mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
4da61345ec
Adding TBM feature to bdver2 processor; piledriver supports this instruction set according to the following document: http://developer.amd.com/wordpress/media/2012/10/New-Bulldozer-and-Piledriver-Instructions.pdf Phabricator code review is located here: http://llvm-reviews.chandlerc.com/D1692 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191324 91177308-0d34-0410-b5e6-96231b3b80d8
552 lines
18 KiB
C++
552 lines
18 KiB
C++
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the X86 specific subclass of TargetSubtargetInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "subtarget"
|
|
#include "X86Subtarget.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#include "X86GenSubtargetInfo.inc"
|
|
|
|
using namespace llvm;
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#endif
|
|
|
|
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
|
|
/// current subtarget according to how we should reference it in a non-pcrel
|
|
/// context.
|
|
unsigned char X86Subtarget::ClassifyBlockAddressReference() const {
|
|
if (isPICStyleGOT()) // 32-bit ELF targets.
|
|
return X86II::MO_GOTOFF;
|
|
|
|
if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
|
|
return X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
// Direct static reference to label.
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
/// ClassifyGlobalReference - Classify a global variable reference for the
|
|
/// current subtarget according to how we should reference it in a non-pcrel
|
|
/// context.
|
|
unsigned char X86Subtarget::
|
|
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
|
|
// DLLImport only exists on windows, it is implemented as a load from a
|
|
// DLLIMPORT stub.
|
|
if (GV->hasDLLImportLinkage())
|
|
return X86II::MO_DLLIMPORT;
|
|
|
|
// Determine whether this is a reference to a definition or a declaration.
|
|
// Materializable GVs (in JIT lazy compilation mode) do not require an extra
|
|
// load from stub.
|
|
bool isDecl = GV->hasAvailableExternallyLinkage();
|
|
if (GV->isDeclaration() && !GV->isMaterializable())
|
|
isDecl = true;
|
|
|
|
// X86-64 in PIC mode.
|
|
if (isPICStyleRIPRel()) {
|
|
// Large model never uses stubs.
|
|
if (TM.getCodeModel() == CodeModel::Large)
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
if (isTargetDarwin()) {
|
|
// If symbol visibility is hidden, the extra load is not needed if
|
|
// target is x86-64 or the symbol is definitely defined in the current
|
|
// translation unit.
|
|
if (GV->hasDefaultVisibility() &&
|
|
(isDecl || GV->isWeakForLinker()))
|
|
return X86II::MO_GOTPCREL;
|
|
} else if (!isTargetWin64()) {
|
|
assert(isTargetELF() && "Unknown rip-relative target");
|
|
|
|
// Extra load is needed for all externally visible.
|
|
if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
|
|
return X86II::MO_GOTPCREL;
|
|
}
|
|
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
if (isPICStyleGOT()) { // 32-bit ELF targets.
|
|
// Extra load is needed for all externally visible.
|
|
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
|
|
return X86II::MO_GOTOFF;
|
|
return X86II::MO_GOT;
|
|
}
|
|
|
|
if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
|
|
// Determine whether we have a stub reference and/or whether the reference
|
|
// is relative to the PIC base or not.
|
|
|
|
// If this is a strong reference to a definition, it is definitely not
|
|
// through a stub.
|
|
if (!isDecl && !GV->isWeakForLinker())
|
|
return X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
// Unless we have a symbol with hidden visibility, we have to go through a
|
|
// normal $non_lazy_ptr stub because this symbol might be resolved late.
|
|
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
|
|
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
|
|
|
|
// If symbol visibility is hidden, we have a stub for common symbol
|
|
// references and external declarations.
|
|
if (isDecl || GV->hasCommonLinkage()) {
|
|
// Hidden $non_lazy_ptr reference.
|
|
return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
|
|
}
|
|
|
|
// Otherwise, no stub.
|
|
return X86II::MO_PIC_BASE_OFFSET;
|
|
}
|
|
|
|
if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
|
|
// Determine whether we have a stub reference.
|
|
|
|
// If this is a strong reference to a definition, it is definitely not
|
|
// through a stub.
|
|
if (!isDecl && !GV->isWeakForLinker())
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
// Unless we have a symbol with hidden visibility, we have to go through a
|
|
// normal $non_lazy_ptr stub because this symbol might be resolved late.
|
|
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
|
|
return X86II::MO_DARWIN_NONLAZY;
|
|
|
|
// Otherwise, no stub.
