llvm-6502/lib/Transforms/Scalar/IndVarSimplify.cpp
Dan Gohman 3948d0b8b0 Rename isLoopGuardedByCond to isLoopEntryGuardedByCond, to emphasise
that it's only testing for the entry condition, not full loop-invariant
conditions.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100979 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-11 19:27:13 +00:00

887 lines
34 KiB
C++

//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
// 1. All loops are transformed to have a SINGLE canonical induction variable
// which starts at zero and steps by one.
// 2. The canonical induction variable is guaranteed to be the first PHI node
// in the loop header block.
// 3. The canonical induction variable is guaranteed to be in a wide enough
// type so that IV expressions need not be (directly) zero-extended or
// sign-extended.
// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
// induction value against the exit value. This turns loops like:
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
// 2. Any use outside of the loop of an expression derived from the indvar
// is changed to compute the derived value outside of the loop, eliminating
// the dependence on the exit value of the induction variable. If the only
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumInserted, "Number of canonical indvars added");
STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
namespace {
class IndVarSimplify : public LoopPass {
IVUsers *IU;
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
bool Changed;
public:
static char ID; // Pass identification, replacement for typeid
IndVarSimplify() : LoopPass(&ID) {}
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<IVUsers>();
AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<IVUsers>();
AU.setPreservesCFG();
}
private:
void RewriteNonIntegerIVs(Loop *L);
ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
Value *IndVar,
BasicBlock *ExitingBlock,
BranchInst *BI,
SCEVExpander &Rewriter);
void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
void SinkUnusedInvariants(Loop *L);
void HandleFloatingPointIV(Loop *L, PHINode *PH);
};
}
char IndVarSimplify::ID = 0;
static RegisterPass<IndVarSimplify>
X("indvars", "Canonicalize Induction Variables");
Pass *llvm::createIndVarSimplifyPass() {
return new IndVarSimplify();
}
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
const SCEV *BackedgeTakenCount,
Value *IndVar,
BasicBlock *ExitingBlock,
BranchInst *BI,
SCEVExpander &Rewriter) {
// If the exiting block is not the same as the backedge block, we must compare
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
Value *CmpIndVar;
const SCEV *RHS = BackedgeTakenCount;
if (ExitingBlock == L->getLoopLatch()) {
// Add one to the "backedge-taken" count to get the trip count.
// If this addition may overflow, we have to be more pessimistic and
// cast the induction variable before doing the add.
const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
const SCEV *N =
SE->getAddExpr(BackedgeTakenCount,
SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
if ((isa<SCEVConstant>(N) && !N->isZero()) ||
SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
// No overflow. Cast the sum.
RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
} else {
// Potential overflow. Cast before doing the add.
RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
IndVar->getType());
RHS = SE->getAddExpr(RHS,
SE->getIntegerSCEV(1, IndVar->getType()));
}
// The BackedgeTaken expression contains the number of times that the
// backedge branches to the loop header. This is one less than the
// number of times the loop executes, so use the incremented indvar.
CmpIndVar = L->getCanonicalInductionVariableIncrement();
} else {
// We have to use the preincremented value...
RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
IndVar->getType());
CmpIndVar = IndVar;
}
// Expand the code for the iteration count.
assert(RHS->isLoopInvariant(L) &&
"Computed iteration count is not loop invariant!");
Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
// Insert a new icmp_ne or icmp_eq instruction before the branch.
ICmpInst::Predicate Opcode;
if (L->contains(BI->getSuccessor(0)))
Opcode = ICmpInst::ICMP_NE;
else
Opcode = ICmpInst::ICMP_EQ;
DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
<< " LHS:" << *CmpIndVar << '\n'
<< " op:\t"
<< (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
<< " RHS:\t" << *RHS << "\n");
ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
Value *OrigCond = BI->getCondition();
// It's tempting to use replaceAllUsesWith here to fully replace the old
// comparison, but that's not immediately safe, since users of the old
// comparison may not be dominated by the new comparison. Instead, just
// update the branch to use the new comparison; in the common case this
// will make old comparison dead.
