llvm-6502/lib/Target/R600/AMDGPUStructurizeCFG.cpp
Tom Stellard f4e471a49e R600: rework flow creation in the structurizer v2
This fixes a couple of bugs and incorrect assumptions,
in total four more piglit tests now pass.

v2: fix small bug in the dominator updating

Patch by: Christian König

Signed-off-by: Christian König <christian.koenig@amd.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174762 91177308-0d34-0410-b5e6-96231b3b80d8
2013-02-08 22:24:38 +00:00

819 lines
23 KiB
C++

//===-- AMDGPUStructurizeCFG.cpp - ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// The pass implemented in this file transforms the programs control flow
/// graph into a form that's suitable for code generation on hardware that
/// implements control flow by execution masking. This currently includes all
/// AMD GPUs but may as well be useful for other types of hardware.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
namespace {
// Definition of the complex types used in this pass.
typedef std::pair<BasicBlock *, Value *> BBValuePair;
typedef SmallVector<RegionNode*, 8> RNVector;
typedef SmallVector<BasicBlock*, 8> BBVector;
typedef SmallVector<BranchInst*, 8> BranchVector;
typedef SmallVector<BBValuePair, 2> BBValueVector;
typedef SmallPtrSet<BasicBlock *, 8> BBSet;
typedef DenseMap<PHINode *, BBValueVector> PhiMap;
typedef DenseMap<BasicBlock *, PhiMap> BBPhiMap;
typedef DenseMap<BasicBlock *, Value *> BBPredicates;
typedef DenseMap<BasicBlock *, BBPredicates> PredMap;
typedef DenseMap<BasicBlock *, BBVector> BB2BBVecMap;
// The name for newly created blocks.
static const char *FlowBlockName = "Flow";
/// @brief Transforms the control flow graph on one single entry/exit region
/// at a time.
///
/// After the transform all "If"/"Then"/"Else" style control flow looks like
/// this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 |
/// | /
/// |/
/// 3
/// || Where:
/// | | 1 = "If" block, calculates the condition
/// 4 | 2 = "Then" subregion, runs if the condition is true
/// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
/// |/ 4 = "Else" optional subregion, runs if the condition is false
/// 5 5 = "End" block, also rejoins the control flow
/// \endverbatim
///
/// Control flow is expressed as a branch where the true exit goes into the
/// "Then"/"Else" region, while the false exit skips the region
/// The condition for the optional "Else" region is expressed as a PHI node.
/// The incomming values of the PHI node are true for the "If" edge and false
/// for the "Then" edge.
///
/// Additionally to that even complicated loops look like this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 ^ Where:
/// | / 1 = "Entry" block
/// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
/// 3 3 = "Flow" block, with back edge to entry block
/// |
/// \endverbatim
///
/// The back edge of the "Flow" block is always on the false side of the branch
/// while the true side continues the general flow. So the loop condition
/// consist of a network of PHI nodes where the true incoming values expresses
/// breaks and the false values expresses continue states.
class AMDGPUStructurizeCFG : public RegionPass {
static char ID;
Type *Boolean;
ConstantInt *BoolTrue;
ConstantInt *BoolFalse;
UndefValue *BoolUndef;
Function *Func;
Region *ParentRegion;
DominatorTree *DT;
RNVector Order;
BBSet Visited;
PredMap Predicates;
BBPhiMap DeletedPhis;
BB2BBVecMap AddedPhis;
BranchVector Conditions;
BasicBlock *LoopStart;
BasicBlock *LoopEnd;
BBSet LoopTargets;
BBPredicates LoopPred;
void orderNodes();
Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
bool analyzeLoopStart(BasicBlock *From, BasicBlock *To, Value *Condition);
void analyzeNode(RegionNode *N);
void analyzeLoopEnd(RegionNode *N);
void collectInfos();
void insertConditions();
void delPhiValues(BasicBlock *From, BasicBlock *To);
void addPhiValues(BasicBlock *From, BasicBlock *To);
void setPhiValues();
void killTerminator(BasicBlock *BB);
void changeExit(RegionNode *Node, BasicBlock *NewExit,
bool IncludeDominator);