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
// Direct static reference to global.
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
|
|
/// getBZeroEntry - This function returns the name of a function which has an
|
|
/// interface like the non-standard bzero function, if such a function exists on
|
|
/// the current subtarget and it is considered prefereable over memset with zero
|
|
/// passed as the second argument. Otherwise it returns null.
|
|
const char *X86Subtarget::getBZeroEntry() const {
|
|
// Darwin 10 has a __bzero entry point for this purpose.
|
|
if (getTargetTriple().isMacOSX() &&
|
|
!getTargetTriple().isMacOSXVersionLT(10, 6))
|
|
return "__bzero";
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool X86Subtarget::hasSinCos() const {
|
|
return getTargetTriple().isMacOSX() &&
|
|
!getTargetTriple().isMacOSXVersionLT(10, 9) &&
|
|
is64Bit();
|
|
}
|
|
|
|
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
|
|
/// to immediate address.
|
|
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
|
|
if (In64BitMode)
|
|
return false;
|
|
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
|
|
}
|
|
|
|
static bool OSHasAVXSupport() {
|
|
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|
|
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
|
|
#if defined(__GNUC__)
|
|
// Check xgetbv; this uses a .byte sequence instead of the instruction
|
|
// directly because older assemblers do not include support for xgetbv and
|
|
// there is no easy way to conditionally compile based on the assembler used.
|
|
int rEAX, rEDX;
|
|
__asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0));
|
|
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
|
|
unsigned long long rEAX = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
|
|
#else
|
|
int rEAX = 0; // Ensures we return false
|
|
#endif
|
|
return (rEAX & 6) == 6;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void X86Subtarget::AutoDetectSubtargetFeatures() {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
unsigned MaxLevel;
|
|
union {
|
|
unsigned u[3];
|
|
char c[12];
|
|
} text;
|
|
|
|
if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
|
|
MaxLevel < 1)
|
|
return;
|
|
|
|
X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
|
|
if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); }
|
|
if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); }
|
|
if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); }
|
|
if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); }
|
|
if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
|
|
if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
|
|
if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
|
|
if (((ECX >> 27) & 1) && ((ECX >> 28) & 1) && OSHasAVXSupport()) {
|
|
X86SSELevel = AVX; ToggleFeature(X86::FeatureAVX);
|
|
}
|
|
|
|
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
|
|
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
|
|
|
|
if ((ECX >> 1) & 0x1) {
|
|
HasPCLMUL = true;
|
|
ToggleFeature(X86::FeaturePCLMUL);
|
|
}
|
|
if ((ECX >> 12) & 0x1) {
|
|
HasFMA = true;
|
|
ToggleFeature(X86::FeatureFMA);
|
|
}
|
|
if (IsIntel && ((ECX >> 22) & 0x1)) {
|
|
HasMOVBE = true;
|
|
ToggleFeature(X86::FeatureMOVBE);
|
|
}
|
|
if ((ECX >> 23) & 0x1) {
|
|
HasPOPCNT = true;
|
|
ToggleFeature(X86::FeaturePOPCNT);
|
|
}
|
|
if ((ECX >> 25) & 0x1) {
|
|
HasAES = true;
|
|
ToggleFeature(X86::FeatureAES);
|
|
}
|
|
if ((ECX >> 29) & 0x1) {
|
|
HasF16C = true;
|
|
ToggleFeature(X86::FeatureF16C);
|
|
}
|
|
if (IsIntel && ((ECX >> 30) & 0x1)) {
|
|
HasRDRAND = true;
|
|
ToggleFeature(X86::FeatureRDRAND);
|
|
}
|
|
|
|
if ((ECX >> 13) & 0x1) {
|
|
HasCmpxchg16b = true;
|
|
ToggleFeature(X86::FeatureCMPXCHG16B);
|
|
}
|
|
|
|
if (IsIntel || IsAMD) {
|
|
// Determine if bit test memory instructions are slow.
