llvm-6502/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
Duncan Sands 47d9dcc584 Fix PR3117: not all nodes being legalized. The
essential problem was that the DAG can contain
random unused nodes which were never analyzed.
When remapping a value of a node being processed,
such a node may become used and need to be analyzed;
however due to operands being transformed during
analysis the node may morph into a different one.
Users of the morphing node need to be updated, and
this wasn't happening.  While there I added a bunch
of documentation and sanity checks, so I (or some
other poor soul) won't have to scratch their head
over this stuff so long trying to remember how it
was all supposed to work next time some obscure
problem pops up!  The extra sanity checking exposed
a few places where invariants weren't being preserved,
so those are fixed too.  Since some of the sanity
checking is expensive, I added a flag to turn it
on.  It is also turned on when building with
ENABLE_EXPENSIVE_CHECKS=1.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60797 91177308-0d34-0410-b5e6-96231b3b80d8
2008-12-09 21:33:20 +00:00

1363 lines
58 KiB
C++

//===-------- LegalizeFloatTypes.cpp - Legalization of float types --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements float type expansion and softening for LegalizeTypes.
// Softening is the act of turning a computation in an illegal floating point
// type into a computation in an integer type of the same size; also known as
// "soft float". For example, turning f32 arithmetic into operations using i32.
// The resulting integer value is the same as what you would get by performing
// the floating point operation and bitcasting the result to the integer type.
// Expansion is the act of changing a computation in an illegal type to be a
// computation in two identical registers of a smaller type. For example,
// implementing ppcf128 arithmetic in two f64 registers.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
using namespace llvm;
/// GetFPLibCall - Return the right libcall for the given floating point type.
static RTLIB::Libcall GetFPLibCall(MVT VT,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_PPCF128) {
return
VT == MVT::f32 ? Call_F32 :
VT == MVT::f64 ? Call_F64 :
VT == MVT::f80 ? Call_F80 :
VT == MVT::ppcf128 ? Call_PPCF128 :
RTLIB::UNKNOWN_LIBCALL;
}
//===----------------------------------------------------------------------===//
// Result Float to Integer Conversion.
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Soften float result " << ResNo << ": "; N->dump(&DAG);
cerr << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "SoftenFloatResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to soften the result of this operator!");
abort();
case ISD::BIT_CONVERT: R = SoftenFloatRes_BIT_CONVERT(N); break;
case ISD::BUILD_PAIR: R = SoftenFloatRes_BUILD_PAIR(N); break;
case ISD::ConstantFP:
R = SoftenFloatRes_ConstantFP(cast<ConstantFPSDNode>(N));
break;
case ISD::FABS: R = SoftenFloatRes_FABS(N); break;
case ISD::FADD: R = SoftenFloatRes_FADD(N); break;
case ISD::FCEIL: R = SoftenFloatRes_FCEIL(N); break;
case ISD::FCOPYSIGN: R = SoftenFloatRes_FCOPYSIGN(N); break;
case ISD::FCOS: R = SoftenFloatRes_FCOS(N); break;
case ISD::FDIV: R = SoftenFloatRes_FDIV(N); break;
case ISD::FEXP: R = SoftenFloatRes_FEXP(N); break;
case ISD::FEXP2: R = SoftenFloatRes_FEXP2(N); break;
case ISD::FFLOOR: R = SoftenFloatRes_FFLOOR(N); break;
case ISD::FLOG: R = SoftenFloatRes_FLOG(N); break;
case ISD::FLOG2: R = SoftenFloatRes_FLOG2(N); break;
case ISD::FLOG10: R = SoftenFloatRes_FLOG10(N); break;
case ISD::FMUL: R = SoftenFloatRes_FMUL(N); break;
case ISD::FNEARBYINT: R = SoftenFloatRes_FNEARBYINT(N); break;
case ISD::FNEG: R = SoftenFloatRes_FNEG(N); break;
case ISD::FP_EXTEND: R = SoftenFloatRes_FP_EXTEND(N); break;
case ISD::FP_ROUND: R = SoftenFloatRes_FP_ROUND(N); break;
case ISD::FPOW: R = SoftenFloatRes_FPOW(N); break;
case ISD::FPOWI: R = SoftenFloatRes_FPOWI(N); break;
case ISD::FRINT: R = SoftenFloatRes_FRINT(N); break;
case ISD::FSIN: R = SoftenFloatRes_FSIN(N); break;
case ISD::FSQRT: R = SoftenFloatRes_FSQRT(N); break;
case ISD::FSUB: R = SoftenFloatRes_FSUB(N); break;
case ISD::FTRUNC: R = SoftenFloatRes_FTRUNC(N); break;
case ISD::LOAD: R = SoftenFloatRes_LOAD(N); break;
case ISD::SELECT: R = SoftenFloatRes_SELECT(N); break;
case ISD::SELECT_CC: R = SoftenFloatRes_SELECT_CC(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: R = SoftenFloatRes_XINT_TO_FP(N); break;
}
// If R is null, the sub-method took care of registering the result.
