llvm-6502/examples/Kaleidoscope/Chapter4/toy.cpp
Lang Hames 2c0f0f92f2 [Kaleidoscope] Run clang-format over chapter 4 of kaleidoscope.
I forgot to do this for r226308. Thanks to Eric Christopher for the reminder.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226327 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-16 21:42:07 +00:00

865 lines
23 KiB
C++

#include "llvm/Analysis/Passes.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <cstdio>
#include <map>
#include <string>
#include <vector>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2,
tok_extern = -3,
// primary
tok_identifier = -4,
tok_number = -5
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), 0);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do
LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() {}
virtual Value *Codegen() = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
public:
NumberExprAST(double val) : Val(val) {}
virtual Value *Codegen();
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
VariableExprAST(const std::string &name) : Name(name) {}
virtual Value *Codegen();
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
ExprAST *LHS, *RHS;
public:
BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
: Op(op), LHS(lhs), RHS(rhs) {}
virtual Value *Codegen();
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<ExprAST *> Args;
public:
CallExprAST(const std::string &callee, std::vector<ExprAST *> &args)
: Callee(callee), Args(args) {}
virtual Value *Codegen();
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
public:
PrototypeAST(const std::string &name, const std::vector<std::string> &args)
: Name(name), Args(args) {}
Function *Codegen();
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
PrototypeAST *Proto;
ExprAST *Body;
public:
FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
Function *Codegen();
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;
return TokPrec;
}
/// Error* - These are little helper functions for error handling.
ExprAST *Error(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return 0;
}
PrototypeAST *ErrorP(const char *Str) {
Error(Str);
return 0;
}
FunctionAST *ErrorF(const char *Str) {
Error(Str);
return 0;
}
static ExprAST *ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static ExprAST *ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return new VariableExprAST(IdName);
// Call.
getNextToken(); // eat (
std::vector<ExprAST *> Args;
if (CurTok != ')') {
while (1) {
ExprAST *Arg = ParseExpression();
if (!Arg)
return 0;
Args.push_back(Arg);
if (CurTok == ')')
break;
if (CurTok != ',')
return Error("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return new CallExprAST(IdName, Args);
}
/// numberexpr ::= number
static ExprAST *ParseNumberExpr() {
ExprAST *Result = new NumberExprAST(NumVal);
getNextToken(); // consume the number
return Result;
}
/// parenexpr ::= '(' expression ')'
static ExprAST *ParseParenExpr() {
getNextToken(); // eat (.
ExprAST *V = ParseExpression();
if (!V)
return 0;
if (CurTok != ')')
return Error("expected ')'");
getNextToken(); // eat ).
return V;
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
static ExprAST *ParsePrimary() {
switch (CurTok) {
default:
return Error("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
}
}
/// binoprhs
/// ::= ('+' primary)*
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
ExprAST *RHS = ParsePrimary();
if (!RHS)
return 0;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec + 1, RHS);
if (RHS == 0)
return 0;
}
// Merge LHS/RHS.
LHS = new BinaryExprAST(BinOp, LHS, RHS);
}
}
/// expression
/// ::= primary binoprhs
///
static ExprAST *ParseExpression() {
ExprAST *LHS = ParsePrimary();
if (!LHS)
return 0;
return ParseBinOpRHS(0, LHS);
}
/// prototype
/// ::= id '(' id* ')'
static PrototypeAST *ParsePrototype() {
if (CurTok != tok_identifier)
return ErrorP("Expected function name in prototype");
std::string FnName = IdentifierStr;
getNextToken();
if (CurTok != '(')
return ErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
return new PrototypeAST(FnName, ArgNames);
}
/// definition ::= 'def' prototype expression
static FunctionAST *ParseDefinition() {
getNextToken(); // eat def.
PrototypeAST *Proto = ParsePrototype();
if (Proto == 0)
return 0;
if (ExprAST *E = ParseExpression())
return new FunctionAST(Proto, E);
return 0;
}
/// toplevelexpr ::= expression
static FunctionAST *ParseTopLevelExpr() {
if (ExprAST *E = ParseExpression()) {
// Make an anonymous proto.
PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
return new FunctionAST(Proto, E);
}
return 0;
}
/// external ::= 'extern' prototype
static PrototypeAST *ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Quick and dirty hack
//===----------------------------------------------------------------------===//
// FIXME: Obviously we can do better than this
std::string GenerateUniqueName(const char *root) {
static int i = 0;
char s[16];
sprintf(s, "%s%d", root, i++);
std::string S = s;
return S;
}
std::string MakeLegalFunctionName(std::string Name) {
std::string NewName;
if (!Name.length())
return GenerateUniqueName("anon_func_");
// Start with what we have
NewName = Name;
// Look for a numberic first character
if (NewName.find_first_of("0123456789") == 0) {
NewName.insert(0, 1, 'n');
}
// Replace illegal characters with their ASCII equivalent
std::string legal_elements =
"_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
size_t pos;
while ((pos = NewName.find_first_not_of(legal_elements)) !=
std::string::npos) {
char old_c = NewName.at(pos);
char new_str[16];
sprintf(new_str, "%d", (int)old_c);
NewName = NewName.replace(pos, 1, new_str);
}
return NewName;
}
//===----------------------------------------------------------------------===//
// MCJIT helper class
//===----------------------------------------------------------------------===//
class MCJITHelper {
public:
MCJITHelper(LLVMContext &C) : Context(C), OpenModule(NULL) {}
~MCJITHelper();
Function *getFunction(const std::string FnName);
Module *getModuleForNewFunction();
void *getPointerToFunction(Function *F);
void *getSymbolAddress(const std::string &Name);
void dump();
private:
typedef std::vector<Module *> ModuleVector;
typedef std::vector<ExecutionEngine *> EngineVector;
LLVMContext &Context;
Module *OpenModule;
ModuleVector Modules;
EngineVector Engines;
};
class HelpingMemoryManager : public SectionMemoryManager {
HelpingMemoryManager(const HelpingMemoryManager &) LLVM_DELETED_FUNCTION;
void operator=(const HelpingMemoryManager &) LLVM_DELETED_FUNCTION;
public:
HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
virtual ~HelpingMemoryManager() {}
/// This method returns the address of the specified symbol.
/// Our implementation will attempt to find symbols in other
/// modules associated with the MCJITHelper to cross link symbols
/// from one generated module to another.
virtual uint64_t getSymbolAddress(const std::string &Name) override;
private:
MCJITHelper *MasterHelper;
};
uint64_t HelpingMemoryManager::getSymbolAddress(const std::string &Name) {
uint64_t FnAddr = SectionMemoryManager::getSymbolAddress(Name);
if (FnAddr)
return FnAddr;
uint64_t HelperFun = (uint64_t)MasterHelper->getSymbolAddress(Name);
if (!HelperFun)
report_fatal_error("Program used extern function '" + Name +
"' which could not be resolved!");
return HelperFun;
}
MCJITHelper::~MCJITHelper() {
if (OpenModule)
delete OpenModule;
EngineVector::iterator begin = Engines.begin();
EngineVector::iterator end = Engines.end();
EngineVector::iterator it;
for (it = begin; it != end; ++it)
delete *it;
}
Function *MCJITHelper::getFunction(const std::string FnName) {
ModuleVector::iterator begin = Modules.begin();
ModuleVector::iterator end = Modules.end();
ModuleVector::iterator it;
for (it = begin; it != end; ++it) {
Function *F = (*it)->getFunction(FnName);
if (F) {
if (*it == OpenModule)
return F;
assert(OpenModule != NULL);
// This function is in a module that has already been JITed.
// We need to generate a new prototype for external linkage.
Function *PF = OpenModule->getFunction(FnName);
if (PF && !PF->empty()) {
ErrorF("redefinition of function across modules");
return 0;
}
// If we don't have a prototype yet, create one.
if (!PF)
PF = Function::Create(F->getFunctionType(), Function::ExternalLinkage,
FnName, OpenModule);
return PF;
}
}
return NULL;
}
Module *MCJITHelper::getModuleForNewFunction() {
// If we have a Module that hasn't been JITed, use that.
if (OpenModule)
return OpenModule;
// Otherwise create a new Module.
std::string ModName = GenerateUniqueName("mcjit_module_");
Module *M = new Module(ModName, Context);
Modules.push_back(M);
OpenModule = M;
return M;
}
void *MCJITHelper::getPointerToFunction(Function *F) {
// See if an existing instance of MCJIT has this function.
EngineVector::iterator begin = Engines.begin();
EngineVector::iterator end = Engines.end();
EngineVector::iterator it;
for (it = begin; it != end; ++it) {
void *P = (*it)->getPointerToFunction(F);
if (P)
return P;
}
// If we didn't find the function, see if we can generate it.
if (OpenModule) {
std::string ErrStr;
ExecutionEngine *NewEngine =
EngineBuilder(std::unique_ptr<Module>(OpenModule))
.setErrorStr(&ErrStr)
.setMCJITMemoryManager(std::unique_ptr<HelpingMemoryManager>(
new HelpingMemoryManager(this)))
.create();
if (!NewEngine) {
fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
exit(1);
}
// Create a function pass manager for this engine
FunctionPassManager *FPM = new FunctionPassManager(OpenModule);
// Set up the optimizer pipeline. Start with registering info about how the
// target lays out data structures.