BasicBlock *getNextFlow(BasicBlock *Dominator);
BasicBlock *needPrefix(RegionNode *&Prev, RegionNode *Node);
BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
RegionNode *getNextPrev(BasicBlock *Next);
bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
bool isPredictableTrue(RegionNode *Who, RegionNode *Where);
RegionNode *wireFlow(RegionNode *&Prev, bool ExitUseAllowed);
void createFlow();
void rebuildSSA();
public:
AMDGPUStructurizeCFG():
RegionPass(ID) {
initializeRegionInfoPass(*PassRegistry::getPassRegistry());
}
virtual bool doInitialization(Region *R, RGPassManager &RGM);
virtual bool runOnRegion(Region *R, RGPassManager &RGM);
virtual const char *getPassName() const {
return "AMDGPU simplify control flow";
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addPreserved<DominatorTree>();
RegionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char AMDGPUStructurizeCFG::ID = 0;
/// \brief Initialize the types and constants used in the pass
bool AMDGPUStructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
LLVMContext &Context = R->getEntry()->getContext();
Boolean = Type::getInt1Ty(Context);
BoolTrue = ConstantInt::getTrue(Context);
BoolFalse = ConstantInt::getFalse(Context);
BoolUndef = UndefValue::get(Boolean);
return false;
}
/// \brief Build up the general order of nodes
void AMDGPUStructurizeCFG::orderNodes() {
scc_iterator<Region *> I = scc_begin(ParentRegion),
E = scc_end(ParentRegion);
for (Order.clear(); I != E; ++I) {
std::vector<RegionNode *> &Nodes = *I;
Order.append(Nodes.begin(), Nodes.end());
}
}
/// \brief Build the condition for one edge
Value *AMDGPUStructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
bool Invert) {
Value *Cond = Invert ? BoolFalse : BoolTrue;
if (Term->isConditional()) {
Cond = Term->getCondition();
if (Idx != Invert)
Cond = BinaryOperator::CreateNot(Cond, "", Term);
}
return Cond;
}
/// \brief Analyze the start of a loop and insert predicates as necessary
bool AMDGPUStructurizeCFG::analyzeLoopStart(BasicBlock *From, BasicBlock *To,
Value *Condition) {
LoopPred[From] = Condition;
LoopTargets.insert(To);
if (!LoopStart) {
LoopStart = To;
return true;
} else if (LoopStart == To)
return true;
// We need to handle the case of intersecting loops, e. g.
//
// /----<-----
// | |
// -> A -> B -> C -> D
// | |
// -----<----/
RNVector::reverse_iterator OI = Order.rbegin(), OE = Order.rend();
for (;OI != OE; ++OI)
if ((*OI)->getEntry() == LoopStart)
break;
for (;OI != OE && (*OI)->getEntry() != To; ++OI) {
BBPredicates &Pred = Predicates[(*OI)->getEntry()];
if (!Pred.count(From))
Pred[From] = Condition;
}
return false;
}
/// \brief Analyze the predecessors of each block and build up predicates
void AMDGPUStructurizeCFG::analyzeNode(RegionNode *N) {
RegionInfo *RI = ParentRegion->getRegionInfo();
BasicBlock *BB = N->getEntry();
BBPredicates &Pred = Predicates[BB];
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
PI != PE; ++PI) {
if (!ParentRegion->contains(*PI)) {
// It's a branch from outside into our region entry
Pred[*PI] = BoolTrue;
continue;
}
Region *R = RI->getRegionFor(*PI);
if (R == ParentRegion) {
// It's a top level block in our region
BranchInst *Term = cast<BranchInst>((*PI)->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
if (Succ != BB)
continue;
if (Visited.count(*PI)) {
// Normal forward edge
if (Term->isConditional()) {
// Try to treat it like an ELSE block
BasicBlock *Other = Term->getSuccessor(!i);
if (Visited.count(Other) && !LoopTargets.count(Other) &&
!Pred.count(Other) && !Pred.count(*PI)) {
Pred[Other] = BoolFalse;
Pred[*PI] = BoolTrue;
continue;
}
}
} else {
// Back edge
if (analyzeLoopStart(*PI, BB, buildCondition(Term, i, true)))
continue;
}
Pred[*PI] = buildCondition(Term, i, false);
}
} else {
// It's an exit from a sub region
while(R->getParent() != ParentRegion)
R = R->getParent();
// Edge from inside a subregion to its entry, ignore it
if (R == N)
continue;
BasicBlock *Entry = R->getEntry();
if (!Visited.count(Entry))
if (analyzeLoopStart(Entry, BB, BoolFalse))
continue;
Pred[Entry] = BoolTrue;