if (R.getNode())
SetSoftenedFloat(SDValue(N, ResNo), R);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_BIT_CONVERT(SDNode *N) {
return BitConvertToInteger(N->getOperand(0));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_BUILD_PAIR(SDNode *N) {
// Convert the inputs to integers, and build a new pair out of them.
return DAG.getNode(ISD::BUILD_PAIR,
TLI.getTypeToTransformTo(N->getValueType(0)),
BitConvertToInteger(N->getOperand(0)),
BitConvertToInteger(N->getOperand(1)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_ConstantFP(ConstantFPSDNode *N) {
return DAG.getConstant(N->getValueAPF().bitcastToAPInt(),
TLI.getTypeToTransformTo(N->getValueType(0)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FABS(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
unsigned Size = NVT.getSizeInBits();
// Mask = ~(1 << (Size-1))
SDValue Mask = DAG.getConstant(APInt::getAllOnesValue(Size).clear(Size-1),
NVT);
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return DAG.getNode(ISD::AND, NVT, Op, Mask);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::ADD_F32,
RTLIB::ADD_F64,
RTLIB::ADD_F80,
RTLIB::ADD_PPCF128),
NVT, Ops, 2, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCEIL(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::CEIL_F32,
RTLIB::CEIL_F64,
RTLIB::CEIL_F80,
RTLIB::CEIL_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) {
SDValue LHS = GetSoftenedFloat(N->getOperand(0));
SDValue RHS = BitConvertToInteger(N->getOperand(1));
MVT LVT = LHS.getValueType();
MVT RVT = RHS.getValueType();
unsigned LSize = LVT.getSizeInBits();
unsigned RSize = RVT.getSizeInBits();
// First get the sign bit of second operand.
SDValue SignBit = DAG.getNode(ISD::SHL, RVT, DAG.getConstant(1, RVT),
DAG.getConstant(RSize - 1,
TLI.getShiftAmountTy()));
SignBit = DAG.getNode(ISD::AND, RVT, RHS, SignBit);
// Shift right or sign-extend it if the two operands have different types.
int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits();
if (SizeDiff > 0) {
SignBit = DAG.getNode(ISD::SRL, RVT, SignBit,
DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
SignBit = DAG.getNode(ISD::TRUNCATE, LVT, SignBit);
} else if (SizeDiff < 0) {
SignBit = DAG.getNode(ISD::ANY_EXTEND, LVT, SignBit);
SignBit = DAG.getNode(ISD::SHL, LVT, SignBit,
DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy()));
}
// Clear the sign bit of the first operand.
SDValue Mask = DAG.getNode(ISD::SHL, LVT, DAG.getConstant(1, LVT),
DAG.getConstant(LSize - 1,
TLI.getShiftAmountTy()));
Mask = DAG.getNode(ISD::SUB, LVT, Mask, DAG.getConstant(1, LVT));
LHS = DAG.getNode(ISD::AND, LVT, LHS, Mask);
// Or the value with the sign bit.
