mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
1f48a55e86
This happened to be fairly easy to support backwards compatibility based on the number of operands (old format had an even number, new format has one more operand so an odd number). test/Bitcode/old-aliases.ll already appears to test old gep operators (if I remove the backwards compatibility in the BitcodeReader, this and another test fail) so I'm not adding extra test coverage here. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232216 91177308-0d34-0410-b5e6-96231b3b80d8
2474 lines
94 KiB
C++
2474 lines
94 KiB
C++
//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Bitcode writer implementation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "ValueEnumerator.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Bitcode/BitstreamWriter.h"
|
|
#include "llvm/Bitcode/LLVMBitCodes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/UseListOrder.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Program.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cctype>
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
/// These are manifest constants used by the bitcode writer. They do not need to
|
|
/// be kept in sync with the reader, but need to be consistent within this file.
|
|
enum {
|
|
// VALUE_SYMTAB_BLOCK abbrev id's.
|
|
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
VST_ENTRY_7_ABBREV,
|
|
VST_ENTRY_6_ABBREV,
|
|
VST_BBENTRY_6_ABBREV,
|
|
|
|
// CONSTANTS_BLOCK abbrev id's.
|
|
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
CONSTANTS_INTEGER_ABBREV,
|
|
CONSTANTS_CE_CAST_Abbrev,
|
|
CONSTANTS_NULL_Abbrev,
|
|
|
|
// FUNCTION_BLOCK abbrev id's.
|
|
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
FUNCTION_INST_BINOP_ABBREV,
|
|
FUNCTION_INST_BINOP_FLAGS_ABBREV,
|
|
FUNCTION_INST_CAST_ABBREV,
|
|
FUNCTION_INST_RET_VOID_ABBREV,
|
|
FUNCTION_INST_RET_VAL_ABBREV,
|
|
FUNCTION_INST_UNREACHABLE_ABBREV,
|
|
FUNCTION_INST_GEP_ABBREV,
|
|
};
|
|
|
|
static unsigned GetEncodedCastOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unknown cast instruction!");
|
|
case Instruction::Trunc : return bitc::CAST_TRUNC;
|
|
case Instruction::ZExt : return bitc::CAST_ZEXT;
|
|
case Instruction::SExt : return bitc::CAST_SEXT;
|
|
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
|
|
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
|
|
case Instruction::UIToFP : return bitc::CAST_UITOFP;
|
|
case Instruction::SIToFP : return bitc::CAST_SITOFP;
|
|
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
|
|
case Instruction::FPExt : return bitc::CAST_FPEXT;
|
|
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
|
|
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
|
|
case Instruction::BitCast : return bitc::CAST_BITCAST;
|
|
case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
|
|
}
|
|
}
|
|
|
|
static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unknown binary instruction!");
|
|
case Instruction::Add:
|
|
case Instruction::FAdd: return bitc::BINOP_ADD;
|
|
case Instruction::Sub:
|
|
case Instruction::FSub: return bitc::BINOP_SUB;
|
|
case Instruction::Mul:
|
|
case Instruction::FMul: return bitc::BINOP_MUL;
|
|
case Instruction::UDiv: return bitc::BINOP_UDIV;
|
|
case Instruction::FDiv:
|
|
case Instruction::SDiv: return bitc::BINOP_SDIV;
|
|
case Instruction::URem: return bitc::BINOP_UREM;
|
|
case Instruction::FRem:
|
|
case Instruction::SRem: return bitc::BINOP_SREM;
|
|
case Instruction::Shl: return bitc::BINOP_SHL;
|
|
case Instruction::LShr: return bitc::BINOP_LSHR;
|
|
case Instruction::AShr: return bitc::BINOP_ASHR;
|
|
case Instruction::And: return bitc::BINOP_AND;
|
|
case Instruction::Or: return bitc::BINOP_OR;
|
|
case Instruction::Xor: return bitc::BINOP_XOR;
|
|
}
|
|
}
|
|
|
|
static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
|
|
switch (Op) {
|
|
default: llvm_unreachable("Unknown RMW operation!");
|
|
case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
|
|
case AtomicRMWInst::Add: return bitc::RMW_ADD;
|
|
case AtomicRMWInst::Sub: return bitc::RMW_SUB;
|
|
case AtomicRMWInst::And: return bitc::RMW_AND;
|
|
case AtomicRMWInst::Nand: return bitc::RMW_NAND;
|
|
case AtomicRMWInst::Or: return bitc::RMW_OR;
|
|
case AtomicRMWInst::Xor: return bitc::RMW_XOR;
|
|
case AtomicRMWInst::Max: return bitc::RMW_MAX;
|
|
case AtomicRMWInst::Min: return bitc::RMW_MIN;
|
|
case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
|
|
case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
|
|
}
|
|
}
|
|
|
|
static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
|
|
switch (Ordering) {
|
|
case NotAtomic: return bitc::ORDERING_NOTATOMIC;
|
|
case Unordered: return bitc::ORDERING_UNORDERED;
|
|
case Monotonic: return bitc::ORDERING_MONOTONIC;
|
|
case Acquire: return bitc::ORDERING_ACQUIRE;
|
|
case Release: return bitc::ORDERING_RELEASE;
|
|
case AcquireRelease: return bitc::ORDERING_ACQREL;
|
|
case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
|
|
}
|
|
llvm_unreachable("Invalid ordering");
|
|
}
|
|
|
|
static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
|
|
switch (SynchScope) {
|
|
case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
|
|
case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
|
|
}
|
|
llvm_unreachable("Invalid synch scope");
|
|
}
|
|
|
|
static void WriteStringRecord(unsigned Code, StringRef Str,
|
|
unsigned AbbrevToUse, BitstreamWriter &Stream) {
|
|
SmallVector<unsigned, 64> Vals;
|
|
|
|
// Code: [strchar x N]
|
|
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
|
|
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
|
|
AbbrevToUse = 0;
|
|
Vals.push_back(Str[i]);
|
|
}
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, Vals, AbbrevToUse);
|
|
}
|
|
|
|
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
|
|
switch (Kind) {
|
|
case Attribute::Alignment:
|
|
return bitc::ATTR_KIND_ALIGNMENT;
|
|
case Attribute::AlwaysInline:
|
|
return bitc::ATTR_KIND_ALWAYS_INLINE;
|
|
case Attribute::Builtin:
|
|
return bitc::ATTR_KIND_BUILTIN;
|
|
case Attribute::ByVal:
|
|
return bitc::ATTR_KIND_BY_VAL;
|
|
case Attribute::InAlloca:
|
|
return bitc::ATTR_KIND_IN_ALLOCA;
|
|
case Attribute::Cold:
|
|
return bitc::ATTR_KIND_COLD;
|
|
case Attribute::InlineHint:
|
|
return bitc::ATTR_KIND_INLINE_HINT;
|
|
case Attribute::InReg:
|
|
return bitc::ATTR_KIND_IN_REG;
|
|
case Attribute::JumpTable:
|
|
return bitc::ATTR_KIND_JUMP_TABLE;
|
|
case Attribute::MinSize:
|
|
return bitc::ATTR_KIND_MIN_SIZE;
|
|
case Attribute::Naked:
|
|
return bitc::ATTR_KIND_NAKED;
|
|
case Attribute::Nest:
|
|
return bitc::ATTR_KIND_NEST;
|
|
case Attribute::NoAlias:
|
|
return bitc::ATTR_KIND_NO_ALIAS;
|
|
case Attribute::NoBuiltin:
|
|
return bitc::ATTR_KIND_NO_BUILTIN;
|
|
case Attribute::NoCapture:
|
|
return bitc::ATTR_KIND_NO_CAPTURE;
|
|
case Attribute::NoDuplicate:
|
|
return bitc::ATTR_KIND_NO_DUPLICATE;
|
|
case Attribute::NoImplicitFloat:
|
|
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
