llvm-6502/lib/Analysis/IPA/Andersens.cpp
Chris Lattner 76bc5ce5c4 Fix a major problem with global variable initializers. This could cause
us to have stuff pointing to the null pointer, which makes no sense
(the null ptr is an ssa value, not the null object)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20922 91177308-0d34-0410-b5e6-96231b3b80d8
2005-03-29 17:21:53 +00:00

1142 lines
43 KiB
C++

//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a very simple implementation of Andersen's interprocedural
// alias analysis. This implementation does not include any of the fancy
// features that make Andersen's reasonably efficient (like cycle elimination or
// variable substitution), but it should be useful for getting precision
// numbers and can be extended in the future.
//
// In pointer analysis terms, this is a subset-based, flow-insensitive,
// field-insensitive, and context-insensitive algorithm pointer algorithm.
//
// This algorithm is implemented as three stages:
// 1. Object identification.
// 2. Inclusion constraint identification.
// 3. Inclusion constraint solving.
//
// The object identification stage identifies all of the memory objects in the
// program, which includes globals, heap allocated objects, and stack allocated
// objects.
//
// The inclusion constraint identification stage finds all inclusion constraints
// in the program by scanning the program, looking for pointer assignments and
// other statements that effect the points-to graph. For a statement like "A =
// B", this statement is processed to indicate that A can point to anything that
// B can point to. Constraints can handle copies, loads, and stores.
//
// The inclusion constraint solving phase iteratively propagates the inclusion
// constraints until a fixed point is reached. This is an O(N^3) algorithm.
//
// In the initial pass, all indirect function calls are completely ignored. As
// the analysis discovers new targets of function pointers, it iteratively
// resolves a precise (and conservative) call graph. Also related, this
// analysis initially assumes that all internal functions have known incoming
// pointers. If we find that an internal function's address escapes outside of
// the program, we update this assumption.
//
// Future Improvements:
// This implementation of Andersen's algorithm is extremely slow. To make it
// scale reasonably well, the inclusion constraints could be sorted (easy),
// offline variable substitution would be a huge win (straight-forward), and
// online cycle elimination (trickier) might help as well.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "anders-aa"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
namespace {
Statistic<>
NumIters("anders-aa", "Number of iterations to reach convergence");
Statistic<>
NumConstraints("anders-aa", "Number of constraints");
Statistic<>
NumNodes("anders-aa", "Number of nodes");
Statistic<>
NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
Statistic<>
NumIndirectCallees("anders-aa", "Number of indirect callees found");
class Andersens : public ModulePass, public AliasAnalysis,
private InstVisitor<Andersens> {
/// Node class - This class is used to represent a memory object in the
/// program, and is the primitive used to build the points-to graph.
class Node {
std::vector<Node*> Pointees;
Value *Val;
public:
Node() : Val(0) {}
Node *setValue(Value *V) {
assert(Val == 0 && "Value already set for this node!");
Val = V;
return this;
}
/// getValue - Return the LLVM value corresponding to this node.
///
Value *getValue() const { return Val; }
typedef std::vector<Node*>::const_iterator iterator;
iterator begin() const { return Pointees.begin(); }
iterator end() const { return Pointees.end(); }
/// addPointerTo - Add a pointer to the list of pointees of this node,
/// returning true if this caused a new pointer to be added, or false if
/// we already knew about the points-to relation.
bool addPointerTo(Node *N) {
std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
Pointees.end(),
N);
if (I != Pointees.end() && *I == N)
return false;
Pointees.insert(I, N);
return true;
}
/// intersects - Return true if the points-to set of this node intersects
/// with the points-to set of the specified node.
bool intersects(Node *N) const;
/// intersectsIgnoring - Return true if the points-to set of this node
/// intersects with the points-to set of the specified node on any nodes
/// except for the specified node to ignore.
bool intersectsIgnoring(Node *N, Node *Ignoring) const;
// Constraint application methods.
bool copyFrom(Node *N);
bool loadFrom(Node *N);
bool storeThrough(Node *N);
};
/// GraphNodes - This vector is populated as part of the object
/// identification stage of the analysis, which populates this vector with a
/// node for each memory object and fills in the ValueNodes map.