return DAG.getNode(ISD::OR, LVT, LHS, SignBit);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCOS(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::COS_F32,
RTLIB::COS_F64,
RTLIB::COS_F80,
RTLIB::COS_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::DIV_F32,
RTLIB::DIV_F64,
RTLIB::DIV_F80,
RTLIB::DIV_PPCF128),
NVT, Ops, 2, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::EXP_F32,
RTLIB::EXP_F64,
RTLIB::EXP_F80,
RTLIB::EXP_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::EXP2_F32,
RTLIB::EXP2_F64,
RTLIB::EXP2_F80,
RTLIB::EXP2_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::FLOOR_F32,
RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80,
RTLIB::FLOOR_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::LOG_F32,
RTLIB::LOG_F64,
RTLIB::LOG_F80,
RTLIB::LOG_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::LOG2_F32,
RTLIB::LOG2_F64,
RTLIB::LOG2_F80,
RTLIB::LOG2_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::LOG10_F32,
RTLIB::LOG10_F64,
RTLIB::LOG10_F80,
RTLIB::LOG10_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_PPCF128),
NVT, Ops, 2, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::NEARBYINT_F32,
RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80,
RTLIB::NEARBYINT_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
// Expand Y = FNEG(X) -> Y = SUB -0.0, X
SDValue Ops[2] = { DAG.getConstantFP(-0.0, N->getValueType(0)),
GetSoftenedFloat(N->getOperand(0)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_PPCF128),
NVT, Ops, 2, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
return MakeLibCall(LC, NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!");
return MakeLibCall(LC, NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::POW_F32,
RTLIB::POW_F64,
RTLIB::POW_F80,
RTLIB::POW_PPCF128),
NVT, Ops, 2, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) {
assert(N->getOperand(1).getValueType() == MVT::i32 &&
"Unsupported power type!");
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), N->getOperand(1) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::POWI_F32,
RTLIB::POWI_F64,
RTLIB::POWI_F80,
RTLIB::POWI_PPCF128),
NVT, Ops, 2, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::RINT_F32,
RTLIB::RINT_F64,
RTLIB::RINT_F80,
RTLIB::RINT_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SIN_F32,
RTLIB::SIN_F64,
RTLIB::SIN_F80,
RTLIB::SIN_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SQRT_F32,
RTLIB::SQRT_F64,
RTLIB::SQRT_F80,
RTLIB::SQRT_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_PPCF128),
NVT, Ops, 2, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::TRUNC_F32,
RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80,
RTLIB::TRUNC_PPCF128),
NVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
LoadSDNode *L = cast<LoadSDNode>(N);
MVT VT = N->getValueType(0);
MVT NVT = TLI.getTypeToTransformTo(VT);
SDValue NewL;
if (L->getExtensionType() == ISD::NON_EXTLOAD) {
NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(),
NVT, L->getChain(), L->getBasePtr(), L->getOffset(),
L->getSrcValue(), L->getSrcValueOffset(), NVT,
L->isVolatile(), L->getAlignment());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
return NewL;
}
// Do a non-extending load followed by FP_EXTEND.
NewL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD,
L->getMemoryVT(), L->getChain(),
L->getBasePtr(), L->getOffset(),
L->getSrcValue(), L->getSrcValueOffset(),
L->getMemoryVT(),
L->isVolatile(), L->getAlignment());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
return BitConvertToInteger(DAG.getNode(ISD::FP_EXTEND, VT, NewL));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT(SDNode *N) {
SDValue LHS = GetSoftenedFloat(N->getOperand(1));
SDValue RHS = GetSoftenedFloat(N->getOperand(2));
return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0),LHS,RHS);
}
SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetSoftenedFloat(N->getOperand(2));
SDValue RHS = GetSoftenedFloat(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
MVT SVT = N->getOperand(0).getValueType();
MVT RVT = N->getValueType(0);
MVT NVT = MVT();
// If the input is not legal, eg: i1 -> fp, then it needs to be promoted to
// a larger type, eg: i8 -> fp. Even if it is legal, no libcall may exactly
// match. Look for an appropriate libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; ++t) {
NVT = (MVT::SimpleValueType)t;
// The source needs to big enough to hold the operand.
if (NVT.bitsGE(SVT))
LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT):RTLIB::getUINTTOFP (NVT, RVT);
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!");
// Sign/zero extend the argument if the libcall takes a larger type.
SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
NVT, N->getOperand(0));
return MakeLibCall(LC, TLI.getTypeToTransformTo(RVT), &Op, 1, false);
}
//===----------------------------------------------------------------------===//
// Operand Float to Integer Conversion..