|
|
case Attribute::NoInline:
|
|
return bitc::ATTR_KIND_NO_INLINE;
|
|
case Attribute::NonLazyBind:
|
|
return bitc::ATTR_KIND_NON_LAZY_BIND;
|
|
case Attribute::NonNull:
|
|
return bitc::ATTR_KIND_NON_NULL;
|
|
case Attribute::Dereferenceable:
|
|
return bitc::ATTR_KIND_DEREFERENCEABLE;
|
|
case Attribute::NoRedZone:
|
|
return bitc::ATTR_KIND_NO_RED_ZONE;
|
|
case Attribute::NoReturn:
|
|
return bitc::ATTR_KIND_NO_RETURN;
|
|
case Attribute::NoUnwind:
|
|
return bitc::ATTR_KIND_NO_UNWIND;
|
|
case Attribute::OptimizeForSize:
|
|
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
|
|
case Attribute::OptimizeNone:
|
|
return bitc::ATTR_KIND_OPTIMIZE_NONE;
|
|
case Attribute::ReadNone:
|
|
return bitc::ATTR_KIND_READ_NONE;
|
|
case Attribute::ReadOnly:
|
|
return bitc::ATTR_KIND_READ_ONLY;
|
|
case Attribute::Returned:
|
|
return bitc::ATTR_KIND_RETURNED;
|
|
case Attribute::ReturnsTwice:
|
|
return bitc::ATTR_KIND_RETURNS_TWICE;
|
|
case Attribute::SExt:
|
|
return bitc::ATTR_KIND_S_EXT;
|
|
case Attribute::StackAlignment:
|
|
return bitc::ATTR_KIND_STACK_ALIGNMENT;
|
|
case Attribute::StackProtect:
|
|
return bitc::ATTR_KIND_STACK_PROTECT;
|
|
case Attribute::StackProtectReq:
|
|
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
|
|
case Attribute::StackProtectStrong:
|
|
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
|
|
case Attribute::StructRet:
|
|
return bitc::ATTR_KIND_STRUCT_RET;
|
|
case Attribute::SanitizeAddress:
|
|
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
|
|
case Attribute::SanitizeThread:
|
|
return bitc::ATTR_KIND_SANITIZE_THREAD;
|
|
case Attribute::SanitizeMemory:
|
|
return bitc::ATTR_KIND_SANITIZE_MEMORY;
|
|
case Attribute::UWTable:
|
|
return bitc::ATTR_KIND_UW_TABLE;
|
|
case Attribute::ZExt:
|
|
return bitc::ATTR_KIND_Z_EXT;
|
|
case Attribute::EndAttrKinds:
|
|
llvm_unreachable("Can not encode end-attribute kinds marker.");
|
|
case Attribute::None:
|
|
llvm_unreachable("Can not encode none-attribute.");
|
|
}
|
|
|
|
llvm_unreachable("Trying to encode unknown attribute");
|
|
}
|
|
|
|
static void WriteAttributeGroupTable(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
|
|
if (AttrGrps.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
|
|
AttributeSet AS = AttrGrps[i];
|
|
for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
|
|
AttributeSet A = AS.getSlotAttributes(i);
|
|
|
|
Record.push_back(VE.getAttributeGroupID(A));
|
|
Record.push_back(AS.getSlotIndex(i));
|
|
|
|
for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
|
|
I != E; ++I) {
|
|
Attribute Attr = *I;
|
|
if (Attr.isEnumAttribute()) {
|
|
Record.push_back(0);
|
|
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
|
|
} else if (Attr.isIntAttribute()) {
|
|
Record.push_back(1);
|
|
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
|
|
Record.push_back(Attr.getValueAsInt());
|
|
} else {
|
|
StringRef Kind = Attr.getKindAsString();
|
|
StringRef Val = Attr.getValueAsString();
|
|
|
|
Record.push_back(Val.empty() ? 3 : 4);
|
|
Record.append(Kind.begin(), Kind.end());
|
|
Record.push_back(0);
|
|
if (!Val.empty()) {
|
|
Record.append(Val.begin(), Val.end());
|
|
Record.push_back(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteAttributeTable(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const std::vector<AttributeSet> &Attrs = VE.getAttributes();
|
|
if (Attrs.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
|
|
const AttributeSet &A = Attrs[i];
|
|
for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
|
|
Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
|
|
|
|
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteTypeTable - Write out the type table for a module.
|
|
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
|
|
|
|
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
|
|
SmallVector<uint64_t, 64> TypeVals;
|
|
|
|
uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
|
|
|
|
// Abbrev for TYPE_CODE_POINTER.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
|
|
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_FUNCTION.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_STRUCT_ANON.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_STRUCT_NAME.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_STRUCT_NAMED.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_ARRAY.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Emit an entry count so the reader can reserve space.
|
|
TypeVals.push_back(TypeList.size());
|
|
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
|
|
TypeVals.clear();
|
|
|
|
// Loop over all of the types, emitting each in turn.
|
|
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
|
|
Type *T = TypeList[i];
|
|
int AbbrevToUse = 0;
|
|
unsigned Code = 0;
|
|
|
|
switch (T->getTypeID()) {
|
|
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
|
|
case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
|
|
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
|
|
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
|
|
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
|
|
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
|
|
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
|
|
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
|
|
case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
|
|
case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
|
|
case Type::IntegerTyID:
|
|
// INTEGER: [width]
|
|
Code = bitc::TYPE_CODE_INTEGER;
|
|
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
|
|
break;
|
|
case Type::PointerTyID: {
|
|
PointerType *PTy = cast<PointerType>(T);
|
|
// POINTER: [pointee type, address space]
|
|
Code = bitc::TYPE_CODE_POINTER;
|
|
TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
|
|
unsigned AddressSpace = PTy->getAddressSpace();
|
|
TypeVals.push_back(AddressSpace);
|
|
if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
|
|
break;
|
|
}
|
|
case Type::FunctionTyID: {
|
|
FunctionType *FT = cast<FunctionType>(T);
|
|
// FUNCTION: [isvararg, retty, paramty x N]
|
|
Code = bitc::TYPE_CODE_FUNCTION;
|
|
TypeVals.push_back(FT->isVarArg());
|
|
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
|
|
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
|
|
AbbrevToUse = FunctionAbbrev;
|
|
break;
|
|
}
|
|
case Type::StructTyID: {
|
|
StructType *ST = cast<StructType>(T);
|
|
// STRUCT: [ispacked, eltty x N]
|
|
TypeVals.push_back(ST->isPacked());
|
|
// Output all of the element types.
|
|
for (StructType::element_iterator I = ST->element_begin(),
|
|
E = ST->element_end(); I != E; ++I)
|
|
TypeVals.push_back(VE.getTypeID(*I));
|
|
|
|
if (ST->isLiteral()) {
|
|
Code = bitc::TYPE_CODE_STRUCT_ANON;
|
|
AbbrevToUse = StructAnonAbbrev;
|
|
} else {
|
|
if (ST->isOpaque()) {
|
|
Code = bitc::TYPE_CODE_OPAQUE;
|
|
} else {
|
|
Code = bitc::TYPE_CODE_STRUCT_NAMED;
|
|
AbbrevToUse = StructNamedAbbrev;
|
|
}
|
|
|
|
// Emit the name if it is present.
