llvm-6502/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
2009-10-20 05:15:36 +00:00

747 lines
23 KiB
C++

//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmLexer.h"
#include "llvm/MC/MCAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
using namespace llvm;
namespace {
struct ARMOperand;
// The shift types for register controlled shifts in arm memory addressing
enum ShiftType {
Lsl,
Lsr,
Asr,
Ror,
Rrx
};
class ARMAsmParser : public TargetAsmParser {
MCAsmParser &Parser;
private:
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
bool ParseRegister(ARMOperand &Op);
bool ParseRegisterList(ARMOperand &Op);
bool ParseMemory(ARMOperand &Op);
bool ParseShift(enum ShiftType *St, const MCExpr *&ShiftAmount);
bool ParseOperand(ARMOperand &Op);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveThumb(SMLoc L);
bool ParseDirectiveThumbFunc(SMLoc L);
bool ParseDirectiveCode(SMLoc L);
bool ParseDirectiveSyntax(SMLoc L);
// TODO - For now hacked versions of the next two are in here in this file to
// allow some parser testing until the table gen versions are implemented.
/// @name Auto-generated Match Functions
/// {
bool MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
MCInst &Inst);
/// MatchRegisterName - Match the given string to a register name and return
/// its register number, or -1 if there is no match. To allow return values
/// to be used directly in register lists, arm registers have values between
/// 0 and 15.
int MatchRegisterName(const StringRef &Name);
/// }
public:
ARMAsmParser(const Target &T, MCAsmParser &_Parser)
: TargetAsmParser(T), Parser(_Parser) {}
virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst);
virtual bool ParseDirective(AsmToken DirectiveID);
};
} // end anonymous namespace
namespace {
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
struct ARMOperand {
enum {
Token,
Register,
Immediate,
Memory
} Kind;
union {
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
bool Writeback;
} Reg;
struct {
const MCExpr *Val;
} Imm;
// This is for all forms of ARM address expressions
struct {
unsigned BaseRegNum;
bool OffsetIsReg;
const MCExpr *Offset; // used when OffsetIsReg is false
unsigned OffsetRegNum; // used when OffsetIsReg is true
bool OffsetRegShifted; // only used when OffsetIsReg is true
enum ShiftType ShiftType; // used when OffsetRegShifted is true
const MCExpr *ShiftAmount; // used when OffsetRegShifted is true
bool Preindexed;
bool Postindexed;
bool Negative; // only used when OffsetIsReg is true
bool Writeback;
} Mem;
};
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert(Kind == Register && "Invalid access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
bool isToken() const {return Kind == Token; }
bool isReg() const { return Kind == Register; }
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
static ARMOperand CreateToken(StringRef Str) {
ARMOperand Res;
Res.Kind = Token;
Res.Tok.Data = Str.data();
Res.Tok.Length = Str.size();
return Res;
}
static ARMOperand CreateReg(unsigned RegNum, bool Writeback) {
ARMOperand Res;
Res.Kind = Register;
Res.Reg.RegNum = RegNum;
Res.Reg.Writeback = Writeback;
return Res;
}
static ARMOperand CreateImm(const MCExpr *Val) {
ARMOperand Res;
Res.Kind = Immediate;
Res.Imm.Val = Val;
return Res;
}
static ARMOperand CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
const MCExpr *Offset, unsigned OffsetRegNum,
bool OffsetRegShifted, enum ShiftType ShiftType,
const MCExpr *ShiftAmount, bool Preindexed,
bool Postindexed, bool Negative, bool Writeback) {
ARMOperand Res;
Res.Kind = Memory;
Res.Mem.BaseRegNum = BaseRegNum;
Res.Mem.OffsetIsReg = OffsetIsReg;
Res.Mem.Offset = Offset;
Res.Mem.OffsetRegNum = OffsetRegNum;
Res.Mem.OffsetRegShifted = OffsetRegShifted;
Res.Mem.ShiftType = ShiftType;
Res.Mem.ShiftAmount = ShiftAmount;
Res.Mem.Preindexed = Preindexed;
Res.Mem.Postindexed = Postindexed;
Res.Mem.Negative = Negative;
Res.Mem.Writeback = Writeback;
return Res;
}
};
} // end anonymous namespace.
// Try to parse a register name. The token must be an Identifier when called,
// and if it is a register name a Reg operand is created, the token is eaten
// and false is returned. Else true is returned and no token is eaten.