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::SoftenFloatOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Soften float operand " << OpNo << ": "; N->dump(&DAG);
cerr << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "SoftenFloatOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to soften this operator's operand!");
abort();
case ISD::BIT_CONVERT: Res = SoftenFloatOp_BIT_CONVERT(N); break;
case ISD::BR_CC: Res = SoftenFloatOp_BR_CC(N); break;
case ISD::FP_ROUND: Res = SoftenFloatOp_FP_ROUND(N); break;
case ISD::FP_TO_SINT: Res = SoftenFloatOp_FP_TO_SINT(N); break;
case ISD::FP_TO_UINT: Res = SoftenFloatOp_FP_TO_UINT(N); break;
case ISD::SELECT_CC: Res = SoftenFloatOp_SELECT_CC(N); break;
case ISD::SETCC: Res = SoftenFloatOp_SETCC(N); break;
case ISD::STORE: Res = SoftenFloatOp_STORE(N, OpNo); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// SoftenSetCCOperands - Soften the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode) {
SDValue LHSInt = GetSoftenedFloat(NewLHS);
SDValue RHSInt = GetSoftenedFloat(NewRHS);
MVT VT = NewLHS.getValueType();
assert((VT == MVT::f32 || VT == MVT::f64) && "Unsupported setcc type!");
// Expand into one or more soft-fp libcall(s).
RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
switch (CCCode) {
case ISD::SETEQ:
case ISD::SETOEQ:
LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
break;
case ISD::SETNE:
case ISD::SETUNE:
LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64;
break;
case ISD::SETGE:
case ISD::SETOGE:
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
break;
case ISD::SETLT:
case ISD::SETOLT:
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
break;
case ISD::SETLE:
case ISD::SETOLE:
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
break;
case ISD::SETGT:
case ISD::SETOGT:
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
break;
case ISD::SETUO:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
break;
case ISD::SETO:
LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64;
break;
default:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
switch (CCCode) {
case ISD::SETONE:
// SETONE = SETOLT | SETOGT
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
// Fallthrough
case ISD::SETUGT:
LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
break;
case ISD::SETUGE:
LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
break;
case ISD::SETULT:
LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
break;
case ISD::SETULE:
LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
break;
case ISD::SETUEQ:
LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
break;
default: assert(false && "Do not know how to soften this setcc!");
}
}
MVT RetVT = MVT::i32; // FIXME: is this the correct return type?
SDValue Ops[2] = { LHSInt, RHSInt };
NewLHS = MakeLibCall(LC1, RetVT, Ops, 2, false/*sign irrelevant*/);
NewRHS = DAG.getConstant(0, RetVT);
CCCode = TLI.getCmpLibcallCC(LC1);
if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
SDValue Tmp = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(NewLHS),
NewLHS, NewRHS, DAG.getCondCode(CCCode));
NewLHS = MakeLibCall(LC2, RetVT, Ops, 2, false/*sign irrelevant*/);
NewLHS = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(NewLHS), NewLHS,
NewRHS, DAG.getCondCode(TLI.getCmpLibcallCC(LC2)));
NewLHS = DAG.getNode(ISD::OR, Tmp.getValueType(), Tmp, NewLHS);
NewRHS = SDValue();
}
}
SDValue DAGTypeLegalizer::SoftenFloatOp_BIT_CONVERT(SDNode *N) {
return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
GetSoftenedFloat(N->getOperand(0)));
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_ROUND(SDNode *N) {
MVT SVT = N->getOperand(0).getValueType();
MVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND libcall");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(LC, RVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatOp_BR_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
SoftenSetCCOperands(NewLHS, NewRHS, CCCode);
// If SoftenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (NewRHS.getNode() == 0) {
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return DAG.UpdateNodeOperands(SDValue(N, 0), N->getOperand(0),
DAG.getCondCode(CCCode), NewLHS, NewRHS,
N->getOperand(4));
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_SINT(SDNode *N) {
MVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(LC, RVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_UINT(SDNode *N) {
MVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(LC, RVT, &Op, 1, false);
}
SDValue DAGTypeLegalizer::SoftenFloatOp_SELECT_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
SoftenSetCCOperands(NewLHS, NewRHS, CCCode);
// If SoftenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (NewRHS.getNode() == 0) {
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return DAG.UpdateNodeOperands(SDValue(N, 0), NewLHS, NewRHS,
N->getOperand(2), N->getOperand(3),
DAG.getCondCode(CCCode));
}
SDValue DAGTypeLegalizer::SoftenFloatOp_SETCC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
SoftenSetCCOperands(NewLHS, NewRHS, CCCode);
// If SoftenSetCCOperands returned a scalar, use it.
if (NewRHS.getNode() == 0) {
assert(NewLHS.getValueType() == N->getValueType(0) &&
"Unexpected setcc expansion!");
return NewLHS;
}
// Otherwise, update N to have the operands specified.
return DAG.UpdateNodeOperands(SDValue(N, 0), NewLHS, NewRHS,
DAG.getCondCode(CCCode));
}
SDValue DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) {
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
assert(OpNo == 1 && "Can only soften the stored value!");
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Val = ST->getValue();
if (ST->isTruncatingStore())
// Do an FP_ROUND followed by a non-truncating store.