|
|
if (!ST->getName().empty())
|
|
WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
|
|
StructNameAbbrev, Stream);
|
|
}
|
|
break;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
ArrayType *AT = cast<ArrayType>(T);
|
|
// ARRAY: [numelts, eltty]
|
|
Code = bitc::TYPE_CODE_ARRAY;
|
|
TypeVals.push_back(AT->getNumElements());
|
|
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
|
|
AbbrevToUse = ArrayAbbrev;
|
|
break;
|
|
}
|
|
case Type::VectorTyID: {
|
|
VectorType *VT = cast<VectorType>(T);
|
|
// VECTOR [numelts, eltty]
|
|
Code = bitc::TYPE_CODE_VECTOR;
|
|
TypeVals.push_back(VT->getNumElements());
|
|
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
|
|
TypeVals.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static unsigned getEncodedLinkage(const GlobalValue &GV) {
|
|
switch (GV.getLinkage()) {
|
|
case GlobalValue::ExternalLinkage:
|
|
return 0;
|
|
case GlobalValue::WeakAnyLinkage:
|
|
return 16;
|
|
case GlobalValue::AppendingLinkage:
|
|
return 2;
|
|
case GlobalValue::InternalLinkage:
|
|
return 3;
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
return 18;
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
return 7;
|
|
case GlobalValue::CommonLinkage:
|
|
return 8;
|
|
case GlobalValue::PrivateLinkage:
|
|
return 9;
|
|
case GlobalValue::WeakODRLinkage:
|
|
return 17;
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
return 19;
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
return 12;
|
|
}
|
|
llvm_unreachable("Invalid linkage");
|
|
}
|
|
|
|
static unsigned getEncodedVisibility(const GlobalValue &GV) {
|
|
switch (GV.getVisibility()) {
|
|
case GlobalValue::DefaultVisibility: return 0;
|
|
case GlobalValue::HiddenVisibility: return 1;
|
|
case GlobalValue::ProtectedVisibility: return 2;
|
|
}
|
|
llvm_unreachable("Invalid visibility");
|
|
}
|
|
|
|
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
|
|
switch (GV.getDLLStorageClass()) {
|
|
case GlobalValue::DefaultStorageClass: return 0;
|
|
case GlobalValue::DLLImportStorageClass: return 1;
|
|
case GlobalValue::DLLExportStorageClass: return 2;
|
|
}
|
|
llvm_unreachable("Invalid DLL storage class");
|
|
}
|
|
|
|
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
|
|
switch (GV.getThreadLocalMode()) {
|
|
case GlobalVariable::NotThreadLocal: return 0;
|
|
case GlobalVariable::GeneralDynamicTLSModel: return 1;
|
|
case GlobalVariable::LocalDynamicTLSModel: return 2;
|
|
case GlobalVariable::InitialExecTLSModel: return 3;
|
|
case GlobalVariable::LocalExecTLSModel: return 4;
|
|
}
|
|
llvm_unreachable("Invalid TLS model");
|
|
}
|
|
|
|
static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
|
|
switch (C.getSelectionKind()) {
|
|
case Comdat::Any:
|
|
return bitc::COMDAT_SELECTION_KIND_ANY;
|
|
case Comdat::ExactMatch:
|
|
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
|
|
case Comdat::Largest:
|
|
return bitc::COMDAT_SELECTION_KIND_LARGEST;
|
|
case Comdat::NoDuplicates:
|
|
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
|
|
case Comdat::SameSize:
|
|
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
|
|
}
|
|
llvm_unreachable("Invalid selection kind");
|
|
}
|
|
|
|
static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
SmallVector<uint16_t, 64> Vals;
|
|
for (const Comdat *C : VE.getComdats()) {
|
|
// COMDAT: [selection_kind, name]
|
|
Vals.push_back(getEncodedComdatSelectionKind(*C));
|
|
size_t Size = C->getName().size();
|
|
assert(isUInt<16>(Size));
|
|
Vals.push_back(Size);
|
|
for (char Chr : C->getName())
|
|
Vals.push_back((unsigned char)Chr);
|
|
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
|
|
Vals.clear();
|
|
}
|
|
}
|
|
|
|
// Emit top-level description of module, including target triple, inline asm,
|
|
// descriptors for global variables, and function prototype info.
|
|
static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
// Emit various pieces of data attached to a module.
|
|
if (!M->getTargetTriple().empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
|
|
0/*TODO*/, Stream);
|
|
const std::string &DL = M->getDataLayoutStr();
|
|
if (!DL.empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
|
|
if (!M->getModuleInlineAsm().empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
|
|
0/*TODO*/, Stream);
|
|
|
|
// Emit information about sections and GC, computing how many there are. Also
|
|
// compute the maximum alignment value.
|
|
std::map<std::string, unsigned> SectionMap;
|
|
std::map<std::string, unsigned> GCMap;
|
|
unsigned MaxAlignment = 0;
|
|
unsigned MaxGlobalType = 0;
|
|
for (const GlobalValue &GV : M->globals()) {
|
|
MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
|
|
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
|
|
if (GV.hasSection()) {
|
|
// Give section names unique ID's.
|
|
unsigned &Entry = SectionMap[GV.getSection()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
|
|
0/*TODO*/, Stream);
|
|
Entry = SectionMap.size();
|
|
}
|
|
}
|
|
}
|
|
for (const Function &F : *M) {
|
|
MaxAlignment = std::max(MaxAlignment, F.getAlignment());
|
|
if (F.hasSection()) {
|
|
// Give section names unique ID's.
|
|
unsigned &Entry = SectionMap[F.getSection()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
|
|
0/*TODO*/, Stream);
|
|
Entry = SectionMap.size();
|
|
}
|
|
}
|
|
if (F.hasGC()) {
|
|
// Same for GC names.
|
|
unsigned &Entry = GCMap[F.getGC()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
|
|
0/*TODO*/, Stream);
|
|
Entry = GCMap.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit abbrev for globals, now that we know # sections and max alignment.
|
|
unsigned SimpleGVarAbbrev = 0;
|
|
if (!M->global_empty()) {
|
|
// Add an abbrev for common globals with no visibility or thread localness.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(MaxGlobalType+1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
|
|
if (MaxAlignment == 0) // Alignment.
|
|
Abbv->Add(BitCodeAbbrevOp(0));
|
|
else {
|
|
unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(MaxEncAlignment+1)));
|
|
}
|
|
if (SectionMap.empty()) // Section.
|
|
Abbv->Add(BitCodeAbbrevOp(0));
|
|
else
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(SectionMap.size()+1)));
|
|
// Don't bother emitting vis + thread local.
|
|
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
// Emit the global variable information.
|
|
SmallVector<unsigned, 64> Vals;
|
|
for (const GlobalVariable &GV : M->globals()) {
|
|
unsigned AbbrevToUse = 0;
|
|
|
|
// GLOBALVAR: [type, isconst, initid,
|
|
// linkage, alignment, section, visibility, threadlocal,
|
|
// unnamed_addr, externally_initialized, dllstorageclass,
|
|
// comdat]
|
|
Vals.push_back(VE.getTypeID(GV.getType()));
|
|
Vals.push_back(GV.isConstant());
|
|
Vals.push_back(GV.isDeclaration() ? 0 :
|
|
(VE.getValueID(GV.getInitializer()) + 1));
|
|
Vals.push_back(getEncodedLinkage(GV));
|
|
Vals.push_back(Log2_32(GV.getAlignment())+1);
|
|
Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
|
|
if (GV.isThreadLocal() ||
|
|
GV.getVisibility() != GlobalValue::DefaultVisibility ||
|
|
GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
|
|
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
|
|
GV.hasComdat()) {
|
|
Vals.push_back(getEncodedVisibility(GV));
|
|
Vals.push_back(getEncodedThreadLocalMode(GV));
|
|
Vals.push_back(GV.hasUnnamedAddr());
|
|
Vals.push_back(GV.isExternallyInitialized());
|
|
Vals.push_back(getEncodedDLLStorageClass(GV));
|
|
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
|
|
} else {
|
|
AbbrevToUse = SimpleGVarAbbrev;
|
|
}
|
|
|
|
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit the function proto information.
|
|
for (const Function &F : *M) {
|
|
// FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
|
|
// section, visibility, gc, unnamed_addr, prologuedata,
|
|
// dllstorageclass, comdat, prefixdata]
|
|
Vals.push_back(VE.getTypeID(F.getType()));
|
|
Vals.push_back(F.getCallingConv());
|
|
Vals.push_back(F.isDeclaration());
|
|
Vals.push_back(getEncodedLinkage(F));
|
|
Vals.push_back(VE.getAttributeID(F.getAttributes()));
|
|
Vals.push_back(Log2_32(F.getAlignment())+1);
|
|
Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
|
|
Vals.push_back(getEncodedVisibility(F));
|
|
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
|
|
Vals.push_back(F.hasUnnamedAddr());
|
|
Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
|
|
: 0);
|
|
Vals.push_back(getEncodedDLLStorageClass(F));
|
|
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
|
|
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
|
|
: 0);
|
|
|
|
unsigned AbbrevToUse = 0;
|
|
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit the alias information.