}
}
}
/// \brief Determine the end of the loop
void AMDGPUStructurizeCFG::analyzeLoopEnd(RegionNode *N) {
if (N->isSubRegion()) {
// Test for exit as back edge
BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
if (Visited.count(Exit))
LoopEnd = N->getEntry();
} else {
// Test for sucessors as back edge
BasicBlock *BB = N->getNodeAs<BasicBlock>();
BranchInst *Term = cast<BranchInst>(BB->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
if (Visited.count(Succ))
LoopEnd = BB;
}
}
}
/// \brief Collect various loop and predicate infos
void AMDGPUStructurizeCFG::collectInfos() {
// Reset predicate
Predicates.clear();
// and loop infos
LoopStart = LoopEnd = 0;
LoopTargets.clear();
LoopPred.clear();
// Reset the visited nodes
Visited.clear();
for (RNVector::reverse_iterator OI = Order.rbegin(), OE = Order.rend();
OI != OE; ++OI) {
// Analyze all the conditions leading to a node
analyzeNode(*OI);
// Remember that we've seen this node
Visited.insert((*OI)->getEntry());
// Find the last back edge
analyzeLoopEnd(*OI);
}
// Both or neither must be set
assert(!LoopStart == !LoopEnd);
}
/// \brief Insert the missing branch conditions
void AMDGPUStructurizeCFG::insertConditions() {
SSAUpdater PhiInserter;
for (BranchVector::iterator I = Conditions.begin(),
E = Conditions.end(); I != E; ++I) {
BranchInst *Term = *I;
BasicBlock *Parent = Term->getParent();
assert(Term->isConditional());
PhiInserter.Initialize(Boolean, "");
if (Parent == LoopEnd) {
PhiInserter.AddAvailableValue(LoopStart, BoolTrue);
} else {
PhiInserter.AddAvailableValue(&Func->getEntryBlock(), BoolFalse);
PhiInserter.AddAvailableValue(Parent, BoolFalse);
}
bool ParentHasValue = false;
BasicBlock *Succ = Term->getSuccessor(0);
BBPredicates &Preds = (Parent == LoopEnd) ? LoopPred : Predicates[Succ];
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
PI != PE; ++PI) {
PhiInserter.AddAvailableValue(PI->first, PI->second);
ParentHasValue |= PI->first == Parent;
}
if (ParentHasValue)
Term->setCondition(PhiInserter.GetValueAtEndOfBlock(Parent));
else
Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
}
}
/// \brief Remove all PHI values coming from "From" into "To" and remember
/// them in DeletedPhis
void AMDGPUStructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
PhiMap &Map = DeletedPhis[To];
for (BasicBlock::iterator I = To->begin(), E = To->end();
I != E && isa<PHINode>(*I);) {
PHINode &Phi = cast<PHINode>(*I++);
while (Phi.getBasicBlockIndex(From) != -1) {
Value *Deleted = Phi.removeIncomingValue(From, false);
Map[&Phi].push_back(std::make_pair(From, Deleted));
}
}
}
/// \brief Add a dummy PHI value as soon as we knew the new predecessor
void AMDGPUStructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
for (BasicBlock::iterator I = To->begin(), E = To->end();
I != E && isa<PHINode>(*I);) {
PHINode &Phi = cast<PHINode>(*I++);
Value *Undef = UndefValue::get(Phi.getType());
Phi.addIncoming(Undef, From);
}
AddedPhis[To].push_back(From);
}
/// \brief Add the real PHI value as soon as everything is set up
void AMDGPUStructurizeCFG::setPhiValues() {
SSAUpdater Updater;
for (BB2BBVecMap::iterator AI = AddedPhis.begin(), AE = AddedPhis.end();
AI != AE; ++AI) {
BasicBlock *To = AI->first;
BBVector &From = AI->second;
if (!DeletedPhis.count(To))
continue;
PhiMap &Map = DeletedPhis[To];
for (PhiMap::iterator PI = Map.begin(), PE = Map.end();
PI != PE; ++PI) {
PHINode *Phi = PI->first;
Value *Undef = UndefValue::get(Phi->getType());
Updater.Initialize(Phi->getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(To, Undef);
for (BBValueVector::iterator VI = PI->second.begin(),
VE = PI->second.end(); VI != VE; ++VI) {
Updater.AddAvailableValue(VI->first, VI->second);
}
for (BBVector::iterator FI = From.begin(), FE = From.end();
FI != FE; ++FI) {
int Idx = Phi->getBasicBlockIndex(*FI);
assert(Idx != -1);
Phi->setIncomingValue(Idx, Updater.GetValueAtEndOfBlock(*FI));
}
}
DeletedPhis.erase(To);
}
assert(DeletedPhis.empty());
}
/// \brief Remove phi values from all successors and then remove the terminator.
