llvm-6502/include/llvm/CodeGen/ValueTypes.h
Ken Dyck bceddbdc91 Introduce EVT::getHalfSizedIntegerVT() for use in ExpandUnalignedStore() in
LegalizeDAG.cpp. Unlike the code it replaces, which simply decrements the simple
type by one, getHalfSizedIntegerVT() searches for the smallest simple integer
type that is at least half the size of the type it is called on. This approach
has the advantage that it will continue working if a new value type (such as
i24) is added to MVT.

Also, in preparation for new value types, remove the assertions that
non-power-of-2 8-bit-mutiple types are Extended when legalizing extload and
truncstore operations.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91614 91177308-0d34-0410-b5e6-96231b3b80d8
2009-12-17 20:09:43 +00:00

682 lines
22 KiB
C++

//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of low-level target independent types which various
// values in the code generator are. This allows the target specific behavior
// of instructions to be described to target independent passes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_VALUETYPES_H
#define LLVM_CODEGEN_VALUETYPES_H
#include <cassert>
#include <string>
#include "llvm/System/DataTypes.h"
#include "llvm/Support/MathExtras.h"
namespace llvm {
class Type;
class LLVMContext;
struct EVT;
class MVT { // MVT = Machine Value Type
public:
enum SimpleValueType {
// If you change this numbering, you must change the values in
// ValueTypes.td as well!
Other = 0, // This is a non-standard value
i1 = 1, // This is a 1 bit integer value
i8 = 2, // This is an 8 bit integer value
i16 = 3, // This is a 16 bit integer value
i32 = 4, // This is a 32 bit integer value
i64 = 5, // This is a 64 bit integer value
i128 = 6, // This is a 128 bit integer value
FIRST_INTEGER_VALUETYPE = i1,
LAST_INTEGER_VALUETYPE = i128,
f32 = 7, // This is a 32 bit floating point value
f64 = 8, // This is a 64 bit floating point value
f80 = 9, // This is a 80 bit floating point value
f128 = 10, // This is a 128 bit floating point value
ppcf128 = 11, // This is a PPC 128-bit floating point value
v2i8 = 12, // 2 x i8
v4i8 = 13, // 4 x i8
v8i8 = 14, // 8 x i8
v16i8 = 15, // 16 x i8
v32i8 = 16, // 32 x i8
v2i16 = 17, // 2 x i16
v4i16 = 18, // 4 x i16
v8i16 = 19, // 8 x i16
v16i16 = 20, // 16 x i16
v2i32 = 21, // 2 x i32
v4i32 = 22, // 4 x i32
v8i32 = 23, // 8 x i32
v1i64 = 24, // 1 x i64
v2i64 = 25, // 2 x i64
v4i64 = 26, // 4 x i64
v2f32 = 27, // 2 x f32
v4f32 = 28, // 4 x f32
v8f32 = 29, // 8 x f32
v2f64 = 30, // 2 x f64
v4f64 = 31, // 4 x f64
FIRST_VECTOR_VALUETYPE = v2i8,
LAST_VECTOR_VALUETYPE = v4f64,
Flag = 32, // This glues nodes together during pre-RA sched
isVoid = 33, // This has no value
LAST_VALUETYPE = 34, // This always remains at the end of the list.
// This is the current maximum for LAST_VALUETYPE.
// EVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
// This value must be a multiple of 32.
MAX_ALLOWED_VALUETYPE = 64,
// Metadata - This is MDNode or MDString.
Metadata = 250,
// iPTRAny - An int value the size of the pointer of the current
// target to any address space. This must only be used internal to
// tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
iPTRAny = 251,
// vAny - A vector with any length and element size. This is used
// for intrinsics that have overloadings based on vector types.
// This is only for tblgen's consumption!
vAny = 252,
// fAny - Any floating-point or vector floating-point value. This is used
// for intrinsics that have overloadings based on floating-point types.
// This is only for tblgen's consumption!
fAny = 253,
// iAny - An integer or vector integer value of any bit width. This is
// used for intrinsics that have overloadings based on integer bit widths.
// This is only for tblgen's consumption!
iAny = 254,
// iPTR - An int value the size of the pointer of the current
// target. This should only be used internal to tblgen!
iPTR = 255,
// LastSimpleValueType - The greatest valid SimpleValueType value.
