mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 17:33:24 +00:00
7b837d8c75
This adds a second implementation of the AArch64 architecture to LLVM, accessible in parallel via the "arm64" triple. The plan over the coming weeks & months is to merge the two into a single backend, during which time thorough code review should naturally occur. Everything will be easier with the target in-tree though, hence this commit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
534 lines
20 KiB
C++
534 lines
20 KiB
C++
//===-- ARM64AsmBackend.cpp - ARM64 Assembler Backend ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM64.h"
|
|
#include "ARM64RegisterInfo.h"
|
|
#include "MCTargetDesc/ARM64FixupKinds.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/MC/MCAsmBackend.h"
|
|
#include "llvm/MC/MCDirectives.h"
|
|
#include "llvm/MC/MCFixupKindInfo.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSectionMachO.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachO.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class ARM64AsmBackend : public MCAsmBackend {
|
|
static const unsigned PCRelFlagVal =
|
|
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
|
|
|
|
public:
|
|
ARM64AsmBackend(const Target &T) : MCAsmBackend() {}
|
|
|
|
unsigned getNumFixupKinds() const { return ARM64::NumTargetFixupKinds; }
|
|
|
|
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
|
|
const static MCFixupKindInfo Infos[ARM64::NumTargetFixupKinds] = {
|
|
// This table *must* be in the order that the fixup_* kinds are defined in
|
|
// ARM64FixupKinds.h.
|
|
//
|
|
// Name Offset (bits) Size (bits) Flags
|
|
{ "fixup_arm64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
|
|
{ "fixup_arm64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
|
|
{ "fixup_arm64_add_imm12", 10, 12, 0 },
|
|
{ "fixup_arm64_ldst_imm12_scale1", 10, 12, 0 },
|
|
{ "fixup_arm64_ldst_imm12_scale2", 10, 12, 0 },
|
|
{ "fixup_arm64_ldst_imm12_scale4", 10, 12, 0 },
|
|
{ "fixup_arm64_ldst_imm12_scale8", 10, 12, 0 },
|
|
{ "fixup_arm64_ldst_imm12_scale16", 10, 12, 0 },
|
|
{ "fixup_arm64_movw", 5, 16, 0 },
|
|
{ "fixup_arm64_pcrel_branch14", 5, 14, PCRelFlagVal },
|
|
{ "fixup_arm64_pcrel_imm19", 5, 19, PCRelFlagVal },
|
|
{ "fixup_arm64_pcrel_branch26", 0, 26, PCRelFlagVal },
|
|
{ "fixup_arm64_pcrel_call26", 0, 26, PCRelFlagVal },
|
|
{ "fixup_arm64_tlsdesc_call", 0, 0, 0 }
|
|
};
|
|
|
|
if (Kind < FirstTargetFixupKind)
|
|
return MCAsmBackend::getFixupKindInfo(Kind);
|
|
|
|
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
|
|
"Invalid kind!");
|
|
return Infos[Kind - FirstTargetFixupKind];
|
|
}
|
|
|
|
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
|
|
uint64_t Value, bool IsPCRel) const;
|
|
|
|
bool mayNeedRelaxation(const MCInst &Inst) const;
|
|
bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
|
|
const MCRelaxableFragment *DF,
|
|
const MCAsmLayout &Layout) const;
|
|
void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
|
|
bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
|
|
|
|
void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
|
|
|
|
unsigned getPointerSize() const { return 8; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// \brief The number of bytes the fixup may change.
