mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
2addf067a2
We have a detailed def/use lists for every physical register in MachineRegisterInfo anyway, so there is little use in maintaining an additional bitset of which ones are used. Removing it frees us from extra book keeping. This simplifies VirtRegMap. Differential Revision: http://reviews.llvm.org/D10911 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242173 91177308-0d34-0410-b5e6-96231b3b80d8
1293 lines
46 KiB
C++
1293 lines
46 KiB
C++
//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hexagon-pei"
|
|
|
|
#include "HexagonFrameLowering.h"
|
|
#include "Hexagon.h"
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonMachineFunctionInfo.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
// Hexagon stack frame layout as defined by the ABI:
|
|
//
|
|
// Incoming arguments
|
|
// passed via stack
|
|
// |
|
|
// |
|
|
// SP during function's FP during function's |
|
|
// +-- runtime (top of stack) runtime (bottom) --+ |
|
|
// | | |
|
|
// --++---------------------+------------------+-----------------++-+-------
|
|
// | parameter area for | variable-size | fixed-size |LR| arg
|
|
// | called functions | local objects | local objects |FP|
|
|
// --+----------------------+------------------+-----------------+--+-------
|
|
// <- size known -> <- size unknown -> <- size known ->
|
|
//
|
|
// Low address High address
|
|
//
|
|
// <--- stack growth
|
|
//
|
|
//
|
|
// - In any circumstances, the outgoing function arguments are always accessi-
|
|
// ble using the SP, and the incoming arguments are accessible using the FP.
|
|
// - If the local objects are not aligned, they can always be accessed using
|
|
// the FP.
|
|
// - If there are no variable-sized objects, the local objects can always be
|
|
// accessed using the SP, regardless whether they are aligned or not. (The
|
|
// alignment padding will be at the bottom of the stack (highest address),
|
|
// and so the offset with respect to the SP will be known at the compile-
|
|
// -time.)
|
|
//
|
|
// The only complication occurs if there are both, local aligned objects, and
|
|
// dynamically allocated (variable-sized) objects. The alignment pad will be
|
|
// placed between the FP and the local objects, thus preventing the use of the
|
|
// FP to access the local objects. At the same time, the variable-sized objects
|
|
// will be between the SP and the local objects, thus introducing an unknown
|
|
// distance from the SP to the locals.
|
|
//
|
|
// To avoid this problem, a new register is created that holds the aligned
|
|
// address of the bottom of the stack, referred in the sources as AP (aligned
|
|
// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
|
|
// that aligns AP to the required boundary (a maximum of the alignments of
|
|
// all stack objects, fixed- and variable-sized). All local objects[1] will
|
|
// then use AP as the base pointer.
|
|
// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
|
|
// their name from being allocated at fixed locations on the stack, relative
|
|
// to the FP. In the presence of dynamic allocation and local alignment, such
|
|
// objects can only be accessed through the FP.
|
|
//
|
|
// Illustration of the AP:
|
|
// FP --+
|
|
// |
|
|
// ---------------+---------------------+-----+-----------------------++-+--
|
|
// Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
|
|
// stack frame | (aligned) | | (CSR, spills, etc.) |FP|
|
|
// ---------------+---------------------+-----+-----------------+-----+--+--
|
|
// |<-- Multiple of the -->|
|
|
// stack alignment +-- AP
|
|
//
|
|
// The AP is set up at the beginning of the function. Since it is not a dedi-
|
|
// cated (reserved) register, it needs to be kept live throughout the function
|
|
// to be available as the base register for local object accesses.
|
|
// Normally, an address of a stack objects is obtained by a pseudo-instruction
|
|
// TFR_FI. To access local objects with the AP register present, a different
|
|
// pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
|
|
// argument compared to TFR_FI: the first input register is the AP register.
|
|
// This keeps the register live between its definition and its uses.
|
|
|
|
// The AP register is originally set up using pseudo-instruction ALIGNA:
|
|
// AP = ALIGNA A
|
|
// where
|
|
// A - required stack alignment
|
|
// The alignment value must be the maximum of all alignments required by
|
|
// any stack object.
|
|
|
|
// The dynamic allocation uses a pseudo-instruction ALLOCA:
|
|
// Rd = ALLOCA Rs, A
|
|
// where
|
|
// Rd - address of the allocated space
|
|
// Rs - minimum size (the actual allocated can be larger to accommodate
|
|
// alignment)
|
|
// A - required alignment
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
|
|
cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
|
|
|
|
|
|
static cl::opt<int> NumberScavengerSlots("number-scavenger-slots",
|
|
cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
|
|
cl::ZeroOrMore);
|
|
|
|
static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
|
|
cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
|
|
cl::init(6), cl::ZeroOrMore);
|
|
|
|
static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
|
|
cl::Hidden, cl::desc("Specify Os spill func threshold"),
|
|
cl::init(1), cl::ZeroOrMore);
|
|
|
|
static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
|
|
cl::init(true), cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("Enable stack frame shrink wrapping"));
|
|
|
|
static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
|
|
cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
|
|
"shrink-wraps"));
|
|
|
|
namespace {
|
|
/// Map a register pair Reg to the subregister that has the greater "number",
|
|
/// i.e. D3 (aka R7:6) will be mapped to R7, etc.