Val = BitConvertToInteger(DAG.getNode(ISD::FP_ROUND, ST->getMemoryVT(),
Val, DAG.getIntPtrConstant(0)));
else
Val = GetSoftenedFloat(Val);
return DAG.getStore(ST->getChain(), Val, ST->getBasePtr(),
ST->getSrcValue(), ST->getSrcValueOffset(),
ST->isVolatile(), ST->getAlignment());
}
//===----------------------------------------------------------------------===//
// Float Result Expansion
//===----------------------------------------------------------------------===//
/// ExpandFloatResult - This method is called when the specified result of the
/// specified node is found to need expansion. At this point, the node may also
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Expand float result: "; N->dump(&DAG); cerr << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerResults(N, ResNo))
return;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandFloatResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand the result of this operator!");
abort();
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::BIT_CONVERT: ExpandRes_BIT_CONVERT(N, Lo, Hi); break;
case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
case ISD::ConstantFP: ExpandFloatRes_ConstantFP(N, Lo, Hi); break;
case ISD::FABS: ExpandFloatRes_FABS(N, Lo, Hi); break;
case ISD::FADD: ExpandFloatRes_FADD(N, Lo, Hi); break;
case ISD::FCEIL: ExpandFloatRes_FCEIL(N, Lo, Hi); break;
case ISD::FCOS: ExpandFloatRes_FCOS(N, Lo, Hi); break;
case ISD::FDIV: ExpandFloatRes_FDIV(N, Lo, Hi); break;
case ISD::FEXP: ExpandFloatRes_FEXP(N, Lo, Hi); break;
case ISD::FEXP2: ExpandFloatRes_FEXP2(N, Lo, Hi); break;
case ISD::FFLOOR: ExpandFloatRes_FFLOOR(N, Lo, Hi); break;
case ISD::FLOG: ExpandFloatRes_FLOG(N, Lo, Hi); break;
case ISD::FLOG2: ExpandFloatRes_FLOG2(N, Lo, Hi); break;
case ISD::FLOG10: ExpandFloatRes_FLOG10(N, Lo, Hi); break;
case ISD::FMUL: ExpandFloatRes_FMUL(N, Lo, Hi); break;
case ISD::FNEARBYINT: ExpandFloatRes_FNEARBYINT(N, Lo, Hi); break;
case ISD::FNEG: ExpandFloatRes_FNEG(N, Lo, Hi); break;
case ISD::FP_EXTEND: ExpandFloatRes_FP_EXTEND(N, Lo, Hi); break;
case ISD::FPOW: ExpandFloatRes_FPOW(N, Lo, Hi); break;
case ISD::FPOWI: ExpandFloatRes_FPOWI(N, Lo, Hi); break;
case ISD::FRINT: ExpandFloatRes_FRINT(N, Lo, Hi); break;
case ISD::FSIN: ExpandFloatRes_FSIN(N, Lo, Hi); break;
case ISD::FSQRT: ExpandFloatRes_FSQRT(N, Lo, Hi); break;
case ISD::FSUB: ExpandFloatRes_FSUB(N, Lo, Hi); break;
case ISD::FTRUNC: ExpandFloatRes_FTRUNC(N, Lo, Hi); break;
case ISD::LOAD: ExpandFloatRes_LOAD(N, Lo, Hi); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: ExpandFloatRes_XINT_TO_FP(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetExpandedFloat(SDValue(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo,
SDValue &Hi) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
assert(NVT.getSizeInBits() == integerPartWidth &&
"Do not know how to expand this float constant!");
APInt C = cast<ConstantFPSDNode>(N)->getValueAPF().bitcastToAPInt();
Lo = DAG.getConstantFP(APFloat(APInt(integerPartWidth, 1,
&C.getRawData()[1])), NVT);
Hi = DAG.getConstantFP(APFloat(APInt(integerPartWidth, 1,
&C.getRawData()[0])), NVT);
}
void DAGTypeLegalizer::ExpandFloatRes_FABS(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(N->getValueType(0) == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
SDValue Tmp;
GetExpandedFloat(N->getOperand(0), Lo, Tmp);
Hi = DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp);
// Lo = Hi==fabs(Hi) ? Lo : -Lo;
Lo = DAG.getNode(ISD::SELECT_CC, Lo.getValueType(), Tmp, Hi, Lo,
DAG.getNode(ISD::FNEG, Lo.getValueType(), Lo),
DAG.getCondCode(ISD::SETEQ));
}
void DAGTypeLegalizer::ExpandFloatRes_FADD(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::ADD_F32, RTLIB::ADD_F64,
RTLIB::ADD_F80, RTLIB::ADD_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FCEIL(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::CEIL_F32, RTLIB::CEIL_F64,
RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FCOS(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::COS_F32, RTLIB::COS_F64,
RTLIB::COS_F80, RTLIB::COS_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FDIV(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
SDValue Call = MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::DIV_F32,
RTLIB::DIV_F64,
RTLIB::DIV_F80,
RTLIB::DIV_PPCF128),
N->getValueType(0), Ops, 2, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FEXP(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::EXP_F32, RTLIB::EXP_F64,
