llvm-6502/lib/Target/SystemZ/SystemZRegisterInfo.td
Ahmed Bougacha bed2308186 Add a way to define the bit range covered by a SubRegIndex.
NOTE: If this broke your out-of-tree backend, in *RegisterInfo.td, change
the instances of SubRegIndex that have a comps template arg to use the
ComposedSubRegIndex class instead.

In TableGen land, this adds Size and Offset attributes to SubRegIndex,
and the ComposedSubRegIndex class, for which the Size and Offset are
computed by TableGen. This also adds an accessor in MCRegisterInfo, and
Size/Offsets for the X86 and ARM subreg indices.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183020 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-31 17:08:36 +00:00

151 lines
5.5 KiB
TableGen

//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Class definitions.
//===----------------------------------------------------------------------===//
class SystemZReg<string n> : Register<n> {
let Namespace = "SystemZ";
}
class SystemZRegWithSubregs<string n, list<Register> subregs>
: RegisterWithSubRegs<n, subregs> {
let Namespace = "SystemZ";
}
let Namespace = "SystemZ" in {
def subreg_32bit : SubRegIndex; // could also be known as "subreg_high32"
def subreg_high : SubRegIndex;
def subreg_low : SubRegIndex;
def subreg_low32 : ComposedSubRegIndex<subreg_low, subreg_32bit>;
}
// Define a register class that contains values of type TYPE and an
// associated operand called NAME. SIZE is the size and alignment
// of the registers and REGLIST is the list of individual registers.
multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> {
def AsmOperand : AsmOperandClass {
let Name = name;
let ParserMethod = "parse"##name;
let RenderMethod = "addRegOperands";
}
def Bit : RegisterClass<"SystemZ", [type], size, regList> {
let Size = size;
}
def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
}
}
//===----------------------------------------------------------------------===//
// General-purpose registers
//===----------------------------------------------------------------------===//
// Lower 32 bits of one of the 16 64-bit general-purpose registers
class GPR32<bits<16> num, string n> : SystemZReg<n> {
let HWEncoding = num;
}
// One of the 16 64-bit general-purpose registers.
class GPR64<bits<16> num, string n, GPR32 low>
: SystemZRegWithSubregs<n, [low]> {
let HWEncoding = num;
let SubRegIndices = [subreg_32bit];
}
// 8 even-odd pairs of GPR64s.
class GPR128<bits<16> num, string n, GPR64 high, GPR64 low>
: SystemZRegWithSubregs<n, [high, low]> {
let HWEncoding = num;
let SubRegIndices = [subreg_high, subreg_low];
}
// General-purpose registers
foreach I = 0-15 in {
def R#I#W : GPR32<I, "r"#I>;
def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"W")>, DwarfRegNum<[I]>;
}
foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#I#"D"),
!cast<GPR64>("R"#!add(I, 1)#"D")>;
}
/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
/// together with R14 and R15 in one prolog instruction.
defm GR32 : SystemZRegClass<"GR32", i32, 32, (add (sequence "R%uW", 0, 5),
(sequence "R%uW", 15, 6))>;
defm GR64 : SystemZRegClass<"GR64", i64, 64, (add (sequence "R%uD", 0, 5),
(sequence "R%uD", 15, 6))>;
// The architecture doesn't really have any i128 support, so model the
// register pairs as untyped instead.
defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q,
R12Q, R10Q, R8Q, R6Q,
R14Q)>;
// Base and index registers. Everything except R0, which in an address
// context evaluates as 0.
defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0W)>;
defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>;
// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
// of a GR128.
defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>;
//===----------------------------------------------------------------------===//
// Floating-point registers
//===----------------------------------------------------------------------===//
// Lower 32 bits of one of the 16 64-bit floating-point registers
class FPR32<bits<16> num, string n> : SystemZReg<n> {
let HWEncoding = num;
}
// One of the 16 64-bit floating-point registers
class FPR64<bits<16> num, string n, FPR32 low>
: SystemZRegWithSubregs<n, [low]> {
let HWEncoding = num;
let SubRegIndices = [subreg_32bit];
}
// 8 pairs of FPR64s, with a one-register gap inbetween.
class FPR128<bits<16> num, string n, FPR64 high, FPR64 low>
: SystemZRegWithSubregs<n, [high, low]> {
let HWEncoding = num;
let SubRegIndices = [subreg_high, subreg_low];
}
// Floating-point registers
foreach I = 0-15 in {
def F#I#S : FPR32<I, "f"#I>;
def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
DwarfRegNum<[!add(I, 16)]>;
}
foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#I#"D"),
!cast<FPR64>("F"#!add(I, 2)#"D")>;
}
// There's no store-multiple instruction for FPRs, so we're not fussy
// about the order in which call-saved registers are allocated.
defm FP32 : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>;
defm FP64 : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>;
defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q,
F8Q, F9Q, F12Q, F13Q)>;
//===----------------------------------------------------------------------===//
// Other registers
//===----------------------------------------------------------------------===//
// The 2-bit condition code field of the PSW.
def CC : SystemZReg<"cc">;