|
|
static unsigned getFixupKindNumBytes(unsigned Kind) {
|
|
switch (Kind) {
|
|
default:
|
|
assert(0 && "Unknown fixup kind!");
|
|
|
|
case ARM64::fixup_arm64_tlsdesc_call:
|
|
return 0;
|
|
|
|
case FK_Data_1:
|
|
return 1;
|
|
|
|
case FK_Data_2:
|
|
case ARM64::fixup_arm64_movw:
|
|
return 2;
|
|
|
|
case ARM64::fixup_arm64_pcrel_branch14:
|
|
case ARM64::fixup_arm64_add_imm12:
|
|
case ARM64::fixup_arm64_ldst_imm12_scale1:
|
|
case ARM64::fixup_arm64_ldst_imm12_scale2:
|
|
case ARM64::fixup_arm64_ldst_imm12_scale4:
|
|
case ARM64::fixup_arm64_ldst_imm12_scale8:
|
|
case ARM64::fixup_arm64_ldst_imm12_scale16:
|
|
case ARM64::fixup_arm64_pcrel_imm19:
|
|
return 3;
|
|
|
|
case ARM64::fixup_arm64_pcrel_adr_imm21:
|
|
case ARM64::fixup_arm64_pcrel_adrp_imm21:
|
|
case ARM64::fixup_arm64_pcrel_branch26:
|
|
case ARM64::fixup_arm64_pcrel_call26:
|
|
case FK_Data_4:
|
|
return 4;
|
|
|
|
case FK_Data_8:
|
|
return 8;
|
|
}
|
|
}
|
|
|
|
static unsigned AdrImmBits(unsigned Value) {
|
|
unsigned lo2 = Value & 0x3;
|
|
unsigned hi19 = (Value & 0x1ffffc) >> 2;
|
|
return (hi19 << 5) | (lo2 << 29);
|
|
}
|
|
|
|
static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
|
|
int64_t SignedValue = static_cast<int64_t>(Value);
|
|
switch (Kind) {
|
|
default:
|
|
assert(false && "Unknown fixup kind!");
|
|
case ARM64::fixup_arm64_pcrel_adr_imm21:
|
|
if (SignedValue > 2097151 || SignedValue < -2097152)
|
|
report_fatal_error("fixup value out of range");
|
|
return AdrImmBits(Value & 0x1fffffULL);
|
|
case ARM64::fixup_arm64_pcrel_adrp_imm21:
|
|
return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
|
|
case ARM64::fixup_arm64_pcrel_imm19:
|
|
// Signed 21-bit immediate
|
|
if (SignedValue > 2097151 || SignedValue < -2097152)
|
|
report_fatal_error("fixup value out of range");
|
|
// Low two bits are not encoded.
|
|
return (Value >> 2) & 0x7ffff;
|
|
case ARM64::fixup_arm64_add_imm12:
|
|
case ARM64::fixup_arm64_ldst_imm12_scale1:
|
|
// Unsigned 12-bit immediate
|
|
if (Value >= 0x1000)
|
|
report_fatal_error("invalid imm12 fixup value");
|
|
return Value;
|
|
case ARM64::fixup_arm64_ldst_imm12_scale2:
|
|
// Unsigned 12-bit immediate which gets multiplied by 2
|
|
if (Value & 1 || Value >= 0x2000)
|
|
report_fatal_error("invalid imm12 fixup value");
|
|
return Value >> 1;
|
|
case ARM64::fixup_arm64_ldst_imm12_scale4:
|
|
// Unsigned 12-bit immediate which gets multiplied by 4
|
|
if (Value & 3 || Value >= 0x4000)
|
|
report_fatal_error("invalid imm12 fixup value");
|
|
return Value >> 2;
|
|
case ARM64::fixup_arm64_ldst_imm12_scale8:
|
|
// Unsigned 12-bit immediate which gets multiplied by 8
|
|
if (Value & 7 || Value >= 0x8000)
|
|
report_fatal_error("invalid imm12 fixup value");
|
|
return Value >> 3;
|
|
case ARM64::fixup_arm64_ldst_imm12_scale16:
|
|
// Unsigned 12-bit immediate which gets multiplied by 16
|
|
if (Value & 15 || Value >= 0x10000)
|
|
report_fatal_error("invalid imm12 fixup value");
|
|
return Value >> 4;
|
|
case ARM64::fixup_arm64_movw:
|
|
report_fatal_error("no resolvable MOVZ/MOVK fixups supported yet");
|
|
return Value;
|
|
case ARM64::fixup_arm64_pcrel_branch14:
|
|
// Signed 16-bit immediate
|
|
if (SignedValue > 32767 || SignedValue < -32768)
|
|
report_fatal_error("fixup value out of range");
|
|
// Low two bits are not encoded (4-byte alignment assumed).
|
|
if (Value & 0x3)
|
|
report_fatal_error("fixup not sufficiently aligned");
|
|
return (Value >> 2) & 0x3fff;
|
|
case ARM64::fixup_arm64_pcrel_branch26:
|
|
case ARM64::fixup_arm64_pcrel_call26:
|
|
// Signed 28-bit immediate
|
|
if (SignedValue > 134217727 || SignedValue < -134217728)
|
|
report_fatal_error("fixup value out of range");
|
|
// Low two bits are not encoded (4-byte alignment assumed).
|
|
if (Value & 0x3)
|
|
report_fatal_error("fixup not sufficiently aligned");
|
|
return (Value >> 2) & 0x3ffffff;
|
|
case FK_Data_1:
|
|
case FK_Data_2:
|
|
case FK_Data_4:
|
|
case FK_Data_8:
|
|
return Value;
|
|
}
|
|
}
|
|
|
|
void ARM64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
|
|
unsigned DataSize, uint64_t Value,
|
|
bool IsPCRel) const {
|
|
unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
|
|
if (!Value)
|
|
return; // Doesn't change encoding.