// TODO this is likely to change to allow different register types and or to
// parse for a specific register type.
bool ARMAsmParser::ParseRegister(ARMOperand &Op) {
const AsmToken &Tok = getLexer().getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
int RegNum;
RegNum = MatchRegisterName(Tok.getString());
if (RegNum == -1)
return true;
getLexer().Lex(); // Eat identifier token.
bool Writeback = false;
const AsmToken &ExclaimTok = getLexer().getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
Writeback = true;
getLexer().Lex(); // Eat exclaim token
}
Op = ARMOperand::CreateReg(RegNum, Writeback);
return false;
}
// Parse a register list, return false if successful else return true or an
// error. The first token must be a '{' when called.
bool ARMAsmParser::ParseRegisterList(ARMOperand &Op) {
assert(getLexer().getTok().is(AsmToken::LCurly) &&
"Token is not an Left Curly Brace");
getLexer().Lex(); // Eat left curly brace token.
const AsmToken &RegTok = getLexer().getTok();
SMLoc RegLoc = RegTok.getLoc();
if (RegTok.isNot(AsmToken::Identifier))
return Error(RegLoc, "register expected");
int RegNum = MatchRegisterName(RegTok.getString());
if (RegNum == -1)
return Error(RegLoc, "register expected");
getLexer().Lex(); // Eat identifier token.
unsigned RegList = 1 << RegNum;
int HighRegNum = RegNum;
// TODO ranges like "{Rn-Rm}"
while (getLexer().getTok().is(AsmToken::Comma)) {
getLexer().Lex(); // Eat comma token.
const AsmToken &RegTok = getLexer().getTok();
SMLoc RegLoc = RegTok.getLoc();
if (RegTok.isNot(AsmToken::Identifier))
return Error(RegLoc, "register expected");
int RegNum = MatchRegisterName(RegTok.getString());
if (RegNum == -1)
return Error(RegLoc, "register expected");
if (RegList & (1 << RegNum))
Warning(RegLoc, "register duplicated in register list");
else if (RegNum <= HighRegNum)
Warning(RegLoc, "register not in ascending order in register list");
RegList |= 1 << RegNum;
HighRegNum = RegNum;
getLexer().Lex(); // Eat identifier token.
}
const AsmToken &RCurlyTok = getLexer().getTok();
if (RCurlyTok.isNot(AsmToken::RCurly))
return Error(RCurlyTok.getLoc(), "'}' expected");
getLexer().Lex(); // Eat left curly brace token.
return false;
}
// Parse an arm memory expression, return false if successful else return true
// or an error. The first token must be a '[' when called.
// TODO Only preindexing and postindexing addressing are started, unindexed
// with option, etc are still to do.
bool ARMAsmParser::ParseMemory(ARMOperand &Op) {
assert(getLexer().getTok().is(AsmToken::LBrac) &&
"Token is not an Left Bracket");
getLexer().Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = getLexer().getTok();
if (BaseRegTok.isNot(AsmToken::Identifier))
return Error(BaseRegTok.getLoc(), "register expected");
int BaseRegNum = MatchRegisterName(BaseRegTok.getString());
if (BaseRegNum == -1)
return Error(BaseRegTok.getLoc(), "register expected");
getLexer().Lex(); // Eat identifier token.
bool Preindexed = false;
bool Postindexed = false;
bool OffsetIsReg = false;
bool Negative = false;
bool Writeback = false;
// First look for preindexed address forms:
// [Rn, +/-Rm]
// [Rn, #offset]
// [Rn, +/-Rm, shift]
// that is after the "[Rn" we now have see if the next token is a comma.
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Comma)) {
Preindexed = true;
getLexer().Lex(); // Eat comma token.
const AsmToken &NextTok = getLexer().getTok();
if (NextTok.is(AsmToken::Plus))
getLexer().Lex(); // Eat plus token.
else if (NextTok.is(AsmToken::Minus)) {
Negative = true;
getLexer().Lex(); // Eat minus token
}
// See if there is a register following the "[Rn," we have so far.
const AsmToken &OffsetRegTok = getLexer().getTok();
int OffsetRegNum = MatchRegisterName(OffsetRegTok.getString());
bool OffsetRegShifted = false;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset;
if (OffsetRegNum != -1) {
OffsetIsReg = true;
getLexer().Lex(); // Eat identifier token for the offset register.