RTLIB::EXP_F80, RTLIB::EXP_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FEXP2(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::EXP2_F32, RTLIB::EXP2_F64,
RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FFLOOR(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::FLOOR_F32,RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80,RTLIB::FLOOR_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FLOG(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::LOG_F32, RTLIB::LOG_F64,
RTLIB::LOG_F80, RTLIB::LOG_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FLOG2(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::LOG2_F32, RTLIB::LOG2_F64,
RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FLOG10(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::LOG10_F32,RTLIB::LOG10_F64,
RTLIB::LOG10_F80,RTLIB::LOG10_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FMUL(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
SDValue Call = MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_PPCF128),
N->getValueType(0), Ops, 2, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FNEARBYINT(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::NEARBYINT_F32,
RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80,
RTLIB::NEARBYINT_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FNEG(SDNode *N, SDValue &Lo,
SDValue &Hi) {
GetExpandedFloat(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FNEG, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::FNEG, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandFloatRes_FP_EXTEND(SDNode *N, SDValue &Lo,
SDValue &Hi) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
Hi = DAG.getNode(ISD::FP_EXTEND, NVT, N->getOperand(0));
Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT);
}
void DAGTypeLegalizer::ExpandFloatRes_FPOW(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::POW_F32, RTLIB::POW_F64,
RTLIB::POW_F80, RTLIB::POW_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FPOWI(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::POWI_F32, RTLIB::POWI_F64,
RTLIB::POWI_F80, RTLIB::POWI_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FRINT(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::RINT_F32, RTLIB::RINT_F64,
RTLIB::RINT_F80, RTLIB::RINT_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FSIN(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::SIN_F32, RTLIB::SIN_F64,
RTLIB::SIN_F80, RTLIB::SIN_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FSQRT(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::SQRT_F32, RTLIB::SQRT_F64,
RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FSUB(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
SDValue Call = MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_PPCF128),
N->getValueType(0), Ops, 2, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_FTRUNC(SDNode *N,
SDValue &Lo, SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128),
N, false);
assert(Call.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Call.getOperand(0); Hi = Call.getOperand(1);
}
void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDValue &Lo,
SDValue &Hi) {
if (ISD::isNormalLoad(N)) {
ExpandRes_NormalLoad(N, Lo, Hi);
return;
}
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
LoadSDNode *LD = cast<LoadSDNode>(N);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
MVT NVT = TLI.getTypeToTransformTo(LD->getValueType(0));
assert(NVT.isByteSized() && "Expanded type not byte sized!");
assert(LD->getMemoryVT().bitsLE(NVT) && "Float type not round?");
Hi = DAG.getExtLoad(LD->getExtensionType(), NVT, Chain, Ptr,
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->getMemoryVT(),
LD->isVolatile(), LD->getAlignment());
// Remember the chain.
Chain = Hi.getValue(1);
// The low part is zero.
Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT);
// Modified the chain - switch anything that used the old chain to use the
// new one.
ReplaceValueWith(SDValue(LD, 1), Chain);
}
void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(N->getValueType(0) == MVT::ppcf128 && "Unsupported XINT_TO_FP!");
MVT VT = N->getValueType(0);
MVT NVT = TLI.getTypeToTransformTo(VT);
SDValue Src = N->getOperand(0);
MVT SrcVT = Src.getValueType();
bool isSigned = N->getOpcode() == ISD::SINT_TO_FP;
// First do an SINT_TO_FP, whether the original was signed or unsigned.