|
|
MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
|
|
// Apply any target-specific value adjustments.
|
|
Value = adjustFixupValue(Fixup.getKind(), Value);
|
|
|
|
// Shift the value into position.
|
|
Value <<= Info.TargetOffset;
|
|
|
|
unsigned Offset = Fixup.getOffset();
|
|
assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
|
|
|
|
// For each byte of the fragment that the fixup touches, mask in the
|
|
// bits from the fixup value.
|
|
for (unsigned i = 0; i != NumBytes; ++i)
|
|
Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
|
|
}
|
|
|
|
bool ARM64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
|
|
return false;
|
|
}
|
|
|
|
bool ARM64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
|
|
const MCRelaxableFragment *DF,
|
|
const MCAsmLayout &Layout) const {
|
|
// FIXME: This isn't correct for ARM64. Just moving the "generic" logic
|
|
// into the targets for now.
|
|
//
|
|
// Relax if the value is too big for a (signed) i8.
|
|
return int64_t(Value) != int64_t(int8_t(Value));
|
|
}
|
|
|
|
void ARM64AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
|
|
assert(false && "ARM64AsmBackend::relaxInstruction() unimplemented");
|
|
}
|
|
|
|
bool ARM64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
|
|
// If the count is not 4-byte aligned, we must be writing data into the text
|
|
// section (otherwise we have unaligned instructions, and thus have far
|
|
// bigger problems), so just write zeros instead.
|
|
if ((Count & 3) != 0) {
|
|
for (uint64_t i = 0, e = (Count & 3); i != e; ++i)
|
|
OW->Write8(0);
|
|
}
|
|
|
|
// We are properly aligned, so write NOPs as requested.
|
|
Count /= 4;
|
|
for (uint64_t i = 0; i != Count; ++i)
|
|
OW->Write32(0xd503201f);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
namespace CU {
|
|
|
|
/// \brief Compact unwind encoding values.
|
|
enum CompactUnwindEncodings {
|
|
/// \brief A "frameless" leaf function, where no non-volatile registers are
|
|
/// saved. The return remains in LR throughout the function.
|
|
UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
|
|
|
|
/// \brief No compact unwind encoding available. Instead the low 23-bits of
|
|
/// the compact unwind encoding is the offset of the DWARF FDE in the
|
|
/// __eh_frame section. This mode is never used in object files. It is only
|
|
/// generated by the linker in final linked images, which have only DWARF info
|
|
/// for a function.
|
|
UNWIND_ARM64_MODE_DWARF = 0x03000000,
|
|
|
|
/// \brief This is a standard arm64 prologue where FP/LR are immediately
|
|
/// pushed on the stack, then SP is copied to FP. If there are any
|
|
/// non-volatile register saved, they are copied into the stack fame in pairs
|
|
/// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
|
|
/// five X pairs and four D pairs can be saved, but the memory layout must be
|
|
/// in register number order.
|
|
UNWIND_ARM64_MODE_FRAME = 0x04000000,
|
|
|
|
/// \brief Frame register pair encodings.
|
|
UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
|
|
UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
|
|
UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
|
|
UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
|
|
UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
|
|
UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
|
|
UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
|
|
UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
|
|
UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
|
|
};
|
|
|
|
} // end CU namespace
|
|
|
|
// FIXME: This should be in a separate file.
|
|
class DarwinARM64AsmBackend : public ARM64AsmBackend {
|
|
const MCRegisterInfo &MRI;
|
|
|
|
/// \brief Encode compact unwind stack adjustment for frameless functions.
|
|
/// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
|
|
/// The stack size always needs to be 16 byte aligned.
|
|
uint32_t encodeStackAdjustment(uint32_t StackSize) const {
|
|
return (StackSize / 16) << 12;
|
|
}
|
|
|
|
public:
|
|
DarwinARM64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
|
|
: ARM64AsmBackend(T), MRI(MRI) {}
|
|
|
|
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
|
|
return createARM64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
|
|
MachO::CPU_SUBTYPE_ARM64_ALL);
|
|
}
|
|
|
|
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
|
|
// Any section for which the linker breaks things into atoms needs to
|
|
// preserve symbols, including assembler local symbols, to identify
|
|
// those atoms. These sections are:
|
|
// Sections of type:
|
|
//
|
|
// S_CSTRING_LITERALS (e.g. __cstring)
|
|
// S_LITERAL_POINTERS (e.g. objc selector pointers)
|
|
// S_16BYTE_LITERALS, S_8BYTE_LITERALS, S_4BYTE_LITERALS
|
|
//
|
|
// Sections named:
|
|
//
|
|
// __TEXT,__eh_frame
|
|
// __TEXT,__ustring
|
|
// __DATA,__cfstring
|
|
// __DATA,__objc_classrefs
|
|
// __DATA,__objc_catlist
|
|
//
|
|
// FIXME: It would be better if the compiler used actual linker local
|
|
// symbols for each of these sections rather than preserving what
|
|
// are ostensibly assembler local symbols.