// Look for a comma then a shift
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Comma)) {
getLexer().Lex(); // Eat comma token.
const AsmToken &Tok = getLexer().getTok();
if (ParseShift(&ShiftType, ShiftAmount))
return Error(Tok.getLoc(), "shift expected");
OffsetRegShifted = true;
}
}
else { // "[Rn," we have so far was not followed by "Rm"
// Look for #offset following the "[Rn,"
const AsmToken &HashTok = getLexer().getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
getLexer().Lex(); // Eat hash token.
if (getParser().ParseExpression(Offset))
return true;
}
const AsmToken &RBracTok = getLexer().getTok();
if (RBracTok.isNot(AsmToken::RBrac))
return Error(RBracTok.getLoc(), "']' expected");
getLexer().Lex(); // Eat right bracket token.
const AsmToken &ExclaimTok = getLexer().getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
Writeback = true;
getLexer().Lex(); // Eat exclaim token
}
Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback);
return false;
}
// The "[Rn" we have so far was not followed by a comma.
else if (Tok.is(AsmToken::RBrac)) {
// This is a post indexing addressing forms:
// [Rn], #offset
// [Rn], +/-Rm
// [Rn], +/-Rm, shift
// that is a ']' follows after the "[Rn".
Postindexed = true;
Writeback = true;
getLexer().Lex(); // Eat right bracket token.
int OffsetRegNum = 0;
bool OffsetRegShifted = false;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount;
const MCExpr *Offset;
const AsmToken &NextTok = getLexer().getTok();
if (NextTok.isNot(AsmToken::EndOfStatement)) {
if (NextTok.isNot(AsmToken::Comma))
return Error(NextTok.getLoc(), "',' expected");
getLexer().Lex(); // Eat comma token.
const AsmToken &PlusMinusTok = getLexer().getTok();
if (PlusMinusTok.is(AsmToken::Plus))
getLexer().Lex(); // Eat plus token.
else if (PlusMinusTok.is(AsmToken::Minus)) {
Negative = true;
getLexer().Lex(); // Eat minus token
}
// See if there is a register following the "[Rn]," we have so far.
const AsmToken &OffsetRegTok = getLexer().getTok();
OffsetRegNum = MatchRegisterName(OffsetRegTok.getString());
if (OffsetRegNum != -1) {
OffsetIsReg = true;
getLexer().Lex(); // Eat identifier token for the offset register.
// Look for a comma then a shift
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Comma)) {
getLexer().Lex(); // Eat comma token.
const AsmToken &Tok = getLexer().getTok();
if (ParseShift(&ShiftType, ShiftAmount))
return Error(Tok.getLoc(), "shift expected");
OffsetRegShifted = true;
}
}
else { // "[Rn]," we have so far was not followed by "Rm"
// Look for #offset following the "[Rn],"
const AsmToken &HashTok = getLexer().getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
getLexer().Lex(); // Eat hash token.
if (getParser().ParseExpression(Offset))
return true;
}
}
Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
OffsetRegShifted, ShiftType, ShiftAmount,
Preindexed, Postindexed, Negative, Writeback);
return false;
}
return true;
}
/// ParseShift as one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// and returns true if it parses a shift otherwise it returns false.
bool ARMAsmParser::ParseShift(ShiftType *St, const MCExpr *&ShiftAmount) {
const AsmToken &Tok = getLexer().getTok();
if (Tok.isNot(AsmToken::Identifier))
return true;
const StringRef &ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL")
*St = Lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
*St = Lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
*St = Asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
*St = Ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
*St = Rrx;
else
return true;
getLexer().Lex(); // Eat shift type token.
// For all but a Rotate right there must be a '#' and a shift amount
if (*St != Rrx) {
// Look for # following the shift type
const AsmToken &HashTok = getLexer().getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
getLexer().Lex(); // Eat hash token.
if (getParser().ParseExpression(ShiftAmount))
return true;
}
return false;
}
// A hack to allow some testing, to be replaced by a real table gen version.
int ARMAsmParser::MatchRegisterName(const StringRef &Name) {
if (Name == "r0" || Name == "R0")
return 0;
else if (Name == "r1" || Name == "R1")
return 1;
else if (Name == "r2" || Name == "R2")
return 2;
else if (Name == "r3" || Name == "R3")
return 3;
else if (Name == "r3" || Name == "R3")
return 3;
else if (Name == "r4" || Name == "R4")
return 4;
else if (Name == "r5" || Name == "R5")
return 5;
else if (Name == "r6" || Name == "R6")
return 6;
else if (Name == "r7" || Name == "R7")
return 7;
else if (Name == "r8" || Name == "R8")
return 8;
else if (Name == "r9" || Name == "R9")
return 9;
else if (Name == "r10" || Name == "R10")
return 10;
else if (Name == "r11" || Name == "R11" || Name == "fp")
return 11;
else if (Name == "r12" || Name == "R12" || Name == "ip")
return 12;
else if (Name == "r13" || Name == "R13" || Name == "sp")
return 13;
else if (Name == "r14" || Name == "R14" || Name == "lr")
return 14;
else if (Name == "r15" || Name == "R15" || Name == "pc")
return 15;
return -1;
}
// A hack to allow some testing, to be replaced by a real table gen version.