|
|
unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
|
|
bool hireg = true) {
|
|
if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
|
|
return Reg;
|
|
|
|
unsigned RegNo = 0;
|
|
for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
|
|
if (hireg) {
|
|
if (*SubRegs > RegNo)
|
|
RegNo = *SubRegs;
|
|
} else {
|
|
if (!RegNo || *SubRegs < RegNo)
|
|
RegNo = *SubRegs;
|
|
}
|
|
}
|
|
return RegNo;
|
|
}
|
|
|
|
/// Returns the callee saved register with the largest id in the vector.
|
|
unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo &TRI) {
|
|
assert(Hexagon::R1 > 0 &&
|
|
"Assume physical registers are encoded as positive integers");
|
|
if (CSI.empty())
|
|
return 0;
|
|
|
|
unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
|
|
for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
|
|
unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
|
|
if (Reg > Max)
|
|
Max = Reg;
|
|
}
|
|
return Max;
|
|
}
|
|
|
|
/// Checks if the basic block contains any instruction that needs a stack
|
|
/// frame to be already in place.
|
|
bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR) {
|
|
for (auto &I : MBB) {
|
|
const MachineInstr *MI = &I;
|
|
if (MI->isCall())
|
|
return true;
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case Hexagon::ALLOCA:
|
|
case Hexagon::ALIGNA:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
// Check individual operands.
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
// While the presence of a frame index does not prove that a stack
|
|
// frame will be required, all frame indexes should be within alloc-
|
|
// frame/deallocframe. Otherwise, the code that translates a frame
|
|
// index into an offset would have to be aware of the placement of
|
|
// the frame creation/destruction instructions.
|
|
if (MO.isFI())
|
|
return true;
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned R = MO.getReg();
|
|
// Virtual registers will need scavenging, which then may require
|
|
// a stack slot.
|
|
if (TargetRegisterInfo::isVirtualRegister(R))
|
|
return true;
|
|
if (CSR[R])
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if MBB has a machine instructions that indicates a tail call
|
|
/// in the block.
|
|
bool hasTailCall(const MachineBasicBlock &MBB) {
|
|
MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
|
|
unsigned RetOpc = I->getOpcode();
|
|
return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
|
|
}
|
|
|
|
/// Returns true if MBB contains an instruction that returns.
|
|
bool hasReturn(const MachineBasicBlock &MBB) {
|
|
for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
|
|
if (I->isReturn())
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/// Implements shrink-wrapping of the stack frame. By default, stack frame
|
|
/// is created in the function entry block, and is cleaned up in every block
|
|
/// that returns. This function finds alternate blocks: one for the frame
|
|
/// setup (prolog) and one for the cleanup (epilog).
|
|
void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
|
|
MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
|
|
static unsigned ShrinkCounter = 0;
|
|
|
|
if (ShrinkLimit.getPosition()) {
|
|
if (ShrinkCounter >= ShrinkLimit)
|
|
return;
|
|
ShrinkCounter++;
|
|
}
|
|
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
MachineDominatorTree MDT;
|
|
MDT.runOnMachineFunction(MF);
|
|
MachinePostDominatorTree MPT;
|
|
MPT.runOnMachineFunction(MF);
|
|
|
|
typedef DenseMap<unsigned,unsigned> UnsignedMap;
|
|
UnsignedMap RPO;
|
|
typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
|
|
RPOTType RPOT(&MF);
|
|
unsigned RPON = 0;
|
|
for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
|
|
RPO[(*I)->getNumber()] = RPON++;
|
|
|
|
// Don't process functions that have loops, at least for now. Placement
|
|
// of prolog and epilog must take loop structure into account. For simpli-
|
|
// city don't do it right now.
|
|
for (auto &I : MF) {
|
|
unsigned BN = RPO[I.getNumber()];
|
|
for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
|
|
// If found a back-edge, return.
|
|
if (RPO[(*SI)->getNumber()] <= BN)
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Collect the set of blocks that need a stack frame to execute. Scan
|
|
// each block for uses/defs of callee-saved registers, calls, etc.
|
|
SmallVector<MachineBasicBlock*,16> SFBlocks;
|
|
BitVector CSR(Hexagon::NUM_TARGET_REGS);
|
|
for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
|
|
CSR[*P] = true;
|
|
|
|
for (auto &I : MF)
|
|
if (needsStackFrame(I, CSR))
|
|
SFBlocks.push_back(&I);
|
|
|
|
DEBUG({
|
|
dbgs() << "Blocks needing SF: {";
|
|
for (auto &B : SFBlocks)
|
|
dbgs() << " BB#" << B->getNumber();
|
|
dbgs() << " }\n";
|
|
});
|
|
// No frame needed?
|
|
if (SFBlocks.empty())
|
|
return;
|
|
|
|
// Pick a common dominator and a common post-dominator.