LastSimpleValueType = 255,
// INVALID_SIMPLE_VALUE_TYPE - Simple value types greater than or equal
// to this are considered extended value types.
INVALID_SIMPLE_VALUE_TYPE = LastSimpleValueType + 1
};
SimpleValueType SimpleTy;
MVT() : SimpleTy((SimpleValueType)(INVALID_SIMPLE_VALUE_TYPE)) {}
MVT(SimpleValueType SVT) : SimpleTy(SVT) { }
bool operator>(const MVT& S) const { return SimpleTy > S.SimpleTy; }
bool operator<(const MVT& S) const { return SimpleTy < S.SimpleTy; }
bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }
/// isFloatingPoint - Return true if this is a FP, or a vector FP type.
bool isFloatingPoint() const {
return ((SimpleTy >= MVT::f32 && SimpleTy <= MVT::ppcf128) ||
(SimpleTy >= MVT::v2f32 && SimpleTy <= MVT::v4f64));
}
/// isInteger - Return true if this is an integer, or a vector integer type.
bool isInteger() const {
return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
(SimpleTy >= MVT::v2i8 && SimpleTy <= MVT::v4i64));
}
/// isVector - Return true if this is a vector value type.
bool isVector() const {
return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
}
/// isPow2VectorType - Retuns true if the given vector is a power of 2.
bool isPow2VectorType() const {
unsigned NElts = getVectorNumElements();
return !(NElts & (NElts - 1));
}
/// getPow2VectorType - Widens the length of the given vector EVT up to
/// the nearest power of 2 and returns that type.
MVT getPow2VectorType() const {
if (!isPow2VectorType()) {
unsigned NElts = getVectorNumElements();
unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
return MVT::getVectorVT(getVectorElementType(), Pow2NElts);
}
else {
return *this;
}
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
MVT getScalarType() const {
return isVector() ? getVectorElementType() : *this;
}
MVT getVectorElementType() const {
switch (SimpleTy) {
default:
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
case v2i8 :
case v4i8 :
case v8i8 :
case v16i8:
case v32i8: return i8;
case v2i16:
case v4i16:
case v8i16:
case v16i16: return i16;
case v2i32:
case v4i32:
case v8i32: return i32;
case v1i64:
case v2i64:
case v4i64: return i64;
case v2f32:
case v4f32:
case v8f32: return f32;
case v2f64:
case v4f64: return f64;
}
}
unsigned getVectorNumElements() const {
switch (SimpleTy) {
default:
return ~0U;
case v32i8: return 32;
case v16i8:
case v16i16: return 16;
case v8i8 :
case v8i16:
case v8i32:
case v8f32: return 8;
case v4i8:
case v4i16:
case v4i32:
case v4i64:
case v4f32:
case v4f64: return 4;
case v2i8:
case v2i16:
case v2i32:
case v2i64:
case v2f32:
case v2f64: return 2;
case v1i64: return 1;
}
}
unsigned getSizeInBits() const {
switch (SimpleTy) {
case iPTR:
assert(0 && "Value type size is target-dependent. Ask TLI.");
case iPTRAny:
case iAny:
case fAny:
assert(0 && "Value type is overloaded.");
default:
assert(0 && "getSizeInBits called on extended MVT.");
case i1 : return 1;
case i8 : return 8;
case i16 :
case v2i8: return 16;
case f32 :
case i32 :
case v4i8:
case v2i16: return 32;
case f64 :
case i64 :
case v8i8:
case v4i16:
case v2i32:
case v1i64:
case v2f32: return 64;
case f80 : return 80;
case f128:
case ppcf128:
case i128:
case v16i8:
case v8i16:
case v4i32:
case v2i64:
case v4f32:
case v2f64: return 128;
case v32i8:
case v16i16:
case v8i32:
case v4i64:
case v8f32:
case v4f64: return 256;
}
}
static MVT getFloatingPointVT(unsigned BitWidth) {
switch (BitWidth) {
default:
assert(false && "Bad bit width!");
case 32:
return MVT::f32;
case 64:
return MVT::f64;
case 80:
return MVT::f80;
case 128:
return MVT::f128;
}
}
static MVT getIntegerVT(unsigned BitWidth) {
switch (BitWidth) {
default:
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
case 1:
return MVT::i1;
case 8:
return MVT::i8;
case 16:
return MVT::i16;
case 32:
return MVT::i32;
case 64:
return MVT::i64;