|
|
unsigned Family = 0;
|
|
unsigned Model = 0;
|
|
X86_MC::DetectFamilyModel(EAX, Family, Model);
|
|
if (IsAMD || (Family == 6 && Model >= 13)) {
|
|
IsBTMemSlow = true;
|
|
ToggleFeature(X86::FeatureSlowBTMem);
|
|
}
|
|
|
|
// If it's an Intel chip since Nehalem and not an Atom chip, unaligned
|
|
// memory access is fast. We hard code model numbers here because they
|
|
// aren't strictly increasing for Intel chips it seems.
|
|
if (IsIntel &&
|
|
((Family == 6 && Model == 0x1E) || // Nehalem: Clarksfield, Lynnfield,
|
|
// Jasper Froest
|
|
(Family == 6 && Model == 0x1A) || // Nehalem: Bloomfield, Nehalem-EP
|
|
(Family == 6 && Model == 0x2E) || // Nehalem: Nehalem-EX
|
|
(Family == 6 && Model == 0x25) || // Westmere: Arrandale, Clarksdale
|
|
(Family == 6 && Model == 0x2C) || // Westmere: Gulftown, Westmere-EP
|
|
(Family == 6 && Model == 0x2F) || // Westmere: Westmere-EX
|
|
(Family == 6 && Model == 0x2A) || // SandyBridge
|
|
(Family == 6 && Model == 0x2D) || // SandyBridge: SandyBridge-E*
|
|
(Family == 6 && Model == 0x3A))) {// IvyBridge
|
|
IsUAMemFast = true;
|
|
ToggleFeature(X86::FeatureFastUAMem);
|
|
}
|
|
|
|
// Set processor type. Currently only Atom or Silvermont (SLM) is detected.
|
|
if (Family == 6 &&
|
|
(Model == 28 || Model == 38 || Model == 39 ||
|
|
Model == 53 || Model == 54)) {
|
|
X86ProcFamily = IntelAtom;
|
|
|
|
UseLeaForSP = true;
|
|
ToggleFeature(X86::FeatureLeaForSP);
|
|
}
|
|
else if (Family == 6 &&
|
|
(Model == 55 || Model == 74 || Model == 77)) {
|
|
X86ProcFamily = IntelSLM;
|
|
}
|
|
|
|
unsigned MaxExtLevel;
|
|
X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
|
|
|
|
if (MaxExtLevel >= 0x80000001) {
|
|
X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
if ((EDX >> 29) & 0x1) {
|
|
HasX86_64 = true;
|
|
ToggleFeature(X86::Feature64Bit);
|
|
}
|
|
if ((ECX >> 5) & 0x1) {
|
|
HasLZCNT = true;
|
|
ToggleFeature(X86::FeatureLZCNT);
|
|
}
|
|
if (IsIntel && ((ECX >> 8) & 0x1)) {
|
|
HasPRFCHW = true;
|
|
ToggleFeature(X86::FeaturePRFCHW);
|
|
}
|
|
if (IsAMD) {
|
|
if ((ECX >> 6) & 0x1) {
|
|
HasSSE4A = true;
|
|
ToggleFeature(X86::FeatureSSE4A);
|
|
}
|
|
if ((ECX >> 11) & 0x1) {
|
|
HasXOP = true;
|
|
ToggleFeature(X86::FeatureXOP);
|
|
}
|
|
if ((ECX >> 16) & 0x1) {
|
|
HasFMA4 = true;
|
|
ToggleFeature(X86::FeatureFMA4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MaxLevel >= 7) {
|
|
if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
|
|
if (IsIntel && (EBX & 0x1)) {
|
|
HasFSGSBase = true;
|
|
ToggleFeature(X86::FeatureFSGSBase);
|
|
}
|
|
if ((EBX >> 3) & 0x1) {
|
|
HasBMI = true;
|
|
ToggleFeature(X86::FeatureBMI);
|
|
}
|
|
if ((EBX >> 4) & 0x1) {
|
|
HasHLE = true;
|
|
ToggleFeature(X86::FeatureHLE);
|
|
}
|
|
if (IsIntel && ((EBX >> 5) & 0x1)) {
|
|