|
|
MachineBasicBlock *DomB = SFBlocks[0];
|
|
for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
|
|
DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
|
|
if (!DomB)
|
|
break;
|
|
}
|
|
MachineBasicBlock *PDomB = SFBlocks[0];
|
|
for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
|
|
PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
|
|
if (!PDomB)
|
|
break;
|
|
}
|
|
DEBUG({
|
|
dbgs() << "Computed dom block: BB#";
|
|
if (DomB) dbgs() << DomB->getNumber();
|
|
else dbgs() << "<null>";
|
|
dbgs() << ", computed pdom block: BB#";
|
|
if (PDomB) dbgs() << PDomB->getNumber();
|
|
else dbgs() << "<null>";
|
|
dbgs() << "\n";
|
|
});
|
|
if (!DomB || !PDomB)
|
|
return;
|
|
|
|
// Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
|
|
if (!MDT.dominates(DomB, PDomB)) {
|
|
DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
|
|
return;
|
|
}
|
|
if (!MPT.dominates(PDomB, DomB)) {
|
|
DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
|
|
return;
|
|
}
|
|
|
|
// Finally, everything seems right.
|
|
PrologB = DomB;
|
|
EpilogB = PDomB;
|
|
}
|
|
|
|
/// Perform most of the PEI work here:
|
|
/// - saving/restoring of the callee-saved registers,
|
|
/// - stack frame creation and destruction.
|
|
/// Normally, this work is distributed among various functions, but doing it
|
|
/// in one place allows shrink-wrapping of the stack frame.
|
|
void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
|
|
|
|
MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
|
|
if (EnableShrinkWrapping)
|
|
findShrunkPrologEpilog(MF, PrologB, EpilogB);
|
|
|
|
insertCSRSpillsInBlock(*PrologB, CSI, HRI);
|
|
insertPrologueInBlock(*PrologB);
|
|
|
|
if (EpilogB) {
|
|
insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
|
|
insertEpilogueInBlock(*EpilogB);
|
|
} else {
|
|
for (auto &B : MF)
|
|
if (!B.empty() && B.back().isReturn())
|
|
insertCSRRestoresInBlock(B, CSI, HRI);
|
|
|
|
for (auto &B : MF)
|
|
if (!B.empty() && B.back().isReturn())
|
|
insertEpilogueInBlock(B);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
DebugLoc dl;
|
|
|
|
unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
|
|
|
|
// Calculate the total stack frame size.
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
unsigned FrameSize = MFI->getStackSize();
|
|
// Round up the max call frame size to the max alignment on the stack.
|
|
unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign);
|
|
MFI->setMaxCallFrameSize(MaxCFA);
|
|
|
|
FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign);
|
|
MFI->setStackSize(FrameSize);
|
|
|
|
bool AlignStack = (MaxAlign > getStackAlignment());
|
|
|
|
// Check if frame moves are needed for EH.
|
|
bool needsFrameMoves = MMI.hasDebugInfo() ||
|
|
MF.getFunction()->needsUnwindTableEntry();
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
unsigned NumBytes = MFI->getStackSize();
|
|
unsigned SP = HRI.getStackRegister();
|
|
unsigned MaxCF = MFI->getMaxCallFrameSize();
|
|
MachineBasicBlock::iterator InsertPt = MBB.begin();
|
|
|
|
auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
|
|
auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
|
|
|
|
for (auto MI : AdjustRegs) {
|
|
assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
|
|
expandAlloca(MI, HII, SP, MaxCF);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
//
|
|
// Only insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
|
|
// that this shouldn't be required, but doing so now because gcc does and
|
|
// gdb can't break at the start of the function without it. Will remove if
|
|
// this turns out to be a gdb bug.
|
|
//
|
|
bool NoOpt = (HTM.getOptLevel() == CodeGenOpt::None);
|
|
if (!NoOpt && !FuncInfo->hasClobberLR() && !hasFP(MF))
|
|
return;
|
|
|
|
// Check for overflow.
|
|
// Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
|
|
const unsigned int ALLOCFRAME_MAX = 16384;
|
|
|
|
// Create a dummy memory operand to avoid allocframe from being treated as
|
|
// a volatile memory reference.
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
|
|
4, 4);
|
|
|
|
if (NumBytes >= ALLOCFRAME_MAX) {
|
|
// Emit allocframe(#0).
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
|
|
// Subtract offset from frame pointer.
|
|
// We use a caller-saved non-parameter register for that.