BI->setCondition(Cond);
RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
++NumLFTR;
Changed = true;
return Cond;
}
/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count. If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
void IndVarSimplify::RewriteLoopExitValues(Loop *L,
SCEVExpander &Rewriter) {
// Verify the input to the pass in already in LCSSA form.
assert(L->isLCSSAForm(*DT));
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
// Find all values that are computed inside the loop, but used outside of it.
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
// the exit blocks of the loop to find them.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBB = ExitBlocks[i];
// If there are no PHI nodes in this exit block, then no values defined
// inside the loop are used on this path, skip it.
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
if (!PN) continue;
unsigned NumPreds = PN->getNumIncomingValues();
// Iterate over all of the PHI nodes.
BasicBlock::iterator BBI = ExitBB->begin();
while ((PN = dyn_cast<PHINode>(BBI++))) {
if (PN->use_empty())
continue; // dead use, don't replace it
// SCEV only supports integer expressions for now.
if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
continue;
// It's necessary to tell ScalarEvolution about this explicitly so that
// it can walk the def-use list and forget all SCEVs, as it may not be
// watching the PHI itself. Once the new exit value is in place, there
// may not be a def-use connection between the loop and every instruction
// which got a SCEVAddRecExpr for that loop.
SE->forgetValue(PN);
// Iterate over all of the values in all the PHI nodes.
for (unsigned i = 0; i != NumPreds; ++i) {
// If the value being merged in is not integer or is not defined
// in the loop, skip it.
Value *InVal = PN->getIncomingValue(i);
if (!isa<Instruction>(InVal))
continue;
// If this pred is for a subloop, not L itself, skip it.
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
continue; // The Block is in a subloop, skip it.
// Check that InVal is defined in the loop.
Instruction *Inst = cast<Instruction>(InVal);
if (!L->contains(Inst))
continue;
// Okay, this instruction has a user outside of the current loop
// and varies predictably *inside* the loop. Evaluate the value it
// contains when the loop exits, if possible.
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
if (!ExitValue->isLoopInvariant(L))
continue;
Changed = true;
++NumReplaced;
Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
<< " LoopVal = " << *Inst << "\n");
PN->setIncomingValue(i, ExitVal);
// If this instruction is dead now, delete it.
RecursivelyDeleteTriviallyDeadInstructions(Inst);
if (NumPreds == 1) {
// Completely replace a single-pred PHI. This is safe, because the
// NewVal won't be variant in the loop, so we don't need an LCSSA phi
// node anymore.
PN->replaceAllUsesWith(ExitVal);
RecursivelyDeleteTriviallyDeadInstructions(PN);
}
}
if (NumPreds != 1) {
// Clone the PHI and delete the original one. This lets IVUsers and
// any other maps purge the original user from their records.
PHINode *NewPN = cast<PHINode>(PN->clone());
NewPN->takeName(PN);
NewPN->insertBefore(PN);
PN->replaceAllUsesWith(NewPN);
PN->eraseFromParent();
}
}
}
// The insertion point instruction may have been deleted; clear it out
// so that the rewriter doesn't trip over it later.
Rewriter.clearInsertPoint();
}
void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
// First step. Check to see if there are any floating-point recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
//
BasicBlock *Header = L->getHeader();
SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
HandleFloatingPointIV(L, PN);
// If the loop previously had floating-point IV, ScalarEvolution
// may not have been able to compute a trip count. Now that we've done some
// re-writing, the trip count may be computable.
if (Changed)
SE->forgetLoop(L);
}
bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
IU = &getAnalysis<IVUsers>();
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTree>();
Changed = false;
// If there are any floating-point recurrences, attempt to
// transform them to use integer recurrences.
RewriteNonIntegerIVs(L);
BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE);
// Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions
// that are recurrent in the loop, and substitute the exit values from the
// loop into any instructions outside of the loop that use the final values of
// the current expressions.
//
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
RewriteLoopExitValues(L, Rewriter);
// Compute the type of the largest recurrence expression, and decide whether
// a canonical induction variable should be inserted.
const Type *LargestType = 0;
bool NeedCannIV = false;
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
LargestType = BackedgeTakenCount->getType();
LargestType = SE->getEffectiveSCEVType(LargestType);
// If we have a known trip count and a single exit block, we'll be
// rewriting the loop exit test condition below, which requires a
// canonical induction variable.
if (ExitingBlock)
NeedCannIV = true;
}
for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
const Type *Ty =
SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
LargestType = Ty;
NeedCannIV = true;
}
// Now that we know the largest of the induction variable expressions
// in this loop, insert a canonical induction variable of the largest size.