|
|
for (const GlobalAlias &A : M->aliases()) {
|
|
// ALIAS: [alias type, aliasee val#, linkage, visibility]
|
|
Vals.push_back(VE.getTypeID(A.getType()));
|
|
Vals.push_back(VE.getValueID(A.getAliasee()));
|
|
Vals.push_back(getEncodedLinkage(A));
|
|
Vals.push_back(getEncodedVisibility(A));
|
|
Vals.push_back(getEncodedDLLStorageClass(A));
|
|
Vals.push_back(getEncodedThreadLocalMode(A));
|
|
Vals.push_back(A.hasUnnamedAddr());
|
|
unsigned AbbrevToUse = 0;
|
|
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
}
|
|
|
|
static uint64_t GetOptimizationFlags(const Value *V) {
|
|
uint64_t Flags = 0;
|
|
|
|
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
|
|
if (OBO->hasNoSignedWrap())
|
|
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
|
|
if (OBO->hasNoUnsignedWrap())
|
|
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
|
|
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
|
|
if (PEO->isExact())
|
|
Flags |= 1 << bitc::PEO_EXACT;
|
|
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
|
|
if (FPMO->hasUnsafeAlgebra())
|
|
Flags |= FastMathFlags::UnsafeAlgebra;
|
|
if (FPMO->hasNoNaNs())
|
|
Flags |= FastMathFlags::NoNaNs;
|
|
if (FPMO->hasNoInfs())
|
|
Flags |= FastMathFlags::NoInfs;
|
|
if (FPMO->hasNoSignedZeros())
|
|
Flags |= FastMathFlags::NoSignedZeros;
|
|
if (FPMO->hasAllowReciprocal())
|
|
Flags |= FastMathFlags::AllowReciprocal;
|
|
}
|
|
|
|
return Flags;
|
|
}
|
|
|
|
static void WriteValueAsMetadata(const ValueAsMetadata *MD,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record) {
|
|
// Mimic an MDNode with a value as one operand.
|
|
Value *V = MD->getValue();
|
|
Record.push_back(VE.getTypeID(V->getType()));
|
|
Record.push_back(VE.getValueID(V));
|
|
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
Metadata *MD = N->getOperand(i);
|
|
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
|
|
"Unexpected function-local metadata");
|
|
Record.push_back(VE.getMetadataOrNullID(MD));
|
|
}
|
|
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
|
|
: bitc::METADATA_NODE,
|
|
Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(N->getColumn());
|
|
Record.push_back(VE.getMetadataID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteGenericDebugNode(const GenericDebugNode *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(0); // Per-tag version field; unused for now.
|
|
|
|
for (auto &I : N->operands())
|
|
Record.push_back(VE.getMetadataOrNullID(I));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static uint64_t rotateSign(int64_t I) {
|
|
uint64_t U = I;
|
|
return I < 0 ? ~(U << 1) : U << 1;
|
|
}
|
|
|
|
static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getCount());
|
|
Record.push_back(rotateSign(N->getLo()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(rotateSign(N->getValue()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(N->getSizeInBits());
|
|
Record.push_back(N->getAlignInBits());
|
|
Record.push_back(N->getEncoding());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDDerivedType(const MDDerivedType *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
|
|
Record.push_back(N->getSizeInBits());
|
|
Record.push_back(N->getAlignInBits());
|
|
Record.push_back(N->getOffsetInBits());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDCompositeType(const MDCompositeType *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
|
|
Record.push_back(N->getSizeInBits());
|
|
Record.push_back(N->getAlignInBits());
|
|
Record.push_back(N->getOffsetInBits());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getElements()));
|
|
Record.push_back(N->getRuntimeLang());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDSubroutineType(const MDSubroutineType *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDCompileUnit(const MDCompileUnit *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getSourceLanguage());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
|
|
Record.push_back(N->isOptimized());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
|
|
Record.push_back(N->getRuntimeVersion());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
|
|
Record.push_back(N->getEmissionKind());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getSubprograms()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDSubprogram(const MDSubprogram *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(N->isLocalToUnit());
|
|
Record.push_back(N->isDefinition());
|
|
Record.push_back(N->getScopeLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
|
|
Record.push_back(N->getVirtuality());
|
|
Record.push_back(N->getVirtualIndex());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(N->isOptimized());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFunction()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getVariables()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDLexicalBlock(const MDLexicalBlock *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(N->getColumn());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getDiscriminator());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(N->getLine());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getValue()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDGlobalVariable(const MDGlobalVariable *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(N->isLocalToUnit());
|
|
Record.push_back(N->isDefinition());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDLocalVariable(const MDLocalVariable *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(N->getArg());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.reserve(N->getElements().size() + 1);
|
|
|
|
Record.push_back(N->isDistinct());
|
|
Record.append(N->elements_begin(), N->elements_end());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDObjCProperty(const MDObjCProperty *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
|
|
Record.push_back(N->getAttributes());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDImportedEntity(const MDImportedEntity *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteModuleMetadata(const Module *M,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const auto &MDs = VE.getMDs();
|
|
if (MDs.empty() && M->named_metadata_empty())
|
|
return;
|
|
|
|
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
|
|
|
|
unsigned MDSAbbrev = 0;
|
|
if (VE.hasMDString()) {
|
|
// Abbrev for METADATA_STRING.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
MDSAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
// Initialize MDNode abbreviations.
|
|
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
if (VE.hasMDLocation()) {
|
|
// Abbrev for METADATA_LOCATION.
|
|
//
|
|
// Assume the column is usually under 128, and always output the inlined-at
|
|
// location (it's never more expensive than building an array size 1).
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
if (VE.hasGenericDebugNode()) {
|
|
// Abbrev for METADATA_GENERIC_DEBUG.
|
|
//
|
|
// Assume the column is usually under 128, and always output the inlined-at
|
|
// location (it's never more expensive than building an array size 1).
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
unsigned NameAbbrev = 0;
|
|
if (!M->named_metadata_empty()) {
|
|
// Abbrev for METADATA_NAME.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
NameAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (const Metadata *MD : MDs) {
|
|
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
|
|
switch (N->getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid MDNode subclass");
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
|
|
continue;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
|
|
WriteValueAsMetadata(MDC, VE, Stream, Record);
|
|
continue;
|
|
}
|
|
const MDString *MDS = cast<MDString>(MD);
|
|
// Code: [strchar x N]
|
|
Record.append(MDS->bytes_begin(), MDS->bytes_end());
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
// Write named metadata.
|
|
for (const NamedMDNode &NMD : M->named_metadata()) {
|
|
// Write name.
|
|
StringRef Str = NMD.getName();
|
|
Record.append(Str.bytes_begin(), Str.bytes_end());
|
|
Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
|
|
Record.clear();
|
|
|
|
// Write named metadata operands.
|
|
for (const MDNode *N : NMD.operands())
|
|
Record.push_back(VE.getMetadataID(N));
|
|
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteFunctionLocalMetadata(const Function &F,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
bool StartedMetadataBlock = false;
|
|
SmallVector<uint64_t, 64> Record;
|
|
const SmallVectorImpl<const LocalAsMetadata *> &MDs =
|
|
VE.getFunctionLocalMDs();
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
|
|
assert(MDs[i] && "Expected valid function-local metadata");
|
|
if (!StartedMetadataBlock) {
|
|
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
|
|
StartedMetadataBlock = true;
|
|
}
|
|
WriteValueAsMetadata(MDs[i], VE, Stream, Record);
|
|
}
|
|
|
|
if (StartedMetadataBlock)
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteMetadataAttachment(const Function &F,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Write metadata attachments
|
|
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
|
|
I != E; ++I) {
|
|
MDs.clear();
|
|
I->getAllMetadataOtherThanDebugLoc(MDs);
|
|
|
|
// If no metadata, ignore instruction.