|
|
unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
|
|
CallerSavedReg).addImm(NumBytes);
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
|
|
.addReg(SP)
|
|
.addReg(CallerSavedReg);
|
|
} else {
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
|
|
.addImm(NumBytes)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
if (AlignStack) {
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
|
|
.addReg(SP)
|
|
.addImm(-int64_t(MaxAlign));
|
|
}
|
|
|
|
if (needsFrameMoves) {
|
|
std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
|
|
MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
|
|
|
|
// Advance CFA. DW_CFA_def_cfa
|
|
unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
|
|
unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
|
|
|
|
// CFA = FP + 8
|
|
unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
|
|
FrameLabel, DwFPReg, -8));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// R31 (return addr) = CFA - #4
|
|
CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
|
|
FrameLabel, DwRAReg, -4));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// R30 (frame ptr) = CFA - #8)
|
|
CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
|
|
FrameLabel, DwFPReg, -8));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
unsigned int regsToMove[] = {
|
|
Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
|
|
Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
|
|
Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
|
|
Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
|
|
Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, Hexagon::D10,
|
|
Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::NoRegister
|
|
};
|
|
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
|
|
|
|
for (unsigned i = 0; regsToMove[i] != Hexagon::NoRegister; ++i) {
|
|
for (unsigned I = 0, E = CSI.size(); I < E; ++I) {
|
|
if (CSI[I].getReg() == regsToMove[i]) {
|
|
// Subtract 8 to make room for R30 and R31, which are added above.
|
|
int64_t Offset = getFrameIndexOffset(MF, CSI[I].getFrameIdx()) - 8;
|
|
|
|
if (regsToMove[i] < Hexagon::D0 || regsToMove[i] > Hexagon::D15) {
|
|
unsigned DwarfReg = HRI.getDwarfRegNum(regsToMove[i], true);
|
|
unsigned CFIIndex = MMI.addFrameInst(
|
|
MCCFIInstruction::createOffset(FrameLabel,
|
|
DwarfReg, Offset));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
} else {
|
|
// Split the double regs into subregs, and generate appropriate
|
|
// cfi_offsets.
|
|
// The only reason, we are split double regs is, llvm-mc does not
|
|
// understand paired registers for cfi_offset.
|
|
// Eg .cfi_offset r1:0, -64
|
|
unsigned HiReg = getMax32BitSubRegister(regsToMove[i], HRI);
|
|
unsigned LoReg = getMax32BitSubRegister(regsToMove[i], HRI, false);
|
|
unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
|
|
unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
|
|
unsigned HiCFIIndex = MMI.addFrameInst(
|
|
MCCFIInstruction::createOffset(FrameLabel,
|
|
HiDwarfReg, Offset+4));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(HiCFIIndex);
|
|
unsigned LoCFIIndex = MMI.addFrameInst(
|
|
MCCFIInstruction::createOffset(FrameLabel,
|
|
LoDwarfReg, Offset));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(LoCFIIndex);
|
|
}
|
|
break;
|
|
}
|
|
} // for CSI.size()
|
|
} // for regsToMove
|
|
} // needsFrameMoves
|
|
}
|
|
|
|
void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
//
|
|
// Only insert deallocframe if we need to. Also at -O0. See comment
|
|
// in insertPrologueInBlock above.
|
|
//
|
|
if (!hasFP(MF) && MF.getTarget().getOptLevel() != CodeGenOpt::None)
|
|
return;
|
|
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
unsigned SP = HRI.getStackRegister();
|
|
|
|
MachineInstr *RetI = nullptr;
|
|
for (auto &I : MBB) {
|
|
if (!I.isReturn())
|
|
continue;
|
|
RetI = &I;
|
|
break;
|
|
}
|
|
unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
|
|
|
|
MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
|
|
DebugLoc DL;
|
|
if (InsertPt != MBB.end())
|
|
DL = InsertPt->getDebugLoc();
|
|
else if (!MBB.empty())
|
|
DL = std::prev(MBB.end())->getDebugLoc();
|
|
|
|
// Handle EH_RETURN.
|
|
if (RetOpc == Hexagon::EH_RETURN_JMPR) {
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
|
|
.addReg(SP)
|
|
.addReg(Hexagon::R28);
|
|
return;
|
|
}
|
|
|
|
// Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
|
|
// frame instruction if we encounter it.
|
|
if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) {
|
|
MachineBasicBlock::iterator It = RetI;
|
|
++It;
|
|
// Delete all instructions after the RESTORE (except labels).
|
|
while (It != MBB.end()) {
|
|
if (!It->isLabel())
|
|
It = MBB.erase(It);
|
|
else
|
|
++It;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// It is possible that the restoring code is a call to a library function.
|
|
// All of the restore* functions include "deallocframe", so we need to make
|
|
// sure that we don't add an extra one.
|
|
bool NeedsDeallocframe = true;
|
|
if (!MBB.empty() && InsertPt != MBB.begin()) {
|
|
MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
|
|
unsigned COpc = PrevIt->getOpcode();
|
|
if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
|
|
NeedsDeallocframe = false;
|
|
}
|
|
|
|
if (!NeedsDeallocframe)
|
|
return;
|
|
// If the returning instruction is JMPret, replace it with dealloc_return,
|
|
// otherwise just add deallocframe. The function could be returning via a
|
|
// tail call.
|
|
if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
|
|
return;
|
|
}
|
|
unsigned NewOpc = Hexagon::L4_return;
|
|
MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
|
|
// Transfer the function live-out registers.