|
|
const MCSectionMachO &SMO = static_cast<const MCSectionMachO &>(Section);
|
|
return (SMO.getType() == MachO::S_CSTRING_LITERALS ||
|
|
SMO.getType() == MachO::S_4BYTE_LITERALS ||
|
|
SMO.getType() == MachO::S_8BYTE_LITERALS ||
|
|
SMO.getType() == MachO::S_16BYTE_LITERALS ||
|
|
SMO.getType() == MachO::S_LITERAL_POINTERS ||
|
|
(SMO.getSegmentName() == "__TEXT" &&
|
|
(SMO.getSectionName() == "__eh_frame" ||
|
|
SMO.getSectionName() == "__ustring")) ||
|
|
(SMO.getSegmentName() == "__DATA" &&
|
|
(SMO.getSectionName() == "__cfstring" ||
|
|
SMO.getSectionName() == "__objc_classrefs" ||
|
|
SMO.getSectionName() == "__objc_catlist")));
|
|
}
|
|
|
|
/// \brief Generate the compact unwind encoding from the CFI directives.
|
|
virtual uint32_t
|
|
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const
|
|
override {
|
|
if (Instrs.empty())
|
|
return CU::UNWIND_ARM64_MODE_FRAMELESS;
|
|
|
|
bool HasFP = false;
|
|
unsigned StackSize = 0;
|
|
|
|
uint32_t CompactUnwindEncoding = 0;
|
|
for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
|
|
const MCCFIInstruction &Inst = Instrs[i];
|
|
|
|
switch (Inst.getOperation()) {
|
|
default:
|
|
// Cannot handle this directive: bail out.
|
|
return CU::UNWIND_ARM64_MODE_DWARF;
|
|
case MCCFIInstruction::OpDefCfa: {
|
|
// Defines a frame pointer.
|
|
assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
|
|
ARM64::FP &&
|
|
"Invalid frame pointer!");
|
|
assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
|
|
|
|
const MCCFIInstruction &LRPush = Instrs[++i];
|
|
assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
|
|
"Link register not pushed!");
|
|
const MCCFIInstruction &FPPush = Instrs[++i];
|
|
assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
|
|
"Frame pointer not pushed!");
|
|
|
|
unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
|
|
unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
|
|
|
|
LRReg = getXRegFromWReg(LRReg);
|
|
FPReg = getXRegFromWReg(FPReg);
|
|
|
|
assert(LRReg == ARM64::LR && FPReg == ARM64::FP &&
|
|
"Pushing invalid registers for frame!");
|
|
|
|
// Indicate that the function has a frame.
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
|
|
HasFP = true;
|
|
break;
|
|
}
|
|
case MCCFIInstruction::OpDefCfaOffset: {
|
|
assert(StackSize == 0 && "We already have the CFA offset!");
|
|
StackSize = std::abs(Inst.getOffset());
|
|
break;
|
|
}
|
|
case MCCFIInstruction::OpOffset: {
|
|
// Registers are saved in pairs. We expect there to be two consecutive
|
|
// `.cfi_offset' instructions with the appropriate registers specified.
|
|
unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
|
|
if (i + 1 == e)
|
|
return CU::UNWIND_ARM64_MODE_DWARF;
|
|
|
|
const MCCFIInstruction &Inst2 = Instrs[++i];
|
|
if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
|
|
return CU::UNWIND_ARM64_MODE_DWARF;
|
|
unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
|
|
|
|
// N.B. The encodings must be in register number order, and the X
|
|
// registers before the D registers.
