags |= RegState::Implicit;
break;
case MIToken::kw_implicit_define:
Flags |= RegState::ImplicitDefine;
break;
case MIToken::kw_dead:
Flags |= RegState::Dead;
break;
case MIToken::kw_killed:
Flags |= RegState::Kill;
break;
case MIToken::kw_undef:
Flags |= RegState::Undef;
break;
// TODO: report an error when we specify the same flag more than once.
// TODO: parse the other register flags.
default:
llvm_unreachable("The current token should be a register flag");
}
lex();
return false;
}
bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
assert(Token.is(MIToken::colon));
lex();
if (Token.isNot(MIToken::Identifier))
return error("expected a subregister index after ':'");
auto Name = Token.stringValue();
SubReg = getSubRegIndex(Name);
if (!SubReg)
return error(Twine("use of unknown subregister index '") + Name + "'");
lex();
return false;
}
bool MIParser::parseRegisterOperand(MachineOperand &Dest, bool IsDef) {
unsigned Reg;
unsigned Flags = IsDef ? RegState::Define : 0;
while (Token.isRegisterFlag()) {
if (parseRegisterFlag(Flags))
return true;
}
if (!Token.isRegister())
return error("expected a register after register flags");
if (parseRegister(Reg))
return true;
lex();
unsigned SubReg = 0;
if (Token.is(MIToken::colon)) {
if (parseSubRegisterIndex(SubReg))
return true;
}
Dest = MachineOperand::CreateReg(
Reg, Flags & RegState::Define, Flags & RegState::Implicit,
Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
/*isEarlyClobber=*/false, SubReg);
return false;
}
bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::IntegerLiteral));
const APSInt &Int = Token.integerValue();
if (Int.getMinSignedBits() > 64)
// TODO: Replace this with an error when we can parse CIMM Machine Operands.
llvm_unreachable("Can't parse large integer literals yet!");
Dest = MachineOperand::CreateImm(Int.getExtValue());
lex();
return false;
}
bool MIParser::getUnsigned(unsigned &Result) {
assert(Token.hasIntegerValue() && "Expected a token with an integer value");
const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
if (Val64 == Limit)
return error("expected 32-bit integer (too large)");
Result = Val64;
return false;
}
bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
assert(Token.is(MIToken::MachineBasicBlock));
unsigned Number;
if (getUnsigned(Number))
return true;
auto MBBInfo = PFS.MBBSlots.find(Number);
if (MBBInfo == PFS.MBBSlots.end())
return error(Twine("use of undefined machine basic block #") +
Twine(Number));
MBB = MBBInfo->second;
if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
return error(Twine("the name of machine basic block #") + Twine(Number) +
" isn't '" + Token.stringValue() + "'");
return false;
}
bool MIParser::parseMBBOperand(MachineOperand &Dest) {
MachineBasicBlock *MBB;
if (parseMBBReference(MBB))
return true;
Dest = MachineOperand::CreateMBB(MBB);
lex();
return false;
}
bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
switch (Token.kind()) {
case MIToken::NamedGlobalValue: {
auto Name = Token.stringValue();
const Module *M = MF.getFunction()->getParent();
if (const auto *GV = M->getNamedValue(Name)) {
Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
break;
}
return error(Twine("use of undefined global value '@") + Name + "'");
}
case MIToken::GlobalValue: {
unsigned GVIdx;
if (getUnsigned(GVIdx))
return true;
if (GVIdx >= IRSlots.GlobalValues.size())
return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
"'");
Dest = MachineOperand::CreateGA(IRSlots.GlobalValues[GVIdx],
/*Offset=*/0);
break;
}
default:
llvm_unreachable("The current token should be a global value");
}
// TODO: Parse offset and target flags.
lex();
return false;
}
bool MIParser::parseMachineOperand(MachineOperand &Dest) {
switch (Token.kind()) {
case MIToken::kw_implicit:
case MIToken::kw_implicit_define:
case MIToken::kw_dead:
case MIToken::kw_killed:
case MIToken::kw_undef:
case MIToken::underscore:
case MIToken::NamedRegister:
case MIToken::VirtualRegister:
return parseRegisterOperand(Dest);
case MIToken::IntegerLiteral:
return parseImmediateOperand(Dest);
case MIToken::MachineBasicBlock:
return parseMBBOperand(Dest);
case MIToken::GlobalValue:
case MIToken::NamedGlobalValue:
return parseGlobalAddressOperand(Dest);
case MIToken::Error:
return true;
case MIToken::Identifier:
if (const auto *RegMask = getRegMask(Token.stringValue())) {
Dest = MachineOperand::CreateRegMask(RegMask);
lex();
break;
}
// fallthrough
default:
// TODO: parse the other machine operands.
return error("expected a machine operand");
}
return false;
}
void MIParser::initNames2InstrOpCodes() {
if (!Names2InstrOpCodes.empty())
return;
const auto *TII = MF.getSubtarget().getInstrInfo();
assert(TII && "Expected target instruction info");
for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
}
bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
initNames2InstrOpCodes();
auto InstrInfo = Names2InstrOpCodes.find(InstrName);
if (InstrInfo == Names2InstrOpCodes.end())
return true;
OpCode = InstrInfo->getValue();
return false;
}
void MIParser::initNames2Regs() {
if (!Names2Regs.empty())
return;
// The '%noreg' register is the register 0.
Names2Regs.insert(std::make_pair("noreg", 0));
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
bool WasInserted =
Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
.second;
(void)WasInserted;
assert(WasInserted && "Expected registers to be unique case-insensitively");
}
}
bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
initNames2Regs();
auto RegInfo = Names2Regs.find(RegName);
if (RegInfo == Names2Regs.end())
return true;
Reg = RegInfo->getValue();
return false;
}
void MIParser::initNames2RegMasks() {
if (!Names2RegMasks.empty())
return;
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
assert(RegMasks.size() == RegMaskNames.size());
for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
Names2RegMasks.insert(
std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
}
const uint32_t *MIParser::getRegMask(StringRef Identifier) {
initNames2RegMasks();
auto RegMaskInfo = Names2RegMasks.find(Identifier);
if (RegMaskInfo == Names2RegMasks.end())
return nullptr;
return RegMaskInfo->getValue();
}
void MIParser::initNames2SubRegIndices() {
if (!Names2SubRegIndices.empty())
return;
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
Names2SubRegIndices.insert(
std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
}
unsigned MIParser::getSubRegIndex(StringRef Name) {
initNames2SubRegIndices();
auto SubRegInfo = Names2SubRegIndices.find(Name);
if (SubRegInfo == Names2SubRegIndices.end())
return 0;
return SubRegInfo->getValue();
}
bool llvm::parseMachineInstr(MachineInstr *&MI, SourceMgr &SM,
MachineFunction &MF, StringRef Src,
const PerFunctionMIParsingState &PFS,
const SlotMapping &IRSlots, SMDiagnostic &Error) {
return MIParser(SM, MF, Error, Src, PFS, IRSlots).parse(MI);
}
bool llvm::parseMBBReference(MachineBasicBlock *&MBB, SourceMgr &SM,
MachineFunction &MF, StringRef Src,
const PerFunctionMIParsingState &PFS,
const SlotMapping &IRSlots, SMDiagnostic &Error) {
return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseMBB(MBB);
}