std::vector<Node> GraphNodes;
/// ValueNodes - This map indicates the Node that a particular Value* is
/// represented by. This contains entries for all pointers.
std::map<Value*, unsigned> ValueNodes;
/// ObjectNodes - This map contains entries for each memory object in the
/// program: globals, alloca's and mallocs.
std::map<Value*, unsigned> ObjectNodes;
/// ReturnNodes - This map contains an entry for each function in the
/// program that returns a value.
std::map<Function*, unsigned> ReturnNodes;
/// VarargNodes - This map contains the entry used to represent all pointers
/// passed through the varargs portion of a function call for a particular
/// function. An entry is not present in this map for functions that do not
/// take variable arguments.
std::map<Function*, unsigned> VarargNodes;
/// Constraint - Objects of this structure are used to represent the various
/// constraints identified by the algorithm. The constraints are 'copy',
/// for statements like "A = B", 'load' for statements like "A = *B", and
/// 'store' for statements like "*A = B".
struct Constraint {
enum ConstraintType { Copy, Load, Store } Type;
Node *Dest, *Src;
Constraint(ConstraintType Ty, Node *D, Node *S)
: Type(Ty), Dest(D), Src(S) {}
};
/// Constraints - This vector contains a list of all of the constraints
/// identified by the program.
std::vector<Constraint> Constraints;
/// EscapingInternalFunctions - This set contains all of the internal
/// functions that are found to escape from the program. If the address of
/// an internal function is passed to an external function or otherwise
/// escapes from the analyzed portion of the program, we must assume that
/// any pointer arguments can alias the universal node. This set keeps
/// track of those functions we are assuming to escape so far.
std::set<Function*> EscapingInternalFunctions;
/// IndirectCalls - This contains a list of all of the indirect call sites
/// in the program. Since the call graph is iteratively discovered, we may
/// need to add constraints to our graph as we find new targets of function
/// pointers.
std::vector<CallSite> IndirectCalls;
/// IndirectCallees - For each call site in the indirect calls list, keep
/// track of the callees that we have discovered so far. As the analysis
/// proceeds, more callees are discovered, until the call graph finally
/// stabilizes.
std::map<CallSite, std::vector<Function*> > IndirectCallees;
/// This enum defines the GraphNodes indices that correspond to important
/// fixed sets.
enum {
UniversalSet = 0,
NullPtr = 1,
NullObject = 2,
};
public:
bool runOnModule(Module &M) {
InitializeAliasAnalysis(this);
IdentifyObjects(M);
CollectConstraints(M);
DEBUG(PrintConstraints());
SolveConstraints();
DEBUG(PrintPointsToGraph());
// Free the constraints list, as we don't need it to respond to alias
// requests.
ObjectNodes.clear();
ReturnNodes.clear();
VarargNodes.clear();
EscapingInternalFunctions.clear();
std::vector<Constraint>().swap(Constraints);
return false;
}
void releaseMemory() {
// FIXME: Until we have transitively required passes working correctly,
// this cannot be enabled! Otherwise, using -count-aa with the pass
// causes memory to be freed too early. :(
#if 0
// The memory objects and ValueNodes data structures at the only ones that
// are still live after construction.
std::vector<Node>().swap(GraphNodes);
ValueNodes.clear();
#endif
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
void getMustAliases(Value *P, std::vector<Value*> &RetVals);
bool pointsToConstantMemory(const Value *P);
virtual void deleteValue(Value *V) {
ValueNodes.erase(V);
getAnalysis<AliasAnalysis>().deleteValue(V);
}
virtual void copyValue(Value *From, Value *To) {
ValueNodes[To] = ValueNodes[From];
getAnalysis<AliasAnalysis>().copyValue(From, To);
}
private:
/// getNode - Return the node corresponding to the specified pointer scalar.
///
Node *getNode(Value *V) {
if (Constant *C = dyn_cast<Constant>(V))
if (!isa<GlobalValue>(C))
return getNodeForConstantPointer(C);
std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
if (I == ValueNodes.end()) {
V->dump();
assert(I != ValueNodes.end() &&
"Value does not have a node in the points-to graph!");
}
return &GraphNodes[I->second];
}
/// getObject - Return the node corresponding to the memory object for the
/// specified global or allocation instruction.