case 128:
return MVT::i128;
}
}
static MVT getVectorVT(MVT VT, unsigned NumElements) {
switch (VT.SimpleTy) {
default:
break;
case MVT::i8:
if (NumElements == 2) return MVT::v2i8;
if (NumElements == 4) return MVT::v4i8;
if (NumElements == 8) return MVT::v8i8;
if (NumElements == 16) return MVT::v16i8;
if (NumElements == 32) return MVT::v32i8;
break;
case MVT::i16:
if (NumElements == 2) return MVT::v2i16;
if (NumElements == 4) return MVT::v4i16;
if (NumElements == 8) return MVT::v8i16;
if (NumElements == 16) return MVT::v16i16;
break;
case MVT::i32:
if (NumElements == 2) return MVT::v2i32;
if (NumElements == 4) return MVT::v4i32;
if (NumElements == 8) return MVT::v8i32;
break;
case MVT::i64:
if (NumElements == 1) return MVT::v1i64;
if (NumElements == 2) return MVT::v2i64;
if (NumElements == 4) return MVT::v4i64;
break;
case MVT::f32:
if (NumElements == 2) return MVT::v2f32;
if (NumElements == 4) return MVT::v4f32;
if (NumElements == 8) return MVT::v8f32;
break;
case MVT::f64:
if (NumElements == 2) return MVT::v2f64;
if (NumElements == 4) return MVT::v4f64;
break;
}
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
}
static MVT getIntVectorWithNumElements(unsigned NumElts) {
switch (NumElts) {
default: return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
case 1: return MVT::v1i64;
case 2: return MVT::v2i32;
case 4: return MVT::v4i16;
case 8: return MVT::v8i8;
case 16: return MVT::v16i8;
}
}
};
struct EVT { // EVT = Extended Value Type
private:
MVT V;
const Type *LLVMTy;
public:
EVT() : V((MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE)),
LLVMTy(0) {}
EVT(MVT::SimpleValueType SVT) : V(SVT), LLVMTy(0) { }
EVT(MVT S) : V(S), LLVMTy(0) {}
bool operator==(const EVT VT) const {
if (V.SimpleTy == VT.V.SimpleTy) {
if (V.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
return LLVMTy == VT.LLVMTy;
return true;
}
return false;
}
bool operator!=(const EVT VT) const {
if (V.SimpleTy == VT.V.SimpleTy) {
if (V.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
return LLVMTy != VT.LLVMTy;
return false;
}
return true;
}
/// getFloatingPointVT - Returns the EVT that represents a floating point
/// type with the given number of bits. There are two floating point types
/// with 128 bits - this returns f128 rather than ppcf128.
static EVT getFloatingPointVT(unsigned BitWidth) {
return MVT::getFloatingPointVT(BitWidth);
}
/// getIntegerVT - Returns the EVT that represents an integer with the given
/// number of bits.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth) {
MVT M = MVT::getIntegerVT(BitWidth);
if (M.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
return getExtendedIntegerVT(Context, BitWidth);
else
return M;
}
/// getVectorVT - Returns the EVT that represents a vector NumElements in
/// length, where each element is of type VT.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements) {
MVT M = MVT::getVectorVT(VT.V, NumElements);
if (M.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
return getExtendedVectorVT(Context, VT, NumElements);
else
return M;
}
/// getIntVectorWithNumElements - Return any integer vector type that has
/// the specified number of elements.
static EVT getIntVectorWithNumElements(LLVMContext &C, unsigned NumElts) {
MVT M = MVT::getIntVectorWithNumElements(NumElts);
if (M.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
return getVectorVT(C, MVT::i8, NumElts);
else
return M;
}
/// isSimple - Test if the given EVT is simple (as opposed to being
/// extended).
bool isSimple() const {
return V.SimpleTy <= MVT::LastSimpleValueType;
}
/// isExtended - Test if the given EVT is extended (as opposed to
/// being simple).
bool isExtended() const {
return !isSimple();
}
/// isFloatingPoint - Return true if this is a FP, or a vector FP type.
bool isFloatingPoint() const {
return isSimple() ?