|
|
if (MDs.empty()) continue;
|
|
|
|
Record.push_back(VE.getInstructionID(I));
|
|
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
|
|
Record.push_back(MDs[i].first);
|
|
Record.push_back(VE.getMetadataID(MDs[i].second));
|
|
}
|
|
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Write metadata kinds
|
|
// METADATA_KIND - [n x [id, name]]
|
|
SmallVector<StringRef, 8> Names;
|
|
M->getMDKindNames(Names);
|
|
|
|
if (Names.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
|
|
|
|
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
|
|
Record.push_back(MDKindID);
|
|
StringRef KName = Names[MDKindID];
|
|
Record.append(KName.begin(), KName.end());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
|
|
if ((int64_t)V >= 0)
|
|
Vals.push_back(V << 1);
|
|
else
|
|
Vals.push_back((-V << 1) | 1);
|
|
}
|
|
|
|
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream, bool isGlobal) {
|
|
if (FirstVal == LastVal) return;
|
|
|
|
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
|
|
|
|
unsigned AggregateAbbrev = 0;
|
|
unsigned String8Abbrev = 0;
|
|
unsigned CString7Abbrev = 0;
|
|
unsigned CString6Abbrev = 0;
|
|
// If this is a constant pool for the module, emit module-specific abbrevs.
|
|
if (isGlobal) {
|
|
// Abbrev for CST_CODE_AGGREGATE.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
|
|
AggregateAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for CST_CODE_STRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
String8Abbrev = Stream.EmitAbbrev(Abbv);
|
|
// Abbrev for CST_CODE_CSTRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
CString7Abbrev = Stream.EmitAbbrev(Abbv);
|
|
// Abbrev for CST_CODE_CSTRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
CString6Abbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
const ValueEnumerator::ValueList &Vals = VE.getValues();
|
|
Type *LastTy = nullptr;
|
|
for (unsigned i = FirstVal; i != LastVal; ++i) {
|
|
const Value *V = Vals[i].first;
|
|
// If we need to switch types, do so now.
|
|
if (V->getType() != LastTy) {
|
|
LastTy = V->getType();
|
|
Record.push_back(VE.getTypeID(LastTy));
|
|
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
|
|
CONSTANTS_SETTYPE_ABBREV);
|
|
Record.clear();
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
Record.push_back(unsigned(IA->hasSideEffects()) |
|
|
unsigned(IA->isAlignStack()) << 1 |
|
|
unsigned(IA->getDialect()&1) << 2);
|
|
|
|
// Add the asm string.
|
|
const std::string &AsmStr = IA->getAsmString();
|
|
Record.push_back(AsmStr.size());
|
|
Record.append(AsmStr.begin(), AsmStr.end());
|
|
|
|
// Add the constraint string.
|
|
const std::string &ConstraintStr = IA->getConstraintString();
|
|
Record.push_back(ConstraintStr.size());
|
|
Record.append(ConstraintStr.begin(), ConstraintStr.end());
|
|
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
|
|
Record.clear();
|
|
continue;
|
|
}
|
|
const Constant *C = cast<Constant>(V);
|
|
unsigned Code = -1U;
|
|
unsigned AbbrevToUse = 0;
|
|
if (C->isNullValue()) {
|
|
Code = bitc::CST_CODE_NULL;
|
|
} else if (isa<UndefValue>(C)) {
|
|
Code = bitc::CST_CODE_UNDEF;
|
|
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
|
|
if (IV->getBitWidth() <= 64) {
|
|
uint64_t V = IV->getSExtValue();
|
|
emitSignedInt64(Record, V);
|
|
Code = bitc::CST_CODE_INTEGER;
|
|
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
|
|
} else { // Wide integers, > 64 bits in size.
|
|
// We have an arbitrary precision integer value to write whose
|
|
// bit width is > 64. However, in canonical unsigned integer
|
|
// format it is likely that the high bits are going to be zero.
|
|
// So, we only write the number of active words.
|
|
unsigned NWords = IV->getValue().getActiveWords();
|
|
const uint64_t *RawWords = IV->getValue().getRawData();
|
|
for (unsigned i = 0; i != NWords; ++i) {
|
|
emitSignedInt64(Record, RawWords[i]);
|
|
}
|
|
Code = bitc::CST_CODE_WIDE_INTEGER;
|
|
}
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
Code = bitc::CST_CODE_FLOAT;
|
|
Type *Ty = CFP->getType();
|
|
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
|
|
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
|
|
} else if (Ty->isX86_FP80Ty()) {
|
|
// api needed to prevent premature destruction
|
|
// bits are not in the same order as a normal i80 APInt, compensate.
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
Record.push_back((p[1] << 48) | (p[0] >> 16));
|
|
Record.push_back(p[0] & 0xffffLL);
|
|
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
Record.push_back(p[0]);
|
|
Record.push_back(p[1]);
|
|
} else {
|
|
assert (0 && "Unknown FP type!");
|
|
}
|
|
} else if (isa<ConstantDataSequential>(C) &&
|
|
cast<ConstantDataSequential>(C)->isString()) {
|
|
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
|
|
// Emit constant strings specially.
|
|
unsigned NumElts = Str->getNumElements();
|
|
// If this is a null-terminated string, use the denser CSTRING encoding.
|
|
if (Str->isCString()) {
|
|
Code = bitc::CST_CODE_CSTRING;
|
|
--NumElts; // Don't encode the null, which isn't allowed by char6.
|
|
} else {
|
|
Code = bitc::CST_CODE_STRING;
|
|
AbbrevToUse = String8Abbrev;
|
|
}
|
|
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
|
|
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
unsigned char V = Str->getElementAsInteger(i);
|
|
Record.push_back(V);
|
|
isCStr7 &= (V & 128) == 0;
|
|
if (isCStrChar6)
|
|
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
|
|
}
|
|
|
|
if (isCStrChar6)
|
|
AbbrevToUse = CString6Abbrev;
|
|
else if (isCStr7)
|
|
AbbrevToUse = CString7Abbrev;
|
|
} else if (const ConstantDataSequential *CDS =
|
|
dyn_cast<ConstantDataSequential>(C)) {
|
|
Code = bitc::CST_CODE_DATA;
|
|
Type *EltTy = CDS->getType()->getElementType();
|
|
if (isa<IntegerType>(EltTy)) {
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
|
|
Record.push_back(CDS->getElementAsInteger(i));
|
|
} else if (EltTy->isFloatTy()) {
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
|
|
union { float F; uint32_t I; };
|
|
F = CDS->getElementAsFloat(i);
|
|
Record.push_back(I);
|
|
}
|
|
} else {
|
|
assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
|
|
union { double F; uint64_t I; };
|
|
F = CDS->getElementAsDouble(i);
|
|
Record.push_back(I);
|
|
}
|
|
}
|
|
} else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
|
|
isa<ConstantVector>(C)) {
|
|
Code = bitc::CST_CODE_AGGREGATE;
|
|
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
|
|
Record.push_back(VE.getValueID(C->getOperand(i)));
|
|
AbbrevToUse = AggregateAbbrev;
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
if (Instruction::isCast(CE->getOpcode())) {
|
|
Code = bitc::CST_CODE_CE_CAST;
|
|
Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
|
|
} else {
|
|
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
|
|
Code = bitc::CST_CODE_CE_BINOP;
|
|
Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
uint64_t Flags = GetOptimizationFlags(CE);
|
|
if (Flags != 0)
|
|
Record.push_back(Flags);
|
|
}
|
|
break;
|
|
case Instruction::GetElementPtr: {
|
|
Code = bitc::CST_CODE_CE_GEP;
|
|
const auto *GO = cast<GEPOperator>(C);
|
|
if (GO->isInBounds())
|
|
Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
|
|
Record.push_back(VE.getTypeID(GO->getSourceElementType()));
|
|
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
|
|
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(i)));
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Select:
|
|
Code = bitc::CST_CODE_CE_SELECT;
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ExtractElement:
|
|
Code = bitc::CST_CODE_CE_EXTRACTELT;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
break;
|
|
case Instruction::InsertElement:
|
|
Code = bitc::CST_CODE_CE_INSERTELT;
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
// If the return type and argument types are the same, this is a
|
|
// standard shufflevector instruction. If the types are different,
|
|
// then the shuffle is widening or truncating the input vectors, and
|
|
// the argument type must also be encoded.