Value *IndVar = 0;
if (NeedCannIV) {
// Check to see if the loop already has any canonical-looking induction
// variables. If any are present and wider than the planned canonical
// induction variable, temporarily remove them, so that the Rewriter
// doesn't attempt to reuse them.
SmallVector<PHINode *, 2> OldCannIVs;
while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
if (SE->getTypeSizeInBits(OldCannIV->getType()) >
SE->getTypeSizeInBits(LargestType))
OldCannIV->removeFromParent();
else
break;
OldCannIVs.push_back(OldCannIV);
}
IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
++NumInserted;
Changed = true;
DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
// Now that the official induction variable is established, reinsert
// any old canonical-looking variables after it so that the IR remains
// consistent. They will be deleted as part of the dead-PHI deletion at
// the end of the pass.
while (!OldCannIVs.empty()) {
PHINode *OldCannIV = OldCannIVs.pop_back_val();
OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
}
}
// If we have a trip count expression, rewrite the loop's exit condition
// using it. We can currently only handle loops with a single exit.
ICmpInst *NewICmp = 0;
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
!BackedgeTakenCount->isZero() &&
ExitingBlock) {
assert(NeedCannIV &&
"LinearFunctionTestReplace requires a canonical induction variable");
// Can't rewrite non-branch yet.
if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
ExitingBlock, BI, Rewriter);
}
// Rewrite IV-derived expressions. Clears the rewriter cache.
RewriteIVExpressions(L, Rewriter);
// The Rewriter may not be used from this point on.
// Loop-invariant instructions in the preheader that aren't used in the
// loop may be sunk below the loop to reduce register pressure.
SinkUnusedInvariants(L);
// For completeness, inform IVUsers of the IV use in the newly-created
// loop exit test instruction.
if (NewICmp)
IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
// Clean up dead instructions.
Changed |= DeleteDeadPHIs(L->getHeader());
// Check a post-condition.
assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
return Changed;
}
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
static bool isSafe(const SCEV *S, const Loop *L) {
// Loop-invariant values are safe.
if (S->isLoopInvariant(L)) return true;
// Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
// to transform them into efficient code.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
return AR->isAffine();
// An add is safe it all its operands are safe.
if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
E = Commutative->op_end(); I != E; ++I)
if (!isSafe(*I, L)) return false;
return true;
}
// A cast is safe if its operand is.
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
return isSafe(C->getOperand(), L);
// A udiv is safe if its operands are.
if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
return isSafe(UD->getLHS(), L) &&
isSafe(UD->getRHS(), L);
// SCEVUnknown is always safe.
if (isa<SCEVUnknown>(S))
return true;
// Nothing else is safe.
return false;
}
void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
SmallVector<WeakVH, 16> DeadInsts;
// Rewrite all induction variable expressions in terms of the canonical
// induction variable.
//
// If there were induction variables of other sizes or offsets, manually
// add the offsets to the primary induction variable and cast, avoiding
// the need for the code evaluation methods to insert induction variables
// of different sizes.
for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
const Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
const SCEV *AR = IU->getReplacementExpr(*UI);
// Evaluate the expression out of the loop, if possible.
if (!L->contains(UI->getUser())) {
const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
if (ExitVal->isLoopInvariant(L))
AR = ExitVal;
}
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
if (!isSafe(AR, L))
continue;
// Determine the insertion point for this user. By default, insert
// immediately before the user. The SCEVExpander class will automatically
// hoist loop invariants out of the loop. For PHI nodes, there may be
// multiple uses, so compute the nearest common dominator for the
// incoming blocks.
Instruction *InsertPt = User;
if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
if (PHI->getIncomingValue(i) == Op) {
if (InsertPt == User)
InsertPt = PHI->getIncomingBlock(i)->getTerminator();
else
InsertPt =
DT->findNearestCommonDominator(InsertPt->getParent(),
PHI->getIncomingBlock(i))
->getTerminator();
}
// Now expand it into actual Instructions and patch it into place.
Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
// Inform ScalarEvolution that this value is changing. The change doesn't
// affect its value, but it does potentially affect which use lists the
// value will be on after the replacement, which affects ScalarEvolution's
// ability to walk use lists and drop dangling pointers when a value is
// deleted.
SE->forgetValue(User);
// Patch the new value into place.
if (Op->hasName())
NewVal->takeName(Op);
User->replaceUsesOfWith(Op, NewVal);
UI->setOperandValToReplace(NewVal);
DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
<< " into = " << *NewVal << "\n");
++NumRemoved;
Changed = true;
// The old value may be dead now.
DeadInsts.push_back(Op);
}
// Clear the rewriter cache, because values that are in the rewriter's cache
// can be deleted in the loop below, causing the AssertingVH in the cache to
// trigger.
Rewriter.clear();
// Now that we're done iterating through lists, clean up any instructions
// which are now dead.
while (!DeadInsts.empty())
if (Instruction *Inst =
dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
/// If there's a single exit block, sink any loop-invariant values that
/// were defined in the preheader but not used inside the loop into the
/// exit block to reduce register pressure in the loop.
void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
BasicBlock *ExitBlock = L->getExitBlock();
if (!ExitBlock) return;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) return;
Instruction *InsertPt = ExitBlock->getFirstNonPHI();
BasicBlock::iterator I = Preheader->getTerminator();
while (I != Preheader->begin()) {
--I;
// New instructions were inserted at the end of the preheader.
if (isa<PHINode>(I))
break;
// Don't move instructions which might have side effects, since the side
// effects need to complete before instructions inside the loop. Also don't
// move instructions which might read memory, since the loop may modify
// memory. Note that it's okay if the instruction might have undefined
// behavior: LoopSimplify guarantees that the preheader dominates the exit
// block.
if (I->mayHaveSideEffects() || I->mayReadFromMemory())
continue;
// Skip debug info intrinsics.
if (isa<DbgInfoIntrinsic>(I))
continue;
// Don't sink static AllocaInsts out of the entry block, which would
// turn them into dynamic allocas!
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (AI->isStaticAlloca())
continue;
// Determine if there is a use in or before the loop (direct or
// otherwise).
bool UsedInLoop = false;
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
if (PHINode *P = dyn_cast<PHINode>(UI)) {
unsigned i =
PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
UseBB = P->getIncomingBlock(i);
}
if (UseBB == Preheader || L->contains(UseBB)) {
UsedInLoop = true;
break;
}
}
// If there is, the def must remain in the preheader.
if (UsedInLoop)
continue;
// Otherwise, sink it to the exit block.
Instruction *ToMove = I;
bool Done = false;
if (I != Preheader->begin()) {
// Skip debug info intrinsics.
do {
--I;
} while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
Done = true;
} else {
Done = true;
}
ToMove->moveBefore(InsertPt);
if (Done) break;
InsertPt = ToMove;
}
}
/// ConvertToSInt - Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
bool isExact = false;
if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
return false;
// See if we can convert this to an int64_t
uint64_t UIntVal;
if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
&isExact) != APFloat::opOK || !isExact)
return false;
IntVal = UIntVal;
return true;
}
/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
/// bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
/// bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
unsigned BackEdge = IncomingEdge^1;
// Check incoming value.
ConstantFP *InitValueVal =
dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
int64_t InitValue;
if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
return;
// Check IV increment. Reject this PN if increment operation is not
// an add or increment value can not be represented by an integer.
BinaryOperator *Incr =
dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
// If this is not an add of the PHI with a constantfp, or if the constant fp
// is not an integer, bail out.
ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
int64_t IncValue;
if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
!ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
return;
// Check Incr uses. One user is PN and the other user is an exit condition
// used by the conditional terminator.
Value::use_iterator IncrUse = Incr->use_begin();
Instruction *U1 = cast<Instruction>(IncrUse++);
if (IncrUse == Incr->use_end()) return;
Instruction *U2 = cast<Instruction>(IncrUse++);
if (IncrUse != Incr->use_end()) return;
// Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
// only used by a branch, we can't transform it.
FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
if (!Compare)
Compare = dyn_cast<FCmpInst>(U2);
if (Compare == 0 || !Compare->hasOneUse() ||
!isa<BranchInst>(Compare->use_back()))
return;
BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
// We need to verify that the branch actually controls the iteration count
// of the loop. If not, the new IV can overflow and no one will notice.
// The branch block must be in the loop and one of the successors must be out
// of the loop.
assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
if (!L->contains(TheBr->getParent()) ||
(L->contains(TheBr->getSuccessor(0)) &&
L->contains(TheBr->getSuccessor(1))))
return;
// If it isn't a comparison with an integer-as-fp (the exit value), we can't
// transform it.
ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
int64_t ExitValue;
if (ExitValueVal == 0 ||
!ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
return;
// Find new predicate for integer comparison.
CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
switch (Compare->getPredicate()) {
default: return; // Unknown comparison.
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
}
// We convert the floating point induction variable to a signed i32 value if
// we can. This is only safe if the comparison will not overflow in a way
// that won't be trapped by the integer equivalent operations. Check for this
// now.
// TODO: We could use i64 if it is native and the range requires it.
// The start/stride/exit values must all fit in signed i32.
if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
return;
// If not actually striding (add x, 0.0), avoid touching the code.
if (IncValue == 0)
return;
// Positive and negative strides have different safety conditions.
if (IncValue > 0) {
// If we have a positive stride, we require the init to be less than the
// exit value and an equality or less than comparison.
if (InitValue >= ExitValue ||
NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
return;
uint32_t Range = uint32_t(ExitValue-InitValue);
if (NewPred == CmpInst::ICMP_SLE) {
// Normalize SLE -> SLT, check for infinite loop.
if (++Range == 0) return; // Range overflows.
}
unsigned Leftover = Range % uint32_t(IncValue);
// If this is an equality comparison, we require that the strided value
// exactly land on the exit value, otherwise the IV condition will wrap
// around and do things the fp IV wouldn't.
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
Leftover != 0)
return;
// If the stride would wrap around the i32 before exiting, we can't
// transform the IV.
if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
return;
} else {
// If we have a negative stride, we require the init to be greater than the
// exit value and an equality or greater than comparison.
if (InitValue >= ExitValue ||
NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
return;
uint32_t Range = uint32_t(InitValue-ExitValue);
if (NewPred == CmpInst::ICMP_SGE) {
// Normalize SGE -> SGT, check for infinite loop.
if (++Range == 0) return; // Range overflows.
}
unsigned Leftover = Range % uint32_t(-IncValue);
// If this is an equality comparison, we require that the strided value
// exactly land on the exit value, otherwise the IV condition will wrap
// around and do things the fp IV wouldn't.
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
Leftover != 0)
return;
// If the stride would wrap around the i32 before exiting, we can't
// transform the IV.
if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
return;
}
const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
// Insert new integer induction variable.
PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
PN->getIncomingBlock(IncomingEdge));
Value *NewAdd =
BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
Incr->getName()+".int", Incr);
NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
ConstantInt::get(Int32Ty, ExitValue),
Compare->getName());
// In the following deletions, PN may become dead and may be deleted.
// Use a WeakVH to observe whether this happens.
WeakVH WeakPH = PN;
// Delete the old floating point exit comparison. The branch starts using the
// new comparison.
NewCompare->takeName(Compare);
Compare->replaceAllUsesWith(NewCompare);
RecursivelyDeleteTriviallyDeadInstructions(Compare);
// Delete the old floating point increment.
Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
RecursivelyDeleteTriviallyDeadInstructions(Incr);
// If the FP induction variable still has uses, this is because something else
// in the loop uses its value. In order to canonicalize the induction
// variable, we chose to eliminate the IV and rewrite it in terms of an
// int->fp cast.
//
// We give preference to sitofp over uitofp because it is faster on most
// platforms.
if (WeakPH) {
Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
PN->getParent()->getFirstNonPHI());
PN->replaceAllUsesWith(Conv);
RecursivelyDeleteTriviallyDeadInstructions(PN);
}
// Add a new IVUsers entry for the newly-created integer PHI.
IU->AddUsersIfInteresting(NewPHI);
}