// When promoting partial word types to i32 we must honor the signedness,
// though.
if (SrcVT.bitsLE(MVT::i32)) {
// The integer can be represented exactly in an f64.
Src = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
MVT::i32, Src);
Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT);
Hi = DAG.getNode(ISD::SINT_TO_FP, NVT, Src);
} else {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (SrcVT.bitsLE(MVT::i64)) {
Src = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
MVT::i64, Src);
LC = RTLIB::SINTTOFP_I64_PPCF128;
} else if (SrcVT.bitsLE(MVT::i128)) {
Src = DAG.getNode(ISD::SIGN_EXTEND, MVT::i128, Src);
LC = RTLIB::SINTTOFP_I128_PPCF128;
}
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!");
Hi = MakeLibCall(LC, VT, &Src, 1, true);
assert(Hi.getNode()->getOpcode() == ISD::BUILD_PAIR &&
"Call lowered wrongly!");
Lo = Hi.getOperand(0); Hi = Hi.getOperand(1);
}
if (isSigned)
return;
// Unsigned - fix up the SINT_TO_FP value just calculated.
Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
SrcVT = Src.getValueType();
// x>=0 ? (ppcf128)(iN)x : (ppcf128)(iN)x + 2^N; N=32,64,128.
static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 };
static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 };
static const uint64_t TwoE128[] = { 0x47f0000000000000LL, 0 };
const uint64_t *Parts = 0;
switch (SrcVT.getSimpleVT()) {
default:
assert(false && "Unsupported UINT_TO_FP!");
case MVT::i32:
Parts = TwoE32;
break;
case MVT::i64:
Parts = TwoE64;
break;
case MVT::i128:
Parts = TwoE128;
break;
}
Lo = DAG.getNode(ISD::FADD, VT, Hi,
DAG.getConstantFP(APFloat(APInt(128, 2, Parts)),
MVT::ppcf128));
Lo = DAG.getNode(ISD::SELECT_CC, VT, Src, DAG.getConstant(0, SrcVT), Lo, Hi,
DAG.getCondCode(ISD::SETLT));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Lo, DAG.getIntPtrConstant(1));
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Lo, DAG.getIntPtrConstant(0));
}
//===----------------------------------------------------------------------===//
// Float Operand Expansion
//===----------------------------------------------------------------------===//
/// ExpandFloatOperand - This method is called when the specified operand of the
/// specified node is found to need expansion. At this point, all of the result
/// types of the node are known to be legal, but other operands of the node may
/// need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Expand float operand: "; N->dump(&DAG); cerr << "\n");
SDValue Res = SDValue();
if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
== TargetLowering::Custom)
Res = TLI.LowerOperation(SDValue(N, 0), DAG);
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandFloatOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand this operator's operand!");
abort();
case ISD::BIT_CONVERT: Res = ExpandOp_BIT_CONVERT(N); break;
case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
case ISD::BR_CC: Res = ExpandFloatOp_BR_CC(N); break;
case ISD::FP_ROUND: Res = ExpandFloatOp_FP_ROUND(N); break;
case ISD::FP_TO_SINT: Res = ExpandFloatOp_FP_TO_SINT(N); break;
case ISD::FP_TO_UINT: Res = ExpandFloatOp_FP_TO_UINT(N); break;
case ISD::SELECT_CC: Res = ExpandFloatOp_SELECT_CC(N); break;
case ISD::SETCC: Res = ExpandFloatOp_SETCC(N); break;
case ISD::STORE: Res = ExpandFloatOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// FloatExpandSetCCOperands - Expand the operands of a comparison. This code
/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::FloatExpandSetCCOperands(SDValue &NewLHS,
SDValue &NewRHS,
ISD::CondCode &CCCode) {
SDValue LHSLo, LHSHi, RHSLo, RHSHi;
GetExpandedFloat(NewLHS, LHSLo, LHSHi);
GetExpandedFloat(NewRHS, RHSLo, RHSHi);
MVT VT = NewLHS.getValueType();
assert(VT == MVT::ppcf128 && "Unsupported setcc type!");
// FIXME: This generated code sucks. We want to generate
// FCMPU crN, hi1, hi2
// BNE crN, L:
// FCMPU crN, lo1, lo2
// The following can be improved, but not that much.