|
|
if (C->getType() == C->getOperand(0)->getType()) {
|
|
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
|
|
} else {
|
|
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
}
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
Code = bitc::CST_CODE_CE_CMP;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(CE->getPredicate());
|
|
break;
|
|
}
|
|
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
|
|
Code = bitc::CST_CODE_BLOCKADDRESS;
|
|
Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
|
|
Record.push_back(VE.getValueID(BA->getFunction()));
|
|
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
|
|
} else {
|
|
#ifndef NDEBUG
|
|
C->dump();
|
|
#endif
|
|
llvm_unreachable("Unknown constant!");
|
|
}
|
|
Stream.EmitRecord(Code, Record, AbbrevToUse);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteModuleConstants(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const ValueEnumerator::ValueList &Vals = VE.getValues();
|
|
|
|
// Find the first constant to emit, which is the first non-globalvalue value.
|
|
// We know globalvalues have been emitted by WriteModuleInfo.
|
|
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
|
|
if (!isa<GlobalValue>(Vals[i].first)) {
|
|
WriteConstants(i, Vals.size(), VE, Stream, true);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PushValueAndType - The file has to encode both the value and type id for
|
|
/// many values, because we need to know what type to create for forward
|
|
/// references. However, most operands are not forward references, so this type
|
|
/// field is not needed.
|
|
///
|
|
/// This function adds V's value ID to Vals. If the value ID is higher than the
|
|
/// instruction ID, then it is a forward reference, and it also includes the
|
|
/// type ID. The value ID that is written is encoded relative to the InstID.
|
|
static bool PushValueAndType(const Value *V, unsigned InstID,
|
|
SmallVectorImpl<unsigned> &Vals,
|
|
ValueEnumerator &VE) {
|
|
unsigned ValID = VE.getValueID(V);
|
|
// Make encoding relative to the InstID.
|
|
Vals.push_back(InstID - ValID);
|
|
if (ValID >= InstID) {
|
|
Vals.push_back(VE.getTypeID(V->getType()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// pushValue - Like PushValueAndType, but where the type of the value is
|
|
/// omitted (perhaps it was already encoded in an earlier operand).
|
|
static void pushValue(const Value *V, unsigned InstID,
|
|
SmallVectorImpl<unsigned> &Vals,
|
|
ValueEnumerator &VE) {
|
|
unsigned ValID = VE.getValueID(V);
|
|
Vals.push_back(InstID - ValID);
|
|
}
|
|
|
|
static void pushValueSigned(const Value *V, unsigned InstID,
|
|
SmallVectorImpl<uint64_t> &Vals,
|
|
ValueEnumerator &VE) {
|
|
unsigned ValID = VE.getValueID(V);
|
|
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
|
|
emitSignedInt64(Vals, diff);
|
|
}
|
|
|
|
/// WriteInstruction - Emit an instruction to the specified stream.
|
|
static void WriteInstruction(const Instruction &I, unsigned InstID,
|
|
ValueEnumerator &VE, BitstreamWriter &Stream,
|
|
SmallVectorImpl<unsigned> &Vals) {
|
|
unsigned Code = 0;
|
|
unsigned AbbrevToUse = 0;
|
|
VE.setInstructionID(&I);
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
if (Instruction::isCast(I.getOpcode())) {
|
|
Code = bitc::FUNC_CODE_INST_CAST;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
|
|
} else {
|
|
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
|
|
Code = bitc::FUNC_CODE_INST_BINOP;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
|
|
uint64_t Flags = GetOptimizationFlags(&I);
|
|
if (Flags != 0) {
|
|
if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
|
|
AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
|
|
Vals.push_back(Flags);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Instruction::GetElementPtr: {
|
|
Code = bitc::FUNC_CODE_INST_GEP;
|
|
AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
|
|
auto &GEPInst = cast<GetElementPtrInst>(I);
|
|
Vals.push_back(GEPInst.isInBounds());
|
|
Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
|
|
break;
|
|
}
|
|
case Instruction::ExtractValue: {
|
|
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
|
|
Vals.append(EVI->idx_begin(), EVI->idx_end());
|
|
break;
|
|
}
|
|
case Instruction::InsertValue: {
|
|
Code = bitc::FUNC_CODE_INST_INSERTVAL;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
|
|
Vals.append(IVI->idx_begin(), IVI->idx_end());
|
|
break;
|
|
}
|
|
case Instruction::Select:
|
|
Code = bitc::FUNC_CODE_INST_VSELECT;
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
pushValue(I.getOperand(2), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ExtractElement:
|
|
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::InsertElement:
|
|
Code = bitc::FUNC_CODE_INST_INSERTELT;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(2), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
pushValue(I.getOperand(2), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
// compare returning Int1Ty or vector of Int1Ty
|
|
Code = bitc::FUNC_CODE_INST_CMP2;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
Vals.push_back(cast<CmpInst>(I).getPredicate());
|
|
break;
|
|
|
|
case Instruction::Ret:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_RET;
|
|
unsigned NumOperands = I.getNumOperands();
|
|
if (NumOperands == 0)
|
|
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
|
|
else if (NumOperands == 1) {
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
|
|
} else {
|
|
for (unsigned i = 0, e = NumOperands; i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Br:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_BR;
|
|
const BranchInst &II = cast<BranchInst>(I);
|
|
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
|
|
if (II.isConditional()) {
|
|
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
|
|
pushValue(II.getCondition(), InstID, Vals, VE);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Switch:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_SWITCH;
|
|
const SwitchInst &SI = cast<SwitchInst>(I);
|
|
Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
|
|
pushValue(SI.getCondition(), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
|
|
for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
|
|
i != e; ++i) {
|
|
Vals.push_back(VE.getValueID(i.getCaseValue()));
|
|
Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::IndirectBr:
|
|
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
|
|
// Encode the address operand as relative, but not the basic blocks.
|
|
pushValue(I.getOperand(0), InstID, Vals, VE);
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
|
|
Vals.push_back(VE.getValueID(I.getOperand(i)));
|
|
break;
|
|
|
|
case Instruction::Invoke: {
|
|
const InvokeInst *II = cast<InvokeInst>(&I);
|
|
const Value *Callee(II->getCalledValue());
|
|
PointerType *PTy = cast<PointerType>(Callee->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
Code = bitc::FUNC_CODE_INST_INVOKE;
|
|
|
|
Vals.push_back(VE.getAttributeID(II->getAttributes()));
|
|
Vals.push_back(II->getCallingConv());
|
|
Vals.push_back(VE.getValueID(II->getNormalDest()));
|
|
Vals.push_back(VE.getValueID(II->getUnwindDest()));
|
|
PushValueAndType(Callee, InstID, Vals, VE);
|
|
|
|
// Emit value #'s for the fixed parameters.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
|
|
|
|
// Emit type/value pairs for varargs params.
|
|
if (FTy->isVarArg()) {
|
|
for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
|
|
i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Resume:
|
|
Code = bitc::FUNC_CODE_INST_RESUME;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::Unreachable:
|
|
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
|
|
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
|
|
break;
|
|
|
|
case Instruction::PHI: {
|
|
const PHINode &PN = cast<PHINode>(I);
|
|
Code = bitc::FUNC_CODE_INST_PHI;
|
|
// With the newer instruction encoding, forward references could give
|
|
// negative valued IDs. This is most common for PHIs, so we use
|
|
// signed VBRs.
|
|
SmallVector<uint64_t, 128> Vals64;
|
|
Vals64.push_back(VE.getTypeID(PN.getType()));
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
|
|
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
|
|
}
|
|
// Emit a Vals64 vector and exit.