((V >= MVT::f32 && V <= MVT::ppcf128) ||
(V >= MVT::v2f32 && V <= MVT::v4f64)) : isExtendedFloatingPoint();
}
/// isInteger - Return true if this is an integer, or a vector integer type.
bool isInteger() const {
return isSimple() ?
((V >= MVT::FIRST_INTEGER_VALUETYPE &&
V <= MVT::LAST_INTEGER_VALUETYPE) ||
(V >= MVT::v2i8 && V <= MVT::v4i64)) : isExtendedInteger();
}
/// isVector - Return true if this is a vector value type.
bool isVector() const {
return isSimple() ?
(V >= MVT::FIRST_VECTOR_VALUETYPE && V <=
MVT::LAST_VECTOR_VALUETYPE) :
isExtendedVector();
}
/// is64BitVector - Return true if this is a 64-bit vector type.
bool is64BitVector() const {
return isSimple() ?
(V==MVT::v8i8 || V==MVT::v4i16 || V==MVT::v2i32 ||
V==MVT::v1i64 || V==MVT::v2f32) :
isExtended64BitVector();
}
/// is128BitVector - Return true if this is a 128-bit vector type.
bool is128BitVector() const {
return isSimple() ?
(V==MVT::v16i8 || V==MVT::v8i16 || V==MVT::v4i32 ||
V==MVT::v2i64 || V==MVT::v4f32 || V==MVT::v2f64) :
isExtended128BitVector();
}
/// is256BitVector - Return true if this is a 256-bit vector type.
inline bool is256BitVector() const {
return isSimple() ?
(V==MVT::v8f32 || V==MVT::v4f64 || V==MVT::v32i8 ||
V==MVT::v16i16 || V==MVT::v8i32 || V==MVT::v4i64) :
isExtended256BitVector();
}
/// isOverloaded - Return true if this is an overloaded type for TableGen.
bool isOverloaded() const {
return (V==MVT::iAny || V==MVT::fAny || V==MVT::vAny || V==MVT::iPTRAny);
}
/// isByteSized - Return true if the bit size is a multiple of 8.
bool isByteSized() const {
return (getSizeInBits() & 7) == 0;
}
/// isRound - Return true if the size is a power-of-two number of bytes.
bool isRound() const {
unsigned BitSize = getSizeInBits();
return BitSize >= 8 && !(BitSize & (BitSize - 1));
}
/// bitsEq - Return true if this has the same number of bits as VT.
bool bitsEq(EVT VT) const {
return getSizeInBits() == VT.getSizeInBits();
}
/// bitsGT - Return true if this has more bits than VT.
bool bitsGT(EVT VT) const {
return getSizeInBits() > VT.getSizeInBits();
}
/// bitsGE - Return true if this has no less bits than VT.
bool bitsGE(EVT VT) const {
return getSizeInBits() >= VT.getSizeInBits();
}
/// bitsLT - Return true if this has less bits than VT.
bool bitsLT(EVT VT) const {
return getSizeInBits() < VT.getSizeInBits();
}
/// bitsLE - Return true if this has no more bits than VT.
bool bitsLE(EVT VT) const {
return getSizeInBits() <= VT.getSizeInBits();
}
/// getSimpleVT - Return the SimpleValueType held in the specified
/// simple EVT.
MVT getSimpleVT() const {
assert(isSimple() && "Expected a SimpleValueType!");
return V;
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
EVT getScalarType() const {
return isVector() ? getVectorElementType() : *this;
}
/// getVectorElementType - Given a vector type, return the type of
/// each element.