bool ARMAsmParser::MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
MCInst &Inst) {
struct ARMOperand Op0 = Operands[0];
assert(Op0.Kind == ARMOperand::Token && "First operand not a Token");
const StringRef &Mnemonic = Op0.getToken();
if (Mnemonic == "add" ||
Mnemonic == "stmfd" ||
Mnemonic == "str" ||
Mnemonic == "ldmfd" ||
Mnemonic == "ldr" ||
Mnemonic == "mov" ||
Mnemonic == "sub" ||
Mnemonic == "bl" ||
Mnemonic == "push" ||
Mnemonic == "blx" ||
Mnemonic == "pop") {
// Hard-coded to a valid instruction, till we have a real matcher.
Inst = MCInst();
Inst.setOpcode(ARM::MOVr);
Inst.addOperand(MCOperand::CreateReg(2));
Inst.addOperand(MCOperand::CreateReg(2));
Inst.addOperand(MCOperand::CreateImm(0));
Inst.addOperand(MCOperand::CreateImm(0));
Inst.addOperand(MCOperand::CreateReg(0));
return false;
}
return true;
}
// Parse a arm instruction operand. For now this parses the operand regardless
// of the mnemonic.
bool ARMAsmParser::ParseOperand(ARMOperand &Op) {
switch (getLexer().getKind()) {
case AsmToken::Identifier:
if (!ParseRegister(Op))
return false;
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
if (getParser().ParseExpression(IdVal))
return true;
Op = ARMOperand::CreateImm(IdVal);
return false;
case AsmToken::LBrac:
return ParseMemory(Op);
case AsmToken::LCurly:
return ParseRegisterList(Op);
case AsmToken::Hash:
// #42 -> immediate.
// TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
getLexer().Lex();
const MCExpr *ImmVal;
if (getParser().ParseExpression(ImmVal))
return true;
Op = ARMOperand::CreateImm(ImmVal);
return false;
default:
return Error(getLexer().getTok().getLoc(), "unexpected token in operand");
}
}
// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
SmallVector<ARMOperand, 7> Operands;
Operands.push_back(ARMOperand::CreateToken(Name));
SMLoc Loc = getLexer().getTok().getLoc();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
Operands.push_back(ARMOperand());
if (ParseOperand(Operands.back()))
return true;
while (getLexer().is(AsmToken::Comma)) {
getLexer().Lex(); // Eat the comma.
// Parse and remember the operand.
Operands.push_back(ARMOperand());
if (ParseOperand(Operands.back()))
return true;
}
}
if (!MatchInstruction(Operands, Inst))
return false;
Error(Loc, "ARMAsmParser::ParseInstruction only partly implemented");
return true;
}
/// ParseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(4, DirectiveID.getLoc());
else if (IDVal == ".thumb")
return ParseDirectiveThumb(DirectiveID.getLoc());
else if (IDVal == ".thumb_func")
return ParseDirectiveThumbFunc(DirectiveID.getLoc());
else if (IDVal == ".code")
return ParseDirectiveCode(DirectiveID.getLoc());
else if (IDVal == ".syntax")
return ParseDirectiveSyntax(DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
getLexer().Lex();
}
}
getLexer().Lex();
return false;
}
/// ParseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
getLexer().Lex();
// TODO: set thumb mode
// TODO: tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
const AsmToken &Tok = getLexer().getTok();
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
return Error(L, "unexpected token in .syntax directive");
StringRef SymbolName = getLexer().getTok().getIdentifier();
getLexer().Lex(); // Consume the identifier token.
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
getLexer().Lex();
// TODO: mark symbol as a thumb symbol
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
const AsmToken &Tok = getLexer().getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(L, "unexpected token in .syntax directive");
const StringRef &Mode = Tok.getString();
bool unified_syntax;
if (Mode == "unified" || Mode == "UNIFIED") {
getLexer().Lex();
unified_syntax = true;
}
else if (Mode == "divided" || Mode == "DIVIDED") {
getLexer().Lex();
unified_syntax = false;
}
else
return Error(L, "unrecognized syntax mode in .syntax directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getTok().getLoc(), "unexpected token in directive");
getLexer().Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
const AsmToken &Tok = getLexer().getTok();
if (Tok.isNot(AsmToken::Integer))
return Error(L, "unexpected token in .code directive");
int64_t Val = getLexer().getTok().getIntVal();
bool thumb_mode;
if (Val == 16) {
getLexer().Lex();
thumb_mode = true;
}
else if (Val == 32) {
getLexer().Lex();
thumb_mode = false;
}
else
return Error(L, "invalid operand to .code directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getTok().getLoc(), "unexpected token in directive");
getLexer().Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
}