|
|
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
|
|
Vals64.clear();
|
|
return;
|
|
}
|
|
|
|
case Instruction::LandingPad: {
|
|
const LandingPadInst &LP = cast<LandingPadInst>(I);
|
|
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
|
|
Vals.push_back(VE.getTypeID(LP.getType()));
|
|
PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
|
|
Vals.push_back(LP.isCleanup());
|
|
Vals.push_back(LP.getNumClauses());
|
|
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
|
|
if (LP.isCatch(I))
|
|
Vals.push_back(LandingPadInst::Catch);
|
|
else
|
|
Vals.push_back(LandingPadInst::Filter);
|
|
PushValueAndType(LP.getClause(I), InstID, Vals, VE);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Instruction::Alloca: {
|
|
Code = bitc::FUNC_CODE_INST_ALLOCA;
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
|
|
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
|
|
const AllocaInst &AI = cast<AllocaInst>(I);
|
|
unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
|
|
assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
|
|
"not enough bits for maximum alignment");
|
|
assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
|
|
AlignRecord |= AI.isUsedWithInAlloca() << 5;
|
|
Vals.push_back(AlignRecord);
|
|
break;
|
|
}
|
|
|
|
case Instruction::Load:
|
|
if (cast<LoadInst>(I).isAtomic()) {
|
|
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
} else {
|
|
Code = bitc::FUNC_CODE_INST_LOAD;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
|
|
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
|
|
}
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
|
|
Vals.push_back(cast<LoadInst>(I).isVolatile());
|
|
if (cast<LoadInst>(I).isAtomic()) {
|
|
Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
|
|
}
|
|
break;
|
|
case Instruction::Store:
|
|
if (cast<StoreInst>(I).isAtomic())
|
|
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
|
|
else
|
|
Code = bitc::FUNC_CODE_INST_STORE;
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
|
|
pushValue(I.getOperand(0), InstID, Vals, VE); // val.
|
|
Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
|
|
Vals.push_back(cast<StoreInst>(I).isVolatile());
|
|
if (cast<StoreInst>(I).isAtomic()) {
|
|
Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
|
|
}
|
|
break;
|
|
case Instruction::AtomicCmpXchg:
|
|
Code = bitc::FUNC_CODE_INST_CMPXCHG;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
|
|
pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
|
|
pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
|
|
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
|
|
Vals.push_back(GetEncodedOrdering(
|
|
cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(
|
|
cast<AtomicCmpXchgInst>(I).getSynchScope()));
|
|
Vals.push_back(GetEncodedOrdering(
|
|
cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
|
|
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
|
|
break;
|
|
case Instruction::AtomicRMW:
|
|
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
|
|
pushValue(I.getOperand(1), InstID, Vals, VE); // val.
|
|
Vals.push_back(GetEncodedRMWOperation(
|
|
cast<AtomicRMWInst>(I).getOperation()));
|
|
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
|
|
Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(
|
|
cast<AtomicRMWInst>(I).getSynchScope()));
|
|
break;
|
|
case Instruction::Fence:
|
|
Code = bitc::FUNC_CODE_INST_FENCE;
|
|
Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
|
|
break;
|
|
case Instruction::Call: {
|
|
const CallInst &CI = cast<CallInst>(I);
|
|
PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
|
|
Code = bitc::FUNC_CODE_INST_CALL;
|
|
|
|
Vals.push_back(VE.getAttributeID(CI.getAttributes()));
|
|
Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
|
|
unsigned(CI.isMustTailCall()) << 14);
|
|
PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
|
|
|
|
// Emit value #'s for the fixed parameters.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
|
|
// Check for labels (can happen with asm labels).
|
|
if (FTy->getParamType(i)->isLabelTy())
|
|
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
|
|
else
|
|
pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
|
|
}
|
|
|
|
// Emit type/value pairs for varargs params.
|
|
if (FTy->isVarArg()) {
|
|
for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
|
|
i != e; ++i)
|
|
PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::VAArg:
|
|
Code = bitc::FUNC_CODE_INST_VAARG;
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
|
|
pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
|
|
Vals.push_back(VE.getTypeID(I.getType())); // restype.
|
|
break;
|
|
}
|
|
|
|
Stream.EmitRecord(Code, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit names for globals/functions etc.
|
|
static void WriteValueSymbolTable(const ValueSymbolTable &VST,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
if (VST.empty()) return;
|
|
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
|
|
|
|
// FIXME: Set up the abbrev, we know how many values there are!
|
|
// FIXME: We know if the type names can use 7-bit ascii.
|
|
SmallVector<unsigned, 64> NameVals;
|
|
|
|
for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
|
|
SI != SE; ++SI) {
|
|
|
|
const ValueName &Name = *SI;
|
|
|
|
// Figure out the encoding to use for the name.
|
|
bool is7Bit = true;
|
|
bool isChar6 = true;
|
|
for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
|
|
C != E; ++C) {
|
|
if (isChar6)
|
|
isChar6 = BitCodeAbbrevOp::isChar6(*C);
|
|
if ((unsigned char)*C & 128) {
|
|
is7Bit = false;
|
|
break; // don't bother scanning the rest.
|
|
}
|
|
}
|
|
|
|
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
|
|
|
|
// VST_ENTRY: [valueid, namechar x N]
|
|
// VST_BBENTRY: [bbid, namechar x N]
|
|
unsigned Code;
|
|
if (isa<BasicBlock>(SI->getValue())) {
|
|
Code = bitc::VST_CODE_BBENTRY;
|
|
if (isChar6)
|
|
AbbrevToUse = VST_BBENTRY_6_ABBREV;
|
|
} else {
|
|
Code = bitc::VST_CODE_ENTRY;
|
|
if (isChar6)
|
|
AbbrevToUse = VST_ENTRY_6_ABBREV;
|
|
else if (is7Bit)
|
|
AbbrevToUse = VST_ENTRY_7_ABBREV;
|
|
}
|
|
|
|
NameVals.push_back(VE.getValueID(SI->getValue()));
|
|
for (const char *P = Name.getKeyData(),
|
|
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
|
|
NameVals.push_back((unsigned char)*P);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
|
|
NameVals.clear();
|
|
}
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
|
|
BitstreamWriter &Stream) {
|
|
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
|
|
unsigned Code;
|
|
if (isa<BasicBlock>(Order.V))
|
|
Code = bitc::USELIST_CODE_BB;
|
|
else
|
|
Code = bitc::USELIST_CODE_DEFAULT;
|
|
|
|
SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
|
|
Record.push_back(VE.getValueID(Order.V));
|
|
Stream.EmitRecord(Code, Record);
|
|
}
|
|
|
|
static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
auto hasMore = [&]() {
|
|
return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
|
|
};
|
|
if (!hasMore())
|
|
// Nothing to do.
|
|
return;
|
|
|
|
Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
|
|
while (hasMore()) {
|
|
WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
|
|
VE.UseListOrders.pop_back();
|
|
}
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteFunction - Emit a function body to the module stream.
|
|
static void WriteFunction(const Function &F, ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
|
|
VE.incorporateFunction(F);
|
|
|
|
SmallVector<unsigned, 64> Vals;
|
|
|
|
// Emit the number of basic blocks, so the reader can create them ahead of
|
|
// time.
|
|
Vals.push_back(VE.getBasicBlocks().size());
|
|
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
|
|
Vals.clear();
|
|
|
|
// If there are function-local constants, emit them now.
|
|
unsigned CstStart, CstEnd;
|
|
VE.getFunctionConstantRange(CstStart, CstEnd);
|
|
WriteConstants(CstStart, CstEnd, VE, Stream, false);
|
|
|
|
// If there is function-local metadata, emit it now.
|
|
WriteFunctionLocalMetadata(F, VE, Stream);
|
|
|
|
// Keep a running idea of what the instruction ID is.
|
|
unsigned InstID = CstEnd;
|
|
|
|
bool NeedsMetadataAttachment = false;
|
|
|
|
DebugLoc LastDL;
|
|
|
|
// Finally, emit all the instructions, in order.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
|
|
I != E; ++I) {
|
|
WriteInstruction(*I, InstID, VE, Stream, Vals);
|
|
|
|
if (!I->getType()->isVoidTy())
|
|
++InstID;
|
|
|
|
// If the instruction has metadata, write a metadata attachment later.
|
|
NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
|
|
|
|
// If the instruction has a debug location, emit it.
|
|
DebugLoc DL = I->getDebugLoc();
|
|
if (DL.isUnknown()) {
|
|
// nothing todo.