void AMDGPUStructurizeCFG::killTerminator(BasicBlock *BB) {
TerminatorInst *Term = BB->getTerminator();
if (!Term)
return;
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
delPhiValues(BB, *SI);
}
Term->eraseFromParent();
}
/// \brief Let node exit(s) point to NewExit
void AMDGPUStructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
bool IncludeDominator) {
if (Node->isSubRegion()) {
Region *SubRegion = Node->getNodeAs<Region>();
BasicBlock *OldExit = SubRegion->getExit();
BasicBlock *Dominator = 0;
// Find all the edges from the sub region to the exit
for (pred_iterator I = pred_begin(OldExit), E = pred_end(OldExit);
I != E;) {
BasicBlock *BB = *I++;
if (!SubRegion->contains(BB))
continue;
// Modify the edges to point to the new exit
delPhiValues(BB, OldExit);
BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
addPhiValues(BB, NewExit);
// Find the new dominator (if requested)
if (IncludeDominator) {
if (!Dominator)
Dominator = BB;
else
Dominator = DT->findNearestCommonDominator(Dominator, BB);
}
}
// Change the dominator (if requested)
if (Dominator)
DT->changeImmediateDominator(NewExit, Dominator);
// Update the region info
SubRegion->replaceExit(NewExit);
} else {
BasicBlock *BB = Node->getNodeAs<BasicBlock>();
killTerminator(BB);
BranchInst::Create(NewExit, BB);
addPhiValues(BB, NewExit);
if (IncludeDominator)
DT->changeImmediateDominator(NewExit, BB);
}
}
/// \brief Create a new flow node and update dominator tree and region info
BasicBlock *AMDGPUStructurizeCFG::getNextFlow(BasicBlock *Dominator) {
LLVMContext &Context = Func->getContext();
BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
Order.back()->getEntry();
BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
Func, Insert);
DT->addNewBlock(Flow, Dominator);
ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
return Flow;
}
/// \brief Create a new or reuse the previous node as flow node
BasicBlock *AMDGPUStructurizeCFG::needPrefix(RegionNode *&Prev,
RegionNode *Node) {
if (!Prev || Prev->isSubRegion() ||
(Node && Node->getEntry() == LoopStart)) {
// We need to insert a flow node, first figure out the dominator
DomTreeNode *Dominator = Prev ? DT->getNode(Prev->getEntry()) : 0;
if (!Dominator)
Dominator = DT->getNode(Node->getEntry())->getIDom();
assert(Dominator && "Illegal loop to function entry");
// then create the flow node
BasicBlock *Flow = getNextFlow(Dominator->getBlock());
// wire up the new flow
if (Prev) {
changeExit(Prev, Flow, true);
} else {
// Parent regions entry needs predicates, create a new region entry
BasicBlock *Entry = Node->getEntry();
for (pred_iterator I = pred_begin(Entry), E = pred_end(Entry);
I != E;) {
BasicBlock *BB = *(I++);
if (ParentRegion->contains(BB))
continue;
// Remove PHY values from outside to our entry node
delPhiValues(BB, Entry);
// Update the branch instructions
BB->getTerminator()->replaceUsesOfWith(Entry, Flow);
}
// Populate the region tree with the new entry
for (Region *R = ParentRegion; R && R->getEntry() == Entry;
R = R->getParent()) {
R->replaceEntry(Flow);
}
}
Prev = ParentRegion->getBBNode(Flow);
} else {
killTerminator(Prev->getEntry());
}
return Prev->getEntry();
}
/// \brief Returns the region exit if possible, otherwise just a new flow node
BasicBlock *AMDGPUStructurizeCFG::needPostfix(BasicBlock *Flow,
bool ExitUseAllowed) {
if (Order.empty() && ExitUseAllowed) {
BasicBlock *Exit = ParentRegion->getExit();
DT->changeImmediateDominator(Exit, Flow);
addPhiValues(Flow, Exit);
return Exit;
}
return getNextFlow(Flow);
}
/// \brief Returns the region node for Netx, or null if Next is the exit
RegionNode *AMDGPUStructurizeCFG::getNextPrev(BasicBlock *Next) {
return ParentRegion->contains(Next) ? ParentRegion->getBBNode(Next) : 0;
}
/// \brief Does BB dominate all the predicates of Node ?
bool AMDGPUStructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
BBPredicates &Preds = Predicates[Node->getEntry()];
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
PI != PE; ++PI) {
if (!DT->dominates(BB, PI->first))
return false;
}
return true;
}
/// \brief Can we predict that this node will always be called?