Node *getObject(Value *V) {
std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
assert(I != ObjectNodes.end() &&
"Value does not have an object in the points-to graph!");
return &GraphNodes[I->second];
}
/// getReturnNode - Return the node representing the return value for the
/// specified function.
Node *getReturnNode(Function *F) {
std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
assert(I != ReturnNodes.end() && "Function does not return a value!");
return &GraphNodes[I->second];
}
/// getVarargNode - Return the node representing the variable arguments
/// formal for the specified function.
Node *getVarargNode(Function *F) {
std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
assert(I != VarargNodes.end() && "Function does not take var args!");
return &GraphNodes[I->second];
}
/// getNodeValue - Get the node for the specified LLVM value and set the
/// value for it to be the specified value.
Node *getNodeValue(Value &V) {
return getNode(&V)->setValue(&V);
}
void IdentifyObjects(Module &M);
void CollectConstraints(Module &M);
void SolveConstraints();
Node *getNodeForConstantPointer(Constant *C);
Node *getNodeForConstantPointerTarget(Constant *C);
void AddGlobalInitializerConstraints(Node *N, Constant *C);
void AddConstraintsForNonInternalLinkage(Function *F);
void AddConstraintsForCall(CallSite CS, Function *F);
bool AddConstraintsForExternalCall(CallSite CS, Function *F);
void PrintNode(Node *N);
void PrintConstraints();
void PrintPointsToGraph();
//===------------------------------------------------------------------===//
// Instruction visitation methods for adding constraints
//
friend class InstVisitor<Andersens>;
void visitReturnInst(ReturnInst &RI);
void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
void visitCallSite(CallSite CS);
void visitAllocationInst(AllocationInst &AI);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitPHINode(PHINode &PN);
void visitCastInst(CastInst &CI);
void visitSetCondInst(SetCondInst &SCI) {} // NOOP!
void visitSelectInst(SelectInst &SI);
void visitVANext(VANextInst &I);
void visitVAArg(VAArgInst &I);
void visitInstruction(Instruction &I);
};
RegisterOpt<Andersens> X("anders-aa",
"Andersen's Interprocedural Alias Analysis");
RegisterAnalysisGroup<AliasAnalysis, Andersens> Y;
}
ModulePass *llvm::createAndersensPass() { return new Andersens(); }
//===----------------------------------------------------------------------===//
// AliasAnalysis Interface Implementation
//===----------------------------------------------------------------------===//
AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
Node *N1 = getNode(const_cast<Value*>(V1));
Node *N2 = getNode(const_cast<Value*>(V2));
// Check to see if the two pointers are known to not alias. They don't alias
// if their points-to sets do not intersect.
if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
return NoAlias;
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}
AliasAnalysis::ModRefResult
Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
// The only thing useful that we can contribute for mod/ref information is
// when calling external function calls: if we know that memory never escapes
// from the program, it cannot be modified by an external call.
//
// NOTE: This is not really safe, at least not when the entire program is not
// available. The deal is that the external function could call back into the
// program and modify stuff. We ignore this technical niggle for now. This
// is, after all, a "research quality" implementation of Andersen's analysis.
if (Function *F = CS.getCalledFunction())
if (F->isExternal()) {
Node *N1 = getNode(P);
bool PointsToUniversalSet = false;
for (Node::iterator NI = N1->begin(), E = N1->end(); NI != E; ++NI) {
Node *PN = *NI;
if (PN->begin() == PN->end())
continue; // P doesn't point to anything.
// Get the first pointee.
Node *FirstPointee = *PN->begin();
if (FirstPointee == &GraphNodes[UniversalSet]) {
PointsToUniversalSet = true;
break;
}
}
if (!PointsToUniversalSet)
return NoModRef; // P doesn't point to the universal set.
}
return AliasAnalysis::getModRefInfo(CS, P, Size);
}
/// getMustAlias - We can provide must alias information if we know that a
/// pointer can only point to a specific function or the null pointer.
/// Unfortunately we cannot determine must-alias information for global
/// variables or any other memory memory objects because we do not track whether
/// a pointer points to the beginning of an object or a field of it.
void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
Node *N = getNode(P);
Node::iterator I = N->begin();
if (I != N->end()) {
// If there is exactly one element in the points-to set for the object...