|
|
NewI->copyImplicitOps(MF, RetI);
|
|
MBB.erase(RetI);
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const HexagonMachineFunctionInfo *FuncInfo =
|
|
MF.getInfo<HexagonMachineFunctionInfo>();
|
|
return MFI->hasCalls() || MFI->getStackSize() > 0 ||
|
|
FuncInfo->hasClobberLR();
|
|
}
|
|
|
|
|
|
enum SpillKind {
|
|
SK_ToMem,
|
|
SK_FromMem,
|
|
SK_FromMemTailcall
|
|
};
|
|
|
|
static const char *
|
|
getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) {
|
|
const char * V4SpillToMemoryFunctions[] = {
|
|
"__save_r16_through_r17",
|
|
"__save_r16_through_r19",
|
|
"__save_r16_through_r21",
|
|
"__save_r16_through_r23",
|
|
"__save_r16_through_r25",
|
|
"__save_r16_through_r27" };
|
|
|
|
const char * V4SpillFromMemoryFunctions[] = {
|
|
"__restore_r16_through_r17_and_deallocframe",
|
|
"__restore_r16_through_r19_and_deallocframe",
|
|
"__restore_r16_through_r21_and_deallocframe",
|
|
"__restore_r16_through_r23_and_deallocframe",
|
|
"__restore_r16_through_r25_and_deallocframe",
|
|
"__restore_r16_through_r27_and_deallocframe" };
|
|
|
|
const char * V4SpillFromMemoryTailcallFunctions[] = {
|
|
"__restore_r16_through_r17_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r19_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r21_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r23_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r25_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r27_and_deallocframe_before_tailcall"
|
|
};
|
|
|
|
const char **SpillFunc = nullptr;
|
|
|
|
switch(SpillType) {
|
|
case SK_ToMem:
|
|
SpillFunc = V4SpillToMemoryFunctions;
|
|
break;
|
|
case SK_FromMem:
|
|
SpillFunc = V4SpillFromMemoryFunctions;
|
|
break;
|
|
case SK_FromMemTailcall:
|
|
SpillFunc = V4SpillFromMemoryTailcallFunctions;
|
|
break;
|
|
}
|
|
assert(SpillFunc && "Unknown spill kind");
|
|
|
|
// Spill all callee-saved registers up to the highest register used.
|
|
switch (MaxReg) {
|
|
case Hexagon::R17:
|
|
return SpillFunc[0];
|
|
case Hexagon::R19:
|
|
return SpillFunc[1];
|
|
case Hexagon::R21:
|
|
return SpillFunc[2];
|
|
case Hexagon::R23:
|
|
return SpillFunc[3];
|
|
case Hexagon::R25:
|
|
return SpillFunc[4];
|
|
case Hexagon::R27:
|
|
return SpillFunc[5];
|
|
default:
|
|
llvm_unreachable("Unhandled maximum callee save register");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Adds all callee-saved registers up to MaxReg to the instruction.
|
|
static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst,
|
|
unsigned MaxReg, bool IsDef) {
|
|
// Add the callee-saved registers as implicit uses.
|
|
for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) {
|
|
MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true);
|
|
Inst->addOperand(ImpUse);
|
|
}
|
|
}
|
|
|
|
|
|
int HexagonFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
|
|
int FI) const {
|
|
return MF.getFrameInfo()->getObjectOffset(FI);
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
|
|
const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
|
|
if (CSI.empty())
|
|
return true;
|
|
|
|
MachineBasicBlock::iterator MI = MBB.begin();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
|
|
if (useSpillFunction(MF, CSI)) {
|
|
unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
|
|
const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem);
|
|
// Call spill function.
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
|
|
MachineInstr *SaveRegsCall =
|
|
BuildMI(MBB, MI, DL, TII.get(Hexagon::SAVE_REGISTERS_CALL_V4))
|
|
.addExternalSymbol(SpillFun);
|
|
// Add callee-saved registers as use.
|
|
addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false);
|
|
// Add live in registers.
|
|
for (unsigned I = 0; I < CSI.size(); ++I)
|
|
MBB.addLiveIn(CSI[I].getReg());
|
|
return true;
|
|
}
|
|
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
// Add live in registers. We treat eh_return callee saved register r0 - r3
|
|
// specially. They are not really callee saved registers as they are not
|
|
// supposed to be killed.
|
|
bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
|
|
int FI = CSI[i].getFrameIdx();
|
|
const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
|
|
TII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
|
|
if (IsKill)
|
|
MBB.addLiveIn(Reg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
|
|
const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
|
|
if (useRestoreFunction(MF, CSI)) {
|
|
bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
|
|
unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
|
|
SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
|
|
const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
|
|
|
|
// Call spill function.