SDValue Tmp1, Tmp2, Tmp3;
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETOEQ);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, CCCode);
Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETUNE);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode);
Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3);
NewRHS = SDValue(); // LHS is the result, not a compare.
}
SDValue DAGTypeLegalizer::ExpandFloatOp_BR_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode);
// If ExpandSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (NewRHS.getNode() == 0) {
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return DAG.UpdateNodeOperands(SDValue(N, 0), N->getOperand(0),
DAG.getCondCode(CCCode), NewLHS, NewRHS,
N->getOperand(4));
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_ROUND(SDNode *N) {
assert(N->getOperand(0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
SDValue Lo, Hi;
GetExpandedFloat(N->getOperand(0), Lo, Hi);
// Round it the rest of the way (e.g. to f32) if needed.
return DAG.getNode(ISD::FP_ROUND, N->getValueType(0), Hi, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_SINT(SDNode *N) {
MVT RVT = N->getValueType(0);
// Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
// PPC (the libcall is not available). FIXME: Do this in a less hacky way.
if (RVT == MVT::i32) {
assert(N->getOperand(0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
SDValue Res = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128,
N->getOperand(0), DAG.getValueType(MVT::f64));
Res = DAG.getNode(ISD::FP_ROUND, MVT::f64, Res, DAG.getIntPtrConstant(1));
return DAG.getNode(ISD::FP_TO_SINT, MVT::i32, Res);
}
RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!");
return MakeLibCall(LC, RVT, &N->getOperand(0), 1, false);
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) {
MVT RVT = N->getValueType(0);
// Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
// PPC (the libcall is not available). FIXME: Do this in a less hacky way.
if (RVT == MVT::i32) {
assert(N->getOperand(0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
APFloat APF = APFloat(APInt(128, 2, TwoE31));
SDValue Tmp = DAG.getConstantFP(APF, MVT::ppcf128);
// X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
// FIXME: generated code sucks.
return DAG.getNode(ISD::SELECT_CC, MVT::i32, N->getOperand(0), Tmp,
DAG.getNode(ISD::ADD, MVT::i32,
DAG.getNode(ISD::FP_TO_SINT, MVT::i32,
DAG.getNode(ISD::FSUB,
MVT::ppcf128,
N->getOperand(0),
Tmp)),
DAG.getConstant(0x80000000, MVT::i32)),
DAG.getNode(ISD::FP_TO_SINT, MVT::i32, N->getOperand(0)),
DAG.getCondCode(ISD::SETGE));
}
RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!");
return MakeLibCall(LC, N->getValueType(0), &N->getOperand(0), 1, false);
}
SDValue DAGTypeLegalizer::ExpandFloatOp_SELECT_CC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode);
// If ExpandSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (NewRHS.getNode() == 0) {
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return DAG.UpdateNodeOperands(SDValue(N, 0), NewLHS, NewRHS,
N->getOperand(2), N->getOperand(3),
DAG.getCondCode(CCCode));
}
SDValue DAGTypeLegalizer::ExpandFloatOp_SETCC(SDNode *N) {
SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode);
// If ExpandSetCCOperands returned a scalar, use it.
if (NewRHS.getNode() == 0) {
assert(NewLHS.getValueType() == N->getValueType(0) &&
"Unexpected setcc expansion!");
return NewLHS;
}
// Otherwise, update N to have the operands specified.
return DAG.UpdateNodeOperands(SDValue(N, 0), NewLHS, NewRHS,
DAG.getCondCode(CCCode));
}
SDValue DAGTypeLegalizer::ExpandFloatOp_STORE(SDNode *N, unsigned OpNo) {
if (ISD::isNormalStore(N))
return ExpandOp_NormalStore(N, OpNo);
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
assert(OpNo == 1 && "Can only expand the stored value so far");
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
MVT NVT = TLI.getTypeToTransformTo(ST->getValue().getValueType());
assert(NVT.isByteSized() && "Expanded type not byte sized!");
assert(ST->getMemoryVT().bitsLE(NVT) && "Float type not round?");
SDValue Lo, Hi;
GetExpandedOp(ST->getValue(), Lo, Hi);
return DAG.getTruncStore(Chain, Hi, Ptr,
ST->getSrcValue(), ST->getSrcValueOffset(),
ST->getMemoryVT(),
ST->isVolatile(), ST->getAlignment());
}