X86SSELevel = AVX2;
|
|
ToggleFeature(X86::FeatureAVX2);
|
|
}
|
|
if (IsIntel && ((EBX >> 8) & 0x1)) {
|
|
HasBMI2 = true;
|
|
ToggleFeature(X86::FeatureBMI2);
|
|
}
|
|
if (IsIntel && ((EBX >> 11) & 0x1)) {
|
|
HasRTM = true;
|
|
ToggleFeature(X86::FeatureRTM);
|
|
}
|
|
if (IsIntel && ((EBX >> 16) & 0x1)) {
|
|
X86SSELevel = AVX512F;
|
|
ToggleFeature(X86::FeatureAVX512);
|
|
}
|
|
if (IsIntel && ((EBX >> 18) & 0x1)) {
|
|
HasRDSEED = true;
|
|
ToggleFeature(X86::FeatureRDSEED);
|
|
}
|
|
if (IsIntel && ((EBX >> 19) & 0x1)) {
|
|
HasADX = true;
|
|
ToggleFeature(X86::FeatureADX);
|
|
}
|
|
if (IsIntel && ((EBX >> 26) & 0x1)) {
|
|
HasPFI = true;
|
|
ToggleFeature(X86::FeaturePFI);
|
|
}
|
|
if (IsIntel && ((EBX >> 27) & 0x1)) {
|
|
HasERI = true;
|
|
ToggleFeature(X86::FeatureERI);
|
|
}
|
|
if (IsIntel && ((EBX >> 28) & 0x1)) {
|
|
HasCDI = true;
|
|
ToggleFeature(X86::FeatureCDI);
|
|
}
|
|
if (IsIntel && ((EBX >> 29) & 0x1)) {
|
|
HasSHA = true;
|
|
ToggleFeature(X86::FeatureSHA);
|
|
}
|
|
}
|
|
if (IsAMD && ((ECX >> 21) & 0x1)) {
|
|
HasTBM = true;
|
|
ToggleFeature(X86::FeatureTBM);
|
|
}
|
|
}
|
|
}
|
|
|
|
void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) {
|
|
AttributeSet FnAttrs = MF->getFunction()->getAttributes();
|
|
Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
|
|
"target-cpu");
|
|
Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
|
|
"target-features");
|
|
std::string CPU =
|
|
!CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
|
|
std::string FS =
|
|
!FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
|
|
if (!FS.empty()) {
|
|
initializeEnvironment();
|
|
resetSubtargetFeatures(CPU, FS);
|
|
}
|
|
}
|
|
|
|
void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
|
|
std::string CPUName = CPU;
|
|
if (!FS.empty() || !CPU.empty()) {
|
|
if (CPUName.empty()) {
|
|
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|
|
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
|
|
CPUName = sys::getHostCPUName();
|
|
#else
|
|
CPUName = "generic";
|
|
#endif
|
|
}
|
|
|
|
// Make sure 64-bit features are available in 64-bit mode. (But make sure
|
|
// SSE2 can be turned off explicitly.)
|
|
std::string FullFS = FS;
|
|
if (In64BitMode) {
|
|
if (!FullFS.empty())
|
|
FullFS = "+64bit,+sse2," + FullFS;
|
|
else
|
|
FullFS = "+64bit,+sse2";
|
|
}
|
|
|
|
// If feature string is not empty, parse features string.
|
|
ParseSubtargetFeatures(CPUName, FullFS);
|
|
} else {
|
|
if (CPUName.empty()) {
|
|
#if defined (__x86_64__) || defined(__i386__)
|
|
CPUName = sys::getHostCPUName();
|
|
#else
|
|
CPUName = "generic";
|
|
#endif
|
|
}
|
|
// Otherwise, use CPUID to auto-detect feature set.
|
|
AutoDetectSubtargetFeatures();
|
|
|
|
// Make sure 64-bit features are available in 64-bit mode.