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
|
|
: MBB.getLastNonDebugInstr()->getDebugLoc();
|
|
MachineInstr *DeallocCall = nullptr;
|
|
|
|
if (HasTC) {
|
|
unsigned ROpc = Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
|
|
DeallocCall = BuildMI(MBB, MI, DL, TII.get(ROpc))
|
|
.addExternalSymbol(RestoreFn);
|
|
} else {
|
|
// The block has a return.
|
|
MachineBasicBlock::iterator It = MBB.getFirstTerminator();
|
|
assert(It->isReturn() && std::next(It) == MBB.end());
|
|
unsigned ROpc = Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
|
|
DeallocCall = BuildMI(MBB, It, DL, TII.get(ROpc))
|
|
.addExternalSymbol(RestoreFn);
|
|
// Transfer the function live-out registers.
|
|
DeallocCall->copyImplicitOps(MF, It);
|
|
}
|
|
addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxR, true);
|
|
return true;
|
|
}
|
|
|
|
for (unsigned i = 0; i < CSI.size(); ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
|
|
int FI = CSI[i].getFrameIdx();
|
|
TII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::eliminateCallFramePseudoInstr(MachineFunction &MF,
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
|
|
MachineInstr &MI = *I;
|
|
unsigned Opc = MI.getOpcode();
|
|
(void)Opc; // Silence compiler warning.
|
|
assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
|
|
"Cannot handle this call frame pseudo instruction");
|
|
MBB.erase(I);
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
|
|
MachineFunction &MF, RegScavenger *RS) const {
|
|
// If this function has uses aligned stack and also has variable sized stack
|
|
// objects, then we need to map all spill slots to fixed positions, so that
|
|
// they can be accessed through FP. Otherwise they would have to be accessed
|
|
// via AP, which may not be available at the particular place in the program.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool HasAlloca = MFI->hasVarSizedObjects();
|
|
bool HasAligna = (MFI->getMaxAlignment() > getStackAlignment());
|
|
|
|
if (!HasAlloca || !HasAligna)
|
|
return;
|
|
|
|
unsigned LFS = MFI->getLocalFrameSize();
|
|
int Offset = -LFS;
|
|
for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
|
|
if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
|
|
continue;
|
|
int S = MFI->getObjectSize(i);
|
|
LFS += S;
|
|
Offset -= S;
|
|
MFI->mapLocalFrameObject(i, Offset);
|
|
}
|
|
|
|
MFI->setLocalFrameSize(LFS);
|
|
unsigned A = MFI->getLocalFrameMaxAlign();
|
|
assert(A <= 8 && "Unexpected local frame alignment");
|
|
if (A == 0)
|
|
MFI->setLocalFrameMaxAlign(8);
|
|
MFI->setUseLocalStackAllocationBlock(true);
|
|
}
|
|
|
|
/// Returns true if there is no caller saved registers available.
|
|
static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
|
|
const HexagonRegisterInfo &HRI) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const MCPhysReg *CallerSavedRegs = HRI.getCallerSavedRegs(&MF);
|
|
// Check for an unused caller-saved register.
|
|
for ( ; *CallerSavedRegs; ++CallerSavedRegs) {
|
|
MCPhysReg FreeReg = *CallerSavedRegs;
|
|
if (!MRI.reg_nodbg_empty(FreeReg))
|
|
continue;
|
|
|
|
// Check aliased register usage.
|
|
bool IsCurrentRegUsed = false;
|
|
for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI)
|
|
if (!MRI.reg_nodbg_empty(*AI)) {
|
|
IsCurrentRegUsed = true;
|
|
break;
|
|
}
|
|
if (IsCurrentRegUsed)
|
|
continue;
|
|
|
|
// Neither directly used nor used through an aliased register.
|
|
return false;
|
|
}
|
|
// All caller-saved registers are used.
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Replaces the predicate spill code pseudo instructions by valid instructions.
|
|
bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF)
|
|
const {
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HII = *HST.getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool HasReplacedPseudoInst = false;
|
|
// Replace predicate spill pseudo instructions by real code.
|
|
// Loop over all of the basic blocks.
|
|
for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
|
|
MBBb != MBBe; ++MBBb) {
|
|
MachineBasicBlock* MBB = MBBb;
|
|
// Traverse the basic block.
|
|
MachineBasicBlock::iterator NextII;
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
|
|
MII = NextII) {
|
|
MachineInstr *MI = MII;
|
|
NextII = std::next(MII);
|
|
int Opc = MI->getOpcode();
|
|
if (Opc == Hexagon::STriw_pred) {
|
|
HasReplacedPseudoInst = true;
|
|
// STriw_pred FI, 0, SrcReg;
|
|
unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
unsigned SrcReg = MI->getOperand(2).getReg();
|
|
bool IsOrigSrcRegKilled = MI->getOperand(2).isKill();
|
|
|
|
assert(MI->getOperand(0).isFI() && "Expect a frame index");
|
|
assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
|
|
"Not a predicate register");
|
|
|
|
// Insert transfer to general purpose register.
|
|
// VirtReg = C2_tfrpr SrcPredReg
|
|
BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr),
|
|
VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled));
|
|
|
|
// Change instruction to S2_storeri_io.
|
|
// S2_storeri_io FI, 0, VirtReg
|
|
MI->setDesc(HII.get(Hexagon::S2_storeri_io));
|
|
MI->getOperand(2).setReg(VirtReg);
|
|
MI->getOperand(2).setIsKill();
|
|
|
|
} else if (Opc == Hexagon::LDriw_pred) {
|
|
// DstReg = LDriw_pred FI, 0
|
|
MachineOperand &M0 = MI->getOperand(0);
|
|
if (M0.isDead()) {
|
|
MBB->erase(MII);
|
|
continue;
|
|
}
|
|
|
|
unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
|
|
assert(MI->getOperand(1).isFI() && "Expect a frame index");
|
|
assert(Hexagon::PredRegsRegClass.contains(DestReg) &&
|
|
"Not a predicate register");
|
|
|
|
// Change instruction to L2_loadri_io.