OpenModule->setDataLayout(NewEngine->getDataLayout());
FPM->add(new DataLayoutPass());
// Provide basic AliasAnalysis support for GVN.
FPM->add(createBasicAliasAnalysisPass());
// Promote allocas to registers.
FPM->add(createPromoteMemoryToRegisterPass());
// Do simple "peephole" optimizations and bit-twiddling optzns.
FPM->add(createInstructionCombiningPass());
// Reassociate expressions.
FPM->add(createReassociatePass());
// Eliminate Common SubExpressions.
FPM->add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();
// For each function in the module
Module::iterator it;
Module::iterator end = OpenModule->end();
for (it = OpenModule->begin(); it != end; ++it) {
// Run the FPM on this function
FPM->run(*it);
}
// We don't need this anymore
delete FPM;
OpenModule = NULL;
Engines.push_back(NewEngine);
NewEngine->finalizeObject();
return NewEngine->getPointerToFunction(F);
}
return NULL;
}
void *MCJITHelper::getSymbolAddress(const std::string &Name) {
// Look for the symbol in each of our execution engines.
EngineVector::iterator begin = Engines.begin();
EngineVector::iterator end = Engines.end();
EngineVector::iterator it;
for (it = begin; it != end; ++it) {
uint64_t FAddr = (*it)->getFunctionAddress(Name);
if (FAddr) {
return (void *)FAddr;
}
}
return NULL;
}
void MCJITHelper::dump() {
ModuleVector::iterator begin = Modules.begin();
ModuleVector::iterator end = Modules.end();
ModuleVector::iterator it;
for (it = begin; it != end; ++it)
(*it)->dump();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
static MCJITHelper *JITHelper;
static IRBuilder<> Builder(getGlobalContext());
static std::map<std::string, Value *> NamedValues;
Value *ErrorV(const char *Str) {
Error(Str);
return 0;
}
Value *NumberExprAST::Codegen() {
return ConstantFP::get(getGlobalContext(), APFloat(Val));
}
Value *VariableExprAST::Codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
return V ? V : ErrorV("Unknown variable name");
}
Value *BinaryExprAST::Codegen() {
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
if (L == 0 || R == 0)
return 0;
switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");
case '-':
return Builder.CreateFSub(L, R, "subtmp");
case '*':
return Builder.CreateFMul(L, R, "multmp");
case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
"booltmp");
default:
return ErrorV("invalid binary operator");
}
}
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = JITHelper->getFunction(Callee);
if (CalleeF == 0)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return ErrorV("Incorrect # arguments passed");
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
if (ArgsV.back() == 0)
return 0;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}
Function *PrototypeAST::Codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
std::string FnName = MakeLegalFunctionName(Name);
Module *M = JITHelper->getModuleForNewFunction();
Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
// If F conflicted, there was already something named 'Name'. If it has a
// body, don't allow redefinition or reextern.
if (F->getName() != FnName) {
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = JITHelper->getFunction(Name);
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
return 0;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
return 0;
}
}
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx) {
AI->setName(Args[Idx]);
// Add arguments to variable symbol table.
NamedValues[Args[Idx]] = AI;
}
return F;
}
Function *FunctionAST::Codegen() {
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
if (TheFunction == 0)
return 0;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
Builder.SetInsertPoint(BB);
if (Value *RetVal = Body->Codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
return 0;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static void HandleDefinition() {
if (FunctionAST *F = ParseDefinition()) {
if (Function *LF = F->Codegen()) {
fprintf(stderr, "Read function definition:");
LF->dump();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern() {
if (PrototypeAST *P = ParseExtern()) {
if (Function *F = P->Codegen()) {
fprintf(stderr, "Read extern: ");
F->dump();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (FunctionAST *F = ParseTopLevelExpr()) {
if (Function *LF = F->Codegen()) {
// JIT the function, returning a function pointer.
void *FPtr = JITHelper->getPointerToFunction(LF);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)FPtr;
fprintf(stderr, "Evaluated to %f\n", FP());
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (1) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
case ';':
getNextToken();
break; // ignore top-level semicolons.
case tok_def:
HandleDefinition();
break;
case tok_extern:
HandleExtern();
break;
default:
HandleTopLevelExpression();
break;
}
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
putchar((char)X);
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
LLVMContext &Context = getGlobalContext();
JITHelper = new MCJITHelper(Context);
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();
// Run the main "interpreter loop" now.
MainLoop();
// Print out all of the generated code.
JITHelper->dump();
return 0;
}