++I;
if (I == N->end()) {
Node *Pointee = *N->begin();
// If a function is the only object in the points-to set, then it must be
// the destination. Note that we can't handle global variables here,
// because we don't know if the pointer is actually pointing to a field of
// the global or to the beginning of it.
if (Value *V = Pointee->getValue()) {
if (Function *F = dyn_cast<Function>(V))
RetVals.push_back(F);
} else {
// If the object in the points-to set is the null object, then the null
// pointer is a must alias.
if (Pointee == &GraphNodes[NullObject])
RetVals.push_back(Constant::getNullValue(P->getType()));
}
}
}
AliasAnalysis::getMustAliases(P, RetVals);
}
/// pointsToConstantMemory - If we can determine that this pointer only points
/// to constant memory, return true. In practice, this means that if the
/// pointer can only point to constant globals, functions, or the null pointer,
/// return true.
///
bool Andersens::pointsToConstantMemory(const Value *P) {
Node *N = getNode((Value*)P);
for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
if (Value *V = (*I)->getValue()) {
if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
!cast<GlobalVariable>(V)->isConstant()))
return AliasAnalysis::pointsToConstantMemory(P);
} else {
if (*I != &GraphNodes[NullObject])
return AliasAnalysis::pointsToConstantMemory(P);
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Object Identification Phase
//===----------------------------------------------------------------------===//
/// IdentifyObjects - This stage scans the program, adding an entry to the
/// GraphNodes list for each memory object in the program (global stack or
/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
///
void Andersens::IdentifyObjects(Module &M) {
unsigned NumObjects = 0;
// Object #0 is always the universal set: the object that we don't know
// anything about.
assert(NumObjects == UniversalSet && "Something changed!");
++NumObjects;
// Object #1 always represents the null pointer.
assert(NumObjects == NullPtr && "Something changed!");
++NumObjects;
// Object #2 always represents the null object (the object pointed to by null)
assert(NumObjects == NullObject && "Something changed!");
++NumObjects;
// Add all the globals first.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
ObjectNodes[I] = NumObjects++;
ValueNodes[I] = NumObjects++;
}
// Add nodes for all of the functions and the instructions inside of them.
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
// The function itself is a memory object.
ValueNodes[F] = NumObjects++;
ObjectNodes[F] = NumObjects++;
if (isa<PointerType>(F->getFunctionType()->getReturnType()))
ReturnNodes[F] = NumObjects++;
if (F->getFunctionType()->isVarArg())
VarargNodes[F] = NumObjects++;
// Add nodes for all of the incoming pointer arguments.
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
if (isa<PointerType>(I->getType()))
ValueNodes[I] = NumObjects++;
// Scan the function body, creating a memory object for each heap/stack
// allocation in the body of the function and a node to represent all
// pointer values defined by instructions and used as operands.
for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
// If this is an heap or stack allocation, create a node for the memory
// object.
if (isa<PointerType>(II->getType())) {
ValueNodes[&*II] = NumObjects++;
if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
ObjectNodes[AI] = NumObjects++;
}
}
}
// Now that we know how many objects to create, make them all now!
GraphNodes.resize(NumObjects);
NumNodes += NumObjects;
}
//===----------------------------------------------------------------------===//
// Constraint Identification Phase
//===----------------------------------------------------------------------===//
/// getNodeForConstantPointer - Return the node corresponding to the constant
/// pointer itself.
Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
return &GraphNodes[NullPtr];
else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
return getNode(GV);
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
return getNodeForConstantPointer(CE->getOperand(0));
case Instruction::Cast:
if (isa<PointerType>(CE->getOperand(0)->getType()))
return getNodeForConstantPointer(CE->getOperand(0));
else
return &GraphNodes[UniversalSet];
default:
std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
assert(0);
}
} else {
assert(0 && "Unknown constant pointer!");
}
return 0;
}
/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
/// specified constant pointer.
Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
if (isa<ConstantPointerNull>(C))
return &GraphNodes[NullObject];
else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
return getObject(GV);
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
return getNodeForConstantPointerTarget(CE->getOperand(0));
case Instruction::Cast:
if (isa<PointerType>(CE->getOperand(0)->getType()))
return getNodeForConstantPointerTarget(CE->getOperand(0));
else
return &GraphNodes[UniversalSet];
default:
std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
assert(0);
}
} else {
assert(0 && "Unknown constant pointer!");
}
return 0;
}
/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
/// object N, which contains values indicated by C.
void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
if (C->getType()->isFirstClassType()) {
if (isa<PointerType>(C->getType()))
N->copyFrom(getNodeForConstantPointer(C));
} else if (C->isNullValue()) {
N->addPointerTo(&GraphNodes[NullObject]);
return;
} else if (!isa<UndefValue>(C)) {
// If this is an array or struct, include constraints for each element.
assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
}
}
/// AddConstraintsForNonInternalLinkage - If this function does not have
/// internal linkage, realize that we can't trust anything passed into or
/// returned by this function.
void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
if (isa<PointerType>(I->getType()))
// If this is an argument of an externally accessible function, the
// incoming pointer might point to anything.
Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
&GraphNodes[UniversalSet]));
}
/// AddConstraintsForCall - If this is a call to a "known" function, add the
/// constraints and return true. If this is a call to an unknown function,
/// return false.
bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
assert(F->isExternal() && "Not an external function!");
// These functions don't induce any points-to constraints.
if (F->getName() == "printf" || F->getName() == "fprintf" ||
F->getName() == "sprintf" ||
F->getName() == "fgets" ||
F->getName() == "open" || F->getName() == "fopen" ||
F->getName() == "fclose" || F->getName() == "fflush" ||
F->getName() == "rewind" ||
F->getName() == "atoi" || F->getName() == "unlink" ||
F->getName() == "sscanf" || F->getName() == "fscanf" ||
F->getName() == "llvm.memset" || F->getName() == "memcmp" ||
F->getName() == "read" || F->getName() == "write")
return true;
// These functions do induce points-to edges.
if (F->getName() == "llvm.memcpy" || F->getName() == "llvm.memmove" ||
F->getName() == "memmove") {
// Note: this is a poor approximation, this says Dest = Src, instead of
// *Dest = *Src.
Constraints.push_back(Constraint(Constraint::Copy,
getNode(CS.getArgument(0)),
getNode(CS.getArgument(1))));
return true;
}
if (F->getName() == "realloc") {
// Result = Arg
Constraints.push_back(Constraint(Constraint::Copy,
getNode(CS.getInstruction()),
getNode(CS.getArgument(0))));
return true;
}
return false;
}
/// CollectConstraints - This stage scans the program, adding a constraint to
/// the Constraints list for each instruction in the program that induces a
/// constraint, and setting up the initial points-to graph.
///
void Andersens::CollectConstraints(Module &M) {
// First, the universal set points to itself.
GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
//Constraints.push_back(Constraint(Constraint::Load, &GraphNodes[UniversalSet],
// &GraphNodes[UniversalSet]));
Constraints.push_back(Constraint(Constraint::Store, &GraphNodes[UniversalSet],
&GraphNodes[UniversalSet]));
// Next, the null pointer points to the null object.
GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
// Next, add any constraints on global variables and their initializers.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
// Associate the address of the global object as pointing to the memory for
// the global: &G = <G memory>
Node *Object = getObject(I);
Object->setValue(I);
getNodeValue(*I)->addPointerTo(Object);
if (I->hasInitializer()) {
AddGlobalInitializerConstraints(Object, I->getInitializer());
} else {
// If it doesn't have an initializer (i.e. it's defined in another
// translation unit), it points to the universal set.
Constraints.push_back(Constraint(Constraint::Copy, Object,
&GraphNodes[UniversalSet]));
}
}
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
// Make the function address point to the function object.
getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
// Set up the return value node.
if (isa<PointerType>(F->getFunctionType()->getReturnType()))
getReturnNode(F)->setValue(F);
if (F->getFunctionType()->isVarArg())
getVarargNode(F)->setValue(F);
// Set up incoming argument nodes.