|
|
// VirtReg = L2_loadri_io FI, 0
|
|
MI->setDesc(HII.get(Hexagon::L2_loadri_io));
|
|
MI->getOperand(0).setReg(VirtReg);
|
|
|
|
// Insert transfer to general purpose register.
|
|
// DestReg = C2_tfrrp VirtReg
|
|
const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp);
|
|
BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg)
|
|
.addReg(VirtReg, getKillRegState(true));
|
|
HasReplacedPseudoInst = true;
|
|
}
|
|
}
|
|
}
|
|
return HasReplacedPseudoInst;
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
BitVector &SavedRegs,
|
|
RegScavenger *RS) const {
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
bool HasEHReturn = MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
|
|
|
|
// If we have a function containing __builtin_eh_return we want to spill and
|
|
// restore all callee saved registers. Pretend that they are used.
|
|
if (HasEHReturn) {
|
|
for (const MCPhysReg *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs;
|
|
++CSRegs)
|
|
SavedRegs.set(*CSRegs);
|
|
}
|
|
|
|
const TargetRegisterClass &RC = Hexagon::IntRegsRegClass;
|
|
|
|
// Replace predicate register pseudo spill code.
|
|
bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF);
|
|
|
|
// We need to reserve a a spill slot if scavenging could potentially require
|
|
// spilling a scavenged register.
|
|
if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
for (int i=0; i < NumberScavengerSlots; i++)
|
|
RS->addScavengingFrameIndex(
|
|
MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment()));
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef NDEBUG
|
|
static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
|
|
dbgs() << '{';
|
|
for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
|
|
unsigned R = x;
|
|
dbgs() << ' ' << PrintReg(R, &TRI);
|
|
}
|
|
dbgs() << " }";
|
|
}
|
|
#endif
|
|
|
|
|
|
bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
|
|
const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
|
|
DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
|
|
<< MF.getFunction()->getName() << '\n');
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
BitVector SRegs(Hexagon::NUM_TARGET_REGS);
|
|
|
|
// Generate a set of unique, callee-saved registers (SRegs), where each
|
|
// register in the set is maximal in terms of sub-/super-register relation,
|
|
// i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
|
|
|
|
// (1) For each callee-saved register, add that register and all of its
|
|
// sub-registers to SRegs.
|
|
DEBUG(dbgs() << "Initial CS registers: {");
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned R = CSI[i].getReg();
|
|
DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
|
|
for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
|
|
SRegs[*SR] = true;
|
|
}
|
|
DEBUG(dbgs() << " }\n");
|
|
DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (2) For each reserved register, remove that register and all of its
|
|
// sub- and super-registers from SRegs.
|
|
BitVector Reserved = TRI->getReservedRegs(MF);
|
|
for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
|
|
SRegs[*SR] = false;
|
|
}
|
|
DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n");
|
|
DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (3) Collect all registers that have at least one sub-register in SRegs,
|
|
// and also have no sub-registers that are reserved. These will be the can-
|
|
// didates for saving as a whole instead of their individual sub-registers.
|
|
// (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
|
|
BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
|
|
TmpSup[*SR] = true;
|
|
}
|
|
for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
|
|
if (!Reserved[*SR])
|
|
continue;
|
|
TmpSup[R] = false;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
|
|
|
|
// (4) Include all super-registers found in (3) into SRegs.
|
|
SRegs |= TmpSup;
|
|
DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (5) For each register R in SRegs, if any super-register of R is in SRegs,
|
|
// remove R from SRegs.
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
|
|
if (!SRegs[*SR])
|
|
continue;
|
|
SRegs[R] = false;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// Now, for each register that has a fixed stack slot, create the stack
|
|
// object for it.
|
|
CSI.clear();
|
|
|
|
typedef TargetFrameLowering::SpillSlot SpillSlot;
|
|
unsigned NumFixed;
|
|
int MinOffset = 0; // CS offsets are negative.
|
|
const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
|
|
for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
|
|
if (!SRegs[S->Reg])
|
|
continue;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
|
|
int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
|
|
MinOffset = std::min(MinOffset, S->Offset);
|
|
CSI.push_back(CalleeSavedInfo(S->Reg, FI));
|
|
SRegs[S->Reg] = false;
|
|
}
|
|
|
|
// There can be some registers that don't have fixed slots. For example,
|
|
// we need to store R0-R3 in functions with exception handling. For each
|
|
// such register, create a non-fixed stack object.