|
|
} else if (DL == LastDL) {
|
|
// Just repeat the same debug loc as last time.
|
|
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
|
|
} else {
|
|
MDNode *Scope, *IA;
|
|
DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
|
|
assert(Scope && "Expected valid scope");
|
|
|
|
Vals.push_back(DL.getLine());
|
|
Vals.push_back(DL.getCol());
|
|
Vals.push_back(VE.getMetadataOrNullID(Scope));
|
|
Vals.push_back(VE.getMetadataOrNullID(IA));
|
|
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
|
|
Vals.clear();
|
|
|
|
LastDL = DL;
|
|
}
|
|
}
|
|
|
|
// Emit names for all the instructions etc.
|
|
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
|
|
|
|
if (NeedsMetadataAttachment)
|
|
WriteMetadataAttachment(F, VE, Stream);
|
|
if (shouldPreserveBitcodeUseListOrder())
|
|
WriteUseListBlock(&F, VE, Stream);
|
|
VE.purgeFunction();
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
// Emit blockinfo, which defines the standard abbreviations etc.
|
|
static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
// We only want to emit block info records for blocks that have multiple
|
|
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
|
|
// Other blocks can define their abbrevs inline.
|
|
Stream.EnterBlockInfoBlock(2);
|
|
|
|
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_8_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // 7-bit fixed width VST_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_7_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // 6-bit char6 VST_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_6_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // 6-bit char6 VST_BBENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_BBENTRY_6_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
|
|
|
|
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_SETTYPE_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // INTEGER abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_INTEGER_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
|
|
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_CE_CAST_Abbrev)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // NULL abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_NULL_Abbrev)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
// FIXME: This should only use space for first class types!
|
|
|
|
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_LOAD_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_BINOP_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_CAST abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_CAST_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // INST_RET abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_RET abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
|
|
Log2_32_Ceil(VE.getTypes().size() + 1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
|
|
FUNCTION_INST_GEP_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteModule - Emit the specified module to the bitstream.
|
|
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
|
|
|
|
SmallVector<unsigned, 1> Vals;
|
|
unsigned CurVersion = 1;
|
|
Vals.push_back(CurVersion);
|
|
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
|
|
|
|
// Analyze the module, enumerating globals, functions, etc.
|
|
ValueEnumerator VE(*M);
|
|
|
|
// Emit blockinfo, which defines the standard abbreviations etc.
|
|
WriteBlockInfo(VE, Stream);
|
|
|
|
// Emit information about attribute groups.
|
|
WriteAttributeGroupTable(VE, Stream);
|
|
|
|
// Emit information about parameter attributes.
|
|
WriteAttributeTable(VE, Stream);
|
|
|
|
// Emit information describing all of the types in the module.
|
|
WriteTypeTable(VE, Stream);
|
|
|
|
writeComdats(VE, Stream);
|
|
|
|
// Emit top-level description of module, including target triple, inline asm,
|
|
// descriptors for global variables, and function prototype info.
|
|
WriteModuleInfo(M, VE, Stream);
|
|
|
|
// Emit constants.
|
|
WriteModuleConstants(VE, Stream);
|
|
|
|
// Emit metadata.
|
|
WriteModuleMetadata(M, VE, Stream);
|
|
|
|
// Emit metadata.
|
|
WriteModuleMetadataStore(M, Stream);
|
|
|
|
// Emit names for globals/functions etc.
|
|
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
|
|
|
|
// Emit module-level use-lists.
|
|
if (shouldPreserveBitcodeUseListOrder())
|
|
WriteUseListBlock(nullptr, VE, Stream);
|
|
|
|
// Emit function bodies.
|
|
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
|
|
if (!F->isDeclaration())
|
|
WriteFunction(*F, VE, Stream);
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
|
|
/// header and trailer to make it compatible with the system archiver. To do
|
|
/// this we emit the following header, and then emit a trailer that pads the
|
|
/// file out to be a multiple of 16 bytes.
|
|
///
|
|
/// struct bc_header {
|
|
/// uint32_t Magic; // 0x0B17C0DE
|
|
/// uint32_t Version; // Version, currently always 0.
|
|
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
|
|
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
|
|
/// uint32_t CPUType; // CPU specifier.
|
|
/// ... potentially more later ...
|
|
/// };
|
|
enum {
|
|
DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
|
|
DarwinBCHeaderSize = 5*4
|
|
};
|
|
|
|
static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
|
|
uint32_t &Position) {
|
|
Buffer[Position + 0] = (unsigned char) (Value >> 0);
|
|
Buffer[Position + 1] = (unsigned char) (Value >> 8);
|
|
Buffer[Position + 2] = (unsigned char) (Value >> 16);
|
|
Buffer[Position + 3] = (unsigned char) (Value >> 24);
|
|
Position += 4;
|
|
}
|
|
|
|
static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
|
|
const Triple &TT) {
|
|
unsigned CPUType = ~0U;
|
|
|
|
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
|
|
// armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
|
|
// number from /usr/include/mach/machine.h. It is ok to reproduce the
|
|
// specific constants here because they are implicitly part of the Darwin ABI.
|
|
enum {
|
|
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
|
|
DARWIN_CPU_TYPE_X86 = 7,
|
|
DARWIN_CPU_TYPE_ARM = 12,
|
|
DARWIN_CPU_TYPE_POWERPC = 18
|
|
};
|
|
|
|
Triple::ArchType Arch = TT.getArch();
|
|
if (Arch == Triple::x86_64)
|
|
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
|
|
else if (Arch == Triple::x86)
|
|
CPUType = DARWIN_CPU_TYPE_X86;
|
|
else if (Arch == Triple::ppc)
|
|
CPUType = DARWIN_CPU_TYPE_POWERPC;
|
|
else if (Arch == Triple::ppc64)
|
|
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
|
|
else if (Arch == Triple::arm || Arch == Triple::thumb)
|
|
CPUType = DARWIN_CPU_TYPE_ARM;
|
|
|
|
// Traditional Bitcode starts after header.
|
|
assert(Buffer.size() >= DarwinBCHeaderSize &&
|
|
"Expected header size to be reserved");
|
|
unsigned BCOffset = DarwinBCHeaderSize;
|
|
unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
|
|
|
|
// Write the magic and version.
|
|
unsigned Position = 0;
|
|
WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
|
|
WriteInt32ToBuffer(0 , Buffer, Position); // Version.
|
|
WriteInt32ToBuffer(BCOffset , Buffer, Position);
|
|
WriteInt32ToBuffer(BCSize , Buffer, Position);
|
|
WriteInt32ToBuffer(CPUType , Buffer, Position);
|
|
|
|
// If the file is not a multiple of 16 bytes, insert dummy padding.
|
|
while (Buffer.size() & 15)
|
|
Buffer.push_back(0);
|
|
}
|
|
|
|
/// WriteBitcodeToFile - Write the specified module to the specified output
|
|
/// stream.
|
|
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
|
|
SmallVector<char, 0> Buffer;
|
|
Buffer.reserve(256*1024);
|
|
|
|
// If this is darwin or another generic macho target, reserve space for the
|
|
// header.
|
|
Triple TT(M->getTargetTriple());
|
|
if (TT.isOSDarwin())
|
|
Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
|
|
|
|
// Emit the module into the buffer.
|
|
{
|
|
BitstreamWriter Stream(Buffer);
|
|
|
|
// Emit the file header.
|
|
Stream.Emit((unsigned)'B', 8);
|
|
Stream.Emit((unsigned)'C', 8);
|
|
Stream.Emit(0x0, 4);
|
|
Stream.Emit(0xC, 4);
|
|
Stream.Emit(0xE, 4);
|
|
Stream.Emit(0xD, 4);
|
|
|
|
// Emit the module.
|
|
WriteModule(M, Stream);
|
|
}
|
|
|
|
if (TT.isOSDarwin())
|
|
EmitDarwinBCHeaderAndTrailer(Buffer, TT);
|
|
|
|
// Write the generated bitstream to "Out".
|
|
Out.write((char*)&Buffer.front(), Buffer.size());
|
|
}
|