EVT getVectorElementType() const {
assert(isVector() && "Invalid vector type!");
if (isSimple())
return V.getVectorElementType();
else
return getExtendedVectorElementType();
}
/// getVectorNumElements - Given a vector type, return the number of
/// elements it contains.
unsigned getVectorNumElements() const {
assert(isVector() && "Invalid vector type!");
if (isSimple())
return V.getVectorNumElements();
else
return getExtendedVectorNumElements();
}
/// getSizeInBits - Return the size of the specified value type in bits.
unsigned getSizeInBits() const {
if (isSimple())
return V.getSizeInBits();
else
return getExtendedSizeInBits();
}
/// getStoreSize - Return the number of bytes overwritten by a store
/// of the specified value type.
unsigned getStoreSize() const {
return (getSizeInBits() + 7) / 8;
}
/// getStoreSizeInBits - Return the number of bits overwritten by a store
/// of the specified value type.
unsigned getStoreSizeInBits() const {
return getStoreSize() * 8;
}
/// getRoundIntegerType - Rounds the bit-width of the given integer EVT up
/// to the nearest power of two (and at least to eight), and returns the
/// integer EVT with that number of bits.
EVT getRoundIntegerType(LLVMContext &Context) const {
assert(isInteger() && !isVector() && "Invalid integer type!");
unsigned BitWidth = getSizeInBits();
if (BitWidth <= 8)
return EVT(MVT::i8);
else
return getIntegerVT(Context, 1 << Log2_32_Ceil(BitWidth));
}
/// getHalfSizedIntegerVT - Finds the smallest simple value type that is
/// greater than or equal to half the width of this EVT. If no simple
/// value type can be found, an extended integer value type of half the
/// size (rounded up) is returned.
EVT getHalfSizedIntegerVT(LLVMContext &Context) const {
assert(isInteger() && !isVector() && "Invalid integer type!");
unsigned EVTSize = getSizeInBits();
for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
IntVT <= MVT::LAST_INTEGER_VALUETYPE;
++IntVT) {
EVT HalfVT = EVT((MVT::SimpleValueType)IntVT);
if(HalfVT.getSizeInBits() * 2 >= EVTSize) {
return HalfVT;
}
}
return getIntegerVT(Context, (EVTSize + 1) / 2);
}
/// isPow2VectorType - Returns true if the given vector is a power of 2.
bool isPow2VectorType() const {
unsigned NElts = getVectorNumElements();
return !(NElts & (NElts - 1));
}
/// getPow2VectorType - Widens the length of the given vector EVT up to
/// the nearest power of 2 and returns that type.
EVT getPow2VectorType(LLVMContext &Context) const {
if (!isPow2VectorType()) {
unsigned NElts = getVectorNumElements();
unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
return EVT::getVectorVT(Context, getVectorElementType(), Pow2NElts);
}
else {
return *this;
}
}
/// getEVTString - This function returns value type as a string,
/// e.g. "i32".
std::string getEVTString() const;
/// getTypeForEVT - This method returns an LLVM type corresponding to the
/// specified EVT. For integer types, this returns an unsigned type. Note
/// that this will abort for types that cannot be represented.
const Type *getTypeForEVT(LLVMContext &Context) const;
/// getEVT - Return the value type corresponding to the specified type.
/// This returns all pointers as iPTR. If HandleUnknown is true, unknown
/// types are returned as Other, otherwise they are invalid.
static EVT getEVT(const Type *Ty, bool HandleUnknown = false);
intptr_t getRawBits() {
if (V.SimpleTy <= MVT::LastSimpleValueType)
return V.SimpleTy;
else
return (intptr_t)(LLVMTy);
}
/// compareRawBits - A meaningless but well-behaved order, useful for
/// constructing containers.
struct compareRawBits {
bool operator()(EVT L, EVT R) const {
if (L.V.SimpleTy == R.V.SimpleTy)
return L.LLVMTy < R.LLVMTy;
else
return L.V.SimpleTy < R.V.SimpleTy;
}
};
private:
// Methods for handling the Extended-type case in functions above.
// These are all out-of-line to prevent users of this header file
// from having a dependency on Type.h.
static EVT getExtendedIntegerVT(LLVMContext &C, unsigned BitWidth);
static EVT getExtendedVectorVT(LLVMContext &C, EVT VT,
unsigned NumElements);
bool isExtendedFloatingPoint() const;
bool isExtendedInteger() const;
bool isExtendedVector() const;
bool isExtended64BitVector() const;
bool isExtended128BitVector() const;
bool isExtended256BitVector() const;
EVT getExtendedVectorElementType() const;
unsigned getExtendedVectorNumElements() const;
unsigned getExtendedSizeInBits() const;
};
} // End llvm namespace
#endif