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
if (isa<PointerType>(I->getType()))
getNodeValue(*I);
if (!F->hasInternalLinkage())
AddConstraintsForNonInternalLinkage(F);
if (!F->isExternal()) {
// Scan the function body, creating a memory object for each heap/stack
// allocation in the body of the function and a node to represent all
// pointer values defined by instructions and used as operands.
visit(F);
} else {
// External functions that return pointers return the universal set.
if (isa<PointerType>(F->getFunctionType()->getReturnType()))
Constraints.push_back(Constraint(Constraint::Copy,
getReturnNode(F),
&GraphNodes[UniversalSet]));
// Any pointers that are passed into the function have the universal set
// stored into them.
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
if (isa<PointerType>(I->getType())) {
// Pointers passed into external functions could have anything stored
// through them.
Constraints.push_back(Constraint(Constraint::Store, getNode(I),
&GraphNodes[UniversalSet]));
// Memory objects passed into external function calls can have the
// universal set point to them.
Constraints.push_back(Constraint(Constraint::Copy,
&GraphNodes[UniversalSet],
getNode(I)));
}
// If this is an external varargs function, it can also store pointers
// into any pointers passed through the varargs section.
if (F->getFunctionType()->isVarArg())
Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
&GraphNodes[UniversalSet]));
}
}
NumConstraints += Constraints.size();
}
void Andersens::visitInstruction(Instruction &I) {
#ifdef NDEBUG
return; // This function is just a big assert.
#endif
if (isa<BinaryOperator>(I))
return;
// Most instructions don't have any effect on pointer values.
switch (I.getOpcode()) {
case Instruction::Br:
case Instruction::Switch:
case Instruction::Unwind:
case Instruction::Unreachable:
case Instruction::Free:
case Instruction::Shl:
case Instruction::Shr:
return;
default:
// Is this something we aren't handling yet?
std::cerr << "Unknown instruction: " << I;
abort();
}
}
void Andersens::visitAllocationInst(AllocationInst &AI) {
getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
}
void Andersens::visitReturnInst(ReturnInst &RI) {
if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
// return V --> <Copy/retval{F}/v>
Constraints.push_back(Constraint(Constraint::Copy,
getReturnNode(RI.getParent()->getParent()),
getNode(RI.getOperand(0))));
}
void Andersens::visitLoadInst(LoadInst &LI) {
if (isa<PointerType>(LI.getType()))
// P1 = load P2 --> <Load/P1/P2>
Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
getNode(LI.getOperand(0))));
}
void Andersens::visitStoreInst(StoreInst &SI) {
if (isa<PointerType>(SI.getOperand(0)->getType()))
// store P1, P2 --> <Store/P2/P1>
Constraints.push_back(Constraint(Constraint::Store,
getNode(SI.getOperand(1)),
getNode(SI.getOperand(0))));
}
void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// P1 = getelementptr P2, ... --> <Copy/P1/P2>
Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
getNode(GEP.getOperand(0))));
}
void Andersens::visitPHINode(PHINode &PN) {
if (isa<PointerType>(PN.getType())) {
Node *PNN = getNodeValue(PN);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
// P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
Constraints.push_back(Constraint(Constraint::Copy, PNN,
getNode(PN.getIncomingValue(i))));
}
}
void Andersens::visitCastInst(CastInst &CI) {
Value *Op = CI.getOperand(0);
if (isa<PointerType>(CI.getType())) {
if (isa<PointerType>(Op->getType())) {
// P1 = cast P2 --> <Copy/P1/P2>
Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
getNode(CI.getOperand(0))));
} else {
// P1 = cast int --> <Copy/P1/Univ>
Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
&GraphNodes[UniversalSet]));
}
} else if (isa<PointerType>(Op->getType())) {
// int = cast P1 --> <Copy/Univ/P1>
Constraints.push_back(Constraint(Constraint::Copy,
&GraphNodes[UniversalSet],
getNode(CI.getOperand(0))));
}
}
void Andersens::visitSelectInst(SelectInst &SI) {
if (isa<PointerType>(SI.getType())) {
Node *SIN = getNodeValue(SI);
// P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
Constraints.push_back(Constraint(Constraint::Copy, SIN,
getNode(SI.getOperand(1))));
Constraints.push_back(Constraint(Constraint::Copy, SIN,
getNode(SI.getOperand(2))));
}
}
void Andersens::visitVANext(VANextInst &I) {
// FIXME: Implement
assert(0 && "vanext not handled yet!");
}
void Andersens::visitVAArg(VAArgInst &I) {
assert(0 && "vaarg not handled yet!");
}
/// AddConstraintsForCall - Add constraints for a call with actual arguments
/// specified by CS to the function specified by F. Note that the types of
/// arguments might not match up in the case where this is an indirect call and
/// the function pointer has been casted. If this is the case, do something
/// reasonable.