|
|
if (In64BitMode) {
|
|
if (!HasX86_64) { HasX86_64 = true; ToggleFeature(X86::Feature64Bit); }
|
|
if (!HasCMov) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
|
|
|
|
if (X86SSELevel < SSE2) {
|
|
X86SSELevel = SSE2;
|
|
ToggleFeature(X86::FeatureSSE1);
|
|
ToggleFeature(X86::FeatureSSE2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// CPUName may have been set by the CPU detection code. Make sure the
|
|
// new MCSchedModel is used.
|
|
InitCPUSchedModel(CPUName);
|
|
|
|
if (X86ProcFamily == IntelAtom || X86ProcFamily == IntelSLM)
|
|
PostRAScheduler = true;
|
|
|
|
InstrItins = getInstrItineraryForCPU(CPUName);
|
|
|
|
// It's important to keep the MCSubtargetInfo feature bits in sync with
|
|
// target data structure which is shared with MC code emitter, etc.
|
|
if (In64BitMode)
|
|
ToggleFeature(X86::Mode64Bit);
|
|
|
|
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
|
|
<< ", 3DNowLevel " << X863DNowLevel
|
|
<< ", 64bit " << HasX86_64 << "\n");
|
|
assert((!In64BitMode || HasX86_64) &&
|
|
"64-bit code requested on a subtarget that doesn't support it!");
|
|
|
|
// Stack alignment is 16 bytes on Darwin, Linux and Solaris (both
|
|
// 32 and 64 bit) and for all 64-bit targets.
|
|
if (StackAlignOverride)
|
|
stackAlignment = StackAlignOverride;
|
|
else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
|
|
In64BitMode)
|
|
stackAlignment = 16;
|
|
}
|
|
|
|
void X86Subtarget::initializeEnvironment() {
|
|
X86SSELevel = NoMMXSSE;
|
|
X863DNowLevel = NoThreeDNow;
|
|
HasCMov = false;
|
|
HasX86_64 = false;
|
|
HasPOPCNT = false;
|
|
HasSSE4A = false;
|
|
HasAES = false;
|
|
HasPCLMUL = false;
|
|
HasFMA = false;
|
|
HasFMA4 = false;
|
|
HasXOP = false;
|
|
HasTBM = false;
|
|
HasMOVBE = false;
|
|
HasRDRAND = false;
|
|
HasF16C = false;
|
|
HasFSGSBase = false;
|
|
HasLZCNT = false;
|
|
HasBMI = false;
|
|
HasBMI2 = false;
|
|
HasRTM = false;
|
|
HasHLE = false;
|
|
HasERI = false;
|
|
HasCDI = false;
|
|
HasPFI = false;
|
|
HasADX = false;
|
|
HasSHA = false;
|
|
HasPRFCHW = false;
|
|
HasRDSEED = false;
|
|
IsBTMemSlow = false;
|
|
IsUAMemFast = false;
|
|
HasVectorUAMem = false;
|
|
HasCmpxchg16b = false;
|
|
UseLeaForSP = false;
|
|
HasSlowDivide = false;
|
|
PostRAScheduler = false;
|
|
PadShortFunctions = false;
|
|
CallRegIndirect = false;
|
|
LEAUsesAG = false;
|
|
stackAlignment = 4;
|
|
// FIXME: this is a known good value for Yonah. How about others?
|
|
MaxInlineSizeThreshold = 128;
|
|
}
|
|
|
|
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
|
|
const std::string &FS,
|
|
unsigned StackAlignOverride, bool is64Bit)
|
|
: X86GenSubtargetInfo(TT, CPU, FS)
|
|
, X86ProcFamily(Others)
|
|
, PICStyle(PICStyles::None)
|
|
, TargetTriple(TT)
|
|
, StackAlignOverride(StackAlignOverride)
|
|
, In64BitMode(is64Bit) {
|
|
initializeEnvironment();
|
|
resetSubtargetFeatures(CPU, FS);
|
|
}
|
|
|
|
bool X86Subtarget::enablePostRAScheduler(
|
|
CodeGenOpt::Level OptLevel,
|
|
TargetSubtargetInfo::AntiDepBreakMode& Mode,
|
|
RegClassVector& CriticalPathRCs) const {
|
|
Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL;
|
|
CriticalPathRCs.clear();
|
|
return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
|
|
}
|