bool AMDGPUStructurizeCFG::isPredictableTrue(RegionNode *Who,
RegionNode *Where) {
BBPredicates &Preds = Predicates[Who->getEntry()];
bool Dominated = Where == 0;
for (BBPredicates::iterator I = Preds.begin(), E = Preds.end();
I != E; ++I) {
if (I->second != BoolTrue)
return false;
if (!Dominated && DT->dominates(I->first, Where->getEntry()))
Dominated = true;
}
// TODO: The dominator check is too strict
return Dominated;
}
/// Take one node from the order vector and wire it up
RegionNode *AMDGPUStructurizeCFG::wireFlow(RegionNode *&Prev,
bool ExitUseAllowed) {
RegionNode *Node = Order.pop_back_val();
if (isPredictableTrue(Node, Prev)) {
// Just a linear flow
if (Prev) {
changeExit(Prev, Node->getEntry(), true);
}
Prev = Node;
} else {
// Insert extra prefix node (or reuse last one)
BasicBlock *Flow = needPrefix(Prev, Node);
if (Node->getEntry() == LoopStart)
LoopStart = Flow;
// Insert extra postfix node (or use exit instead)
BasicBlock *Entry = Node->getEntry();
BasicBlock *Next = needPostfix(Flow, ExitUseAllowed && Entry != LoopEnd);
// let it point to entry and next block
Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
addPhiValues(Flow, Entry);
DT->changeImmediateDominator(Entry, Flow);
Prev = Node;
while (!Order.empty() && Node->getEntry() != LoopEnd &&
!LoopTargets.count(Order.back()->getEntry()) &&
dominatesPredicates(Entry, Order.back())) {
Node = wireFlow(Prev, false);
}
changeExit(Prev, Next, false);
Prev = getNextPrev(Next);
}
return Node;
}
/// After this function control flow looks like it should be, but
/// branches and PHI nodes only have undefined conditions.
void AMDGPUStructurizeCFG::createFlow() {
BasicBlock *Exit = ParentRegion->getExit();
bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
DeletedPhis.clear();
AddedPhis.clear();
Conditions.clear();
RegionNode *Prev = 0;
while (!Order.empty()) {
RegionNode *Node = wireFlow(Prev, EntryDominatesExit);
// Create an extra loop end node
if (Node->getEntry() == LoopEnd) {
LoopEnd = needPrefix(Prev, 0);
BasicBlock *Next = needPostfix(LoopEnd, EntryDominatesExit);
Conditions.push_back(BranchInst::Create(Next, LoopStart,
BoolUndef, LoopEnd));
addPhiValues(LoopEnd, LoopStart);
Prev = getNextPrev(Next);
}
}
if (Prev)
changeExit(Prev, Exit, EntryDominatesExit);
else
assert(EntryDominatesExit);
}
/// Handle a rare case where the disintegrated nodes instructions
/// no longer dominate all their uses. Not sure if this is really nessasary
void AMDGPUStructurizeCFG::rebuildSSA() {
SSAUpdater Updater;
for (Region::block_iterator I = ParentRegion->block_begin(),
E = ParentRegion->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
bool Initialized = false;
for (Use *I = &II->use_begin().getUse(), *Next; I; I = Next) {
Next = I->getNext();
Instruction *User = cast<Instruction>(I->getUser());
if (User->getParent() == BB) {
continue;
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(*I) == BB)
continue;
}
if (DT->dominates(II, User))
continue;
if (!Initialized) {
Value *Undef = UndefValue::get(II->getType());
Updater.Initialize(II->getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(BB, II);
Initialized = true;
}
Updater.RewriteUseAfterInsertions(*I);
}
}
}
}
/// \brief Run the transformation for each region found
bool AMDGPUStructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
if (R->isTopLevelRegion())
return false;
Func = R->getEntry()->getParent();
ParentRegion = R;
DT = &getAnalysis<DominatorTree>();
orderNodes();
collectInfos();
createFlow();
insertConditions();
setPhiValues();
rebuildSSA();
// Cleanup
Order.clear();
Visited.clear();
Predicates.clear();
DeletedPhis.clear();
AddedPhis.clear();
Conditions.clear();
LoopTargets.clear();
LoopPred.clear();
return true;
}
/// \brief Create the pass
Pass *llvm::createAMDGPUStructurizeCFGPass() {
return new AMDGPUStructurizeCFG();
}