void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
// If this is a call to an external function, handle it directly to get some
// taste of context sensitivity.
if (F->isExternal() && AddConstraintsForExternalCall(CS, F))
return;
if (isa<PointerType>(CS.getType())) {
Node *CSN = getNode(CS.getInstruction());
if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
Constraints.push_back(Constraint(Constraint::Copy, CSN,
getReturnNode(F)));
} else {
// If the function returns a non-pointer value, handle this just like we
// treat a nonpointer cast to pointer.
Constraints.push_back(Constraint(Constraint::Copy, CSN,
&GraphNodes[UniversalSet]));
}
} else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
Constraints.push_back(Constraint(Constraint::Copy,
&GraphNodes[UniversalSet],
getReturnNode(F)));
}
Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
if (isa<PointerType>(AI->getType())) {
if (isa<PointerType>((*ArgI)->getType())) {
// Copy the actual argument into the formal argument.
Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
getNode(*ArgI)));
} else {
Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
&GraphNodes[UniversalSet]));
}
} else if (isa<PointerType>((*ArgI)->getType())) {
Constraints.push_back(Constraint(Constraint::Copy,
&GraphNodes[UniversalSet],
getNode(*ArgI)));
}
// Copy all pointers passed through the varargs section to the varargs node.
if (F->getFunctionType()->isVarArg())
for (; ArgI != ArgE; ++ArgI)
if (isa<PointerType>((*ArgI)->getType()))
Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
getNode(*ArgI)));
// If more arguments are passed in than we track, just drop them on the floor.
}
void Andersens::visitCallSite(CallSite CS) {
if (isa<PointerType>(CS.getType()))
getNodeValue(*CS.getInstruction());
if (Function *F = CS.getCalledFunction()) {
AddConstraintsForCall(CS, F);
} else {
// We don't handle indirect call sites yet. Keep track of them for when we
// discover the call graph incrementally.
IndirectCalls.push_back(CS);
}
}
//===----------------------------------------------------------------------===//
// Constraint Solving Phase
//===----------------------------------------------------------------------===//
/// intersects - Return true if the points-to set of this node intersects
/// with the points-to set of the specified node.
bool Andersens::Node::intersects(Node *N) const {
iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
while (I1 != E1 && I2 != E2) {
if (*I1 == *I2) return true;
if (*I1 < *I2)
++I1;
else
++I2;
}
return false;
}
/// intersectsIgnoring - Return true if the points-to set of this node
/// intersects with the points-to set of the specified node on any nodes
/// except for the specified node to ignore.
bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
while (I1 != E1 && I2 != E2) {
if (*I1 == *I2) {
if (*I1 != Ignoring) return true;
++I1; ++I2;
} else if (*I1 < *I2)
++I1;
else
++I2;
}
return false;
}
// Copy constraint: all edges out of the source node get copied to the
// destination node. This returns true if a change is made.
bool Andersens::Node::copyFrom(Node *N) {
// Use a mostly linear-time merge since both of the lists are sorted.
bool Changed = false;
iterator I = N->begin(), E = N->end();
unsigned i = 0;
while (I != E && i != Pointees.size()) {
if (Pointees[i] < *I) {
++i;
} else if (Pointees[i] == *I) {
++i; ++I;
} else {
// We found a new element to copy over.
Changed = true;
Pointees.insert(Pointees.begin()+i, *I);
++i; ++I;
}
}
if (I != E) {
Pointees.insert(Pointees.end(), I, E);
Changed = true;
}
return Changed;
}
bool Andersens::Node::loadFrom(Node *N) {
bool Changed = false;
for (iterator I = N->begin(), E = N->end(); I != E; ++I)
Changed |= copyFrom(*I);
return Changed;
}
bool Andersens::Node::storeThrough(Node *N) {
bool Changed = false;
for (iterator I = begin(), E = end(); I != E; ++I)
Changed |= (*I)->copyFrom(N);
return Changed;
}
/// SolveConstraints - This stage iteratively processes the constraints list
/// propagating constraints (adding edges to the Nodes in the points-to graph)
/// until a fixed point is reached.