|
|
|
|
// X19/X20 pair = 0x00000001,
|
|
// X21/X22 pair = 0x00000002,
|
|
// X23/X24 pair = 0x00000004,
|
|
// X25/X26 pair = 0x00000008,
|
|
// X27/X28 pair = 0x00000010
|
|
Reg1 = getXRegFromWReg(Reg1);
|
|
Reg2 = getXRegFromWReg(Reg2);
|
|
|
|
if (Reg1 == ARM64::X19 && Reg2 == ARM64::X20 &&
|
|
(CompactUnwindEncoding & 0xF1E) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
|
|
else if (Reg1 == ARM64::X21 && Reg2 == ARM64::X22 &&
|
|
(CompactUnwindEncoding & 0xF1C) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
|
|
else if (Reg1 == ARM64::X23 && Reg2 == ARM64::X24 &&
|
|
(CompactUnwindEncoding & 0xF18) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
|
|
else if (Reg1 == ARM64::X25 && Reg2 == ARM64::X26 &&
|
|
(CompactUnwindEncoding & 0xF10) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
|
|
else if (Reg1 == ARM64::X27 && Reg2 == ARM64::X28 &&
|
|
(CompactUnwindEncoding & 0xF00) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
|
|
else {
|
|
Reg1 = getDRegFromBReg(Reg1);
|
|
Reg2 = getDRegFromBReg(Reg2);
|
|
|
|
// D8/D9 pair = 0x00000100,
|
|
// D10/D11 pair = 0x00000200,
|
|
// D12/D13 pair = 0x00000400,
|
|
// D14/D15 pair = 0x00000800
|
|
if (Reg1 == ARM64::D8 && Reg2 == ARM64::D9 &&
|
|
(CompactUnwindEncoding & 0xE00) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
|
|
else if (Reg1 == ARM64::D10 && Reg2 == ARM64::D11 &&
|
|
(CompactUnwindEncoding & 0xC00) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
|
|
else if (Reg1 == ARM64::D12 && Reg2 == ARM64::D13 &&
|
|
(CompactUnwindEncoding & 0x800) == 0)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
|
|
else if (Reg1 == ARM64::D14 && Reg2 == ARM64::D15)
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
|
|
else
|
|
// A pair was pushed which we cannot handle.
|
|
return CU::UNWIND_ARM64_MODE_DWARF;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!HasFP) {
|
|
// With compact unwind info we can only represent stack adjustments of up
|
|
// to 65520 bytes.
|
|
if (StackSize > 65520)
|
|
return CU::UNWIND_ARM64_MODE_DWARF;
|
|
|
|
CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
|
|
CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
|
|
}
|
|
|
|
return CompactUnwindEncoding;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
|
|
class ELFARM64AsmBackend : public ARM64AsmBackend {
|
|
public:
|
|
uint8_t OSABI;
|
|
|
|
ELFARM64AsmBackend(const Target &T, uint8_t OSABI)
|
|
: ARM64AsmBackend(T), OSABI(OSABI) {}
|
|
|
|
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
|
|
return createARM64ELFObjectWriter(OS, OSABI);
|
|
}
|
|
|
|
void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
|
|
const MCFixup &Fixup, const MCFragment *DF,
|
|
const MCValue &Target, uint64_t &Value,
|
|
bool &IsResolved) override;
|
|
};
|
|
|
|
void ELFARM64AsmBackend::processFixupValue(const MCAssembler &Asm,
|
|
const MCAsmLayout &Layout,
|
|
const MCFixup &Fixup,
|
|
const MCFragment *DF,
|
|
const MCValue &Target,
|
|
uint64_t &Value, bool &IsResolved) {
|
|
// The ADRP instruction adds some multiple of 0x1000 to the current PC &
|
|
// ~0xfff. This means that the required offset to reach a symbol can vary by
|
|
// up to one step depending on where the ADRP is in memory. For example:
|
|
//
|
|
// ADRP x0, there
|
|
// there:
|
|
//
|
|
// If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
|
|
// we'll need that as an offset. At any other address "there" will be in the
|
|
// same page as the ADRP and the instruction should encode 0x0. Assuming the
|
|
// section isn't 0x1000-aligned, we therefore need to delegate this decision
|
|
// to the linker -- a relocation!
|
|
if ((uint32_t)Fixup.getKind() == ARM64::fixup_arm64_pcrel_adrp_imm21)
|
|
IsResolved = false;
|
|
}
|
|
}
|
|
|
|
MCAsmBackend *llvm::createARM64AsmBackend(const Target &T,
|
|
const MCRegisterInfo &MRI,
|
|
StringRef TT, StringRef CPU) {
|
|
Triple TheTriple(TT);
|
|
|
|
if (TheTriple.isOSDarwin())
|
|
return new DarwinARM64AsmBackend(T, MRI);
|
|
|
|
assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
|
|
return new ELFARM64AsmBackend(T, TheTriple.getOS());
|
|
}
|