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
|
|
int Off = MinOffset - RC->getSize();
|
|
unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
|
|
assert(isPowerOf2_32(Align));
|
|
Off &= -Align;
|
|
int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
|
|
MinOffset = std::min(MinOffset, Off);
|
|
CSI.push_back(CalleeSavedInfo(R, FI));
|
|
SRegs[R] = false;
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "CS information: {";
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
int FI = CSI[i].getFrameIdx();
|
|
int Off = MFI->getObjectOffset(FI);
|
|
dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
|
|
if (Off >= 0)
|
|
dbgs() << '+';
|
|
dbgs() << Off;
|
|
}
|
|
dbgs() << " }\n";
|
|
});
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all registers were handled.
|
|
bool MissedReg = false;
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
dbgs() << PrintReg(R, TRI) << ' ';
|
|
MissedReg = true;
|
|
}
|
|
if (MissedReg)
|
|
llvm_unreachable("...there are unhandled callee-saved registers!");
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
|
|
const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
|
|
MachineBasicBlock &MB = *AI->getParent();
|
|
DebugLoc DL = AI->getDebugLoc();
|
|
unsigned A = AI->getOperand(2).getImm();
|
|
|
|
// Have
|
|
// Rd = alloca Rs, #A
|
|
//
|
|
// If Rs and Rd are different registers, use this sequence:
|
|
// Rd = sub(r29, Rs)
|
|
// r29 = sub(r29, Rs)
|
|
// Rd = and(Rd, #-A) ; if necessary
|
|
// r29 = and(r29, #-A) ; if necessary
|
|
// Rd = add(Rd, #CF) ; CF size aligned to at most A
|
|
// otherwise, do
|
|
// Rd = sub(r29, Rs)
|
|
// Rd = and(Rd, #-A) ; if necessary
|
|
// r29 = Rd
|
|
// Rd = add(Rd, #CF) ; CF size aligned to at most A
|
|
|
|
MachineOperand &RdOp = AI->getOperand(0);
|
|
MachineOperand &RsOp = AI->getOperand(1);
|
|
unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
|
|
|
|
// Rd = sub(r29, Rs)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
|
|
.addReg(SP)
|
|
.addReg(Rs);
|
|
if (Rs != Rd) {
|
|
// r29 = sub(r29, Rs)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
|
|
.addReg(SP)
|
|
.addReg(Rs);
|
|
}
|
|
if (A > 8) {
|
|
// Rd = and(Rd, #-A)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
|
|
.addReg(Rd)
|
|
.addImm(-int64_t(A));
|
|
if (Rs != Rd)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
|
|
.addReg(SP)
|
|
.addImm(-int64_t(A));
|
|
}
|
|
if (Rs == Rd) {
|
|
// r29 = Rd
|
|
BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
|
|
.addReg(Rd);
|
|
}
|
|
if (CF > 0) {
|
|
// Rd = add(Rd, #CF)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
|
|
.addReg(Rd)
|
|
.addImm(CF);
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
if (!MFI->hasVarSizedObjects())
|
|
return false;
|
|
unsigned MaxA = MFI->getMaxAlignment();
|
|
if (MaxA <= getStackAlignment())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
MachineInstr *HexagonFrameLowering::getAlignaInstr(MachineFunction &MF) const {
|
|
for (auto &B : MF)
|
|
for (auto &I : B)
|
|
if (I.getOpcode() == Hexagon::ALIGNA)
|
|
return &I;
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
inline static bool isOptSize(const MachineFunction &MF) {
|
|
AttributeSet AF = MF.getFunction()->getAttributes();
|
|
return AF.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::OptimizeForSize);
|
|
}
|
|
|
|
inline static bool isMinSize(const MachineFunction &MF) {
|
|
AttributeSet AF = MF.getFunction()->getAttributes();
|
|
return AF.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
|
|
}
|
|
|
|
|
|
/// Determine whether the callee-saved register saves and restores should
|
|
/// be generated via inline code. If this function returns "true", inline
|
|
/// code will be generated. If this function returns "false", additional
|
|
/// checks are performed, which may still lead to the inline code.
|
|
bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
|
|
return true;
|
|
if (!isOptSize(MF) && !isMinSize(MF))
|
|
if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
|
|
return true;
|
|
|
|
// Check if CSI only has double registers, and if the registers form
|
|
// a contiguous block starting from D8.
|
|
BitVector Regs(Hexagon::NUM_TARGET_REGS);
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned R = CSI[i].getReg();
|
|
if (!Hexagon::DoubleRegsRegClass.contains(R))
|
|
return true;
|
|
Regs[R] = true;
|
|
}
|
|
int F = Regs.find_first();
|
|
if (F != Hexagon::D8)
|
|
return true;
|
|
while (F >= 0) {
|
|
int N = Regs.find_next(F);
|
|
if (N >= 0 && N != F+1)
|
|
return true;
|
|
F = N;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (shouldInlineCSR(MF, CSI))
|
|
return false;
|
|
unsigned NumCSI = CSI.size();
|
|
if (NumCSI <= 1)
|
|
return false;
|
|
|
|
unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
|
|
: SpillFuncThreshold;
|
|
return Threshold < NumCSI;
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (shouldInlineCSR(MF, CSI))
|
|
return false;
|
|
unsigned NumCSI = CSI.size();
|
|
unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
|
|
: SpillFuncThreshold;
|
|
return Threshold < NumCSI;
|
|
}
|
|
|