///
void Andersens::SolveConstraints() {
bool Changed = true;
unsigned Iteration = 0;
while (Changed) {
Changed = false;
++NumIters;
DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
// Loop over all of the constraints, applying them in turn.
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
Constraint &C = Constraints[i];
switch (C.Type) {
case Constraint::Copy:
Changed |= C.Dest->copyFrom(C.Src);
break;
case Constraint::Load:
Changed |= C.Dest->loadFrom(C.Src);
break;
case Constraint::Store:
Changed |= C.Dest->storeThrough(C.Src);
break;
default:
assert(0 && "Unknown constraint!");
}
}
if (Changed) {
// Check to see if any internal function's addresses have been passed to
// external functions. If so, we have to assume that their incoming
// arguments could be anything. If there are any internal functions in
// the universal node that we don't know about, we must iterate.
for (Node::iterator I = GraphNodes[UniversalSet].begin(),
E = GraphNodes[UniversalSet].end(); I != E; ++I)
if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
if (F->hasInternalLinkage() &&
EscapingInternalFunctions.insert(F).second) {
// We found a function that is just now escaping. Mark it as if it
// didn't have internal linkage.
AddConstraintsForNonInternalLinkage(F);
DEBUG(std::cerr << "Found escaping internal function: "
<< F->getName() << "\n");
++NumEscapingFunctions;
}
// Check to see if we have discovered any new callees of the indirect call
// sites. If so, add constraints to the analysis.
for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
CallSite CS = IndirectCalls[i];
std::vector<Function*> &KnownCallees = IndirectCallees[CS];
Node *CN = getNode(CS.getCalledValue());
for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
std::vector<Function*>::iterator IP =
std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
if (IP == KnownCallees.end() || *IP != F) {
// Add the constraints for the call now.
AddConstraintsForCall(CS, F);
DEBUG(std::cerr << "Found actual callee '"
<< F->getName() << "' for call: "
<< *CS.getInstruction() << "\n");
++NumIndirectCallees;
KnownCallees.insert(IP, F);
}
}
}
}
}
}
//===----------------------------------------------------------------------===//
// Debugging Output
//===----------------------------------------------------------------------===//
void Andersens::PrintNode(Node *N) {
if (N == &GraphNodes[UniversalSet]) {
std::cerr << "<universal>";
return;
} else if (N == &GraphNodes[NullPtr]) {
std::cerr << "<nullptr>";
return;
} else if (N == &GraphNodes[NullObject]) {
std::cerr << "<null>";
return;
}
assert(N->getValue() != 0 && "Never set node label!");
Value *V = N->getValue();
if (Function *F = dyn_cast<Function>(V)) {
if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
N == getReturnNode(F)) {
std::cerr << F->getName() << ":retval";
return;
} else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
std::cerr << F->getName() << ":vararg";
return;
}
}
if (Instruction *I = dyn_cast<Instruction>(V))
std::cerr << I->getParent()->getParent()->getName() << ":";
else if (Argument *Arg = dyn_cast<Argument>(V))
std::cerr << Arg->getParent()->getName() << ":";
if (V->hasName())
std::cerr << V->getName();
else
std::cerr << "(unnamed)";
if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
if (N == getObject(V))
std::cerr << "<mem>";
}
void Andersens::PrintConstraints() {
std::cerr << "Constraints:\n";
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
std::cerr << " #" << i << ": ";
Constraint &C = Constraints[i];
if (C.Type == Constraint::Store)
std::cerr << "*";
PrintNode(C.Dest);
std::cerr << " = ";
if (C.Type == Constraint::Load)
std::cerr << "*";
PrintNode(C.Src);
std::cerr << "\n";
}
}
void Andersens::PrintPointsToGraph() {
std::cerr << "Points-to graph:\n";
for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
Node *N = &GraphNodes[i];
std::cerr << "[" << (N->end() - N->begin()) << "] ";
PrintNode(N);
std::cerr << "\t--> ";
for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
if (I != N->begin()) std::cerr << ", ";
PrintNode(*I);
}
std::cerr << "\n";
}
}