llvm-6502/lib/VMCore/StandardPasses.cpp
2011-05-18 23:51:11 +00:00

248 lines
10 KiB
C++

//===-- lib/Support/StandardPasses.cpp - Standard pass lists -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines utility functions for creating a "standard" set of
// optimization passes, so that compilers and tools which use optimization
// passes use the same set of standard passes.
//
// This allows the creation of multiple standard sets, and their later
// modification by plugins and front ends.
//
//===----------------------------------------------------------------------===//
#include "llvm/PassManager.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/DefaultPasses.h"
#include "llvm/Support/Mutex.h"
using namespace llvm::DefaultStandardPasses;
using namespace llvm;
namespace {
/// Entry in the standard passes list.
struct StandardPassEntry {
/// Function called to create the pass
PassInfo::NormalCtor_t createPass;
/// Unique identifier for this pass
unsigned char *passID;
/// Flags specifying when this pass should be run
unsigned flags;
StandardPassEntry(PassInfo::NormalCtor_t constructor, unsigned char *ID,
unsigned f) : createPass(constructor), passID(ID), flags(f) {};
};
/// Standard alias analysis passes
static llvm::SmallVector<StandardPassEntry, 4> AAPasses;
/// Standard function passes
static llvm::SmallVector<StandardPassEntry, 32> FunctionPasses;
/// Standard module passes
static llvm::SmallVector<StandardPassEntry, 32> ModulePasses;
/// Standard link-time optimization passes
static llvm::SmallVector<StandardPassEntry, 32> LTOPasses;
/// Entry in the unresolved standard pass list. IF a pass is inserted in front
/// of a pass that is not yet registered in the standard pass list then it is
/// stored in a separate list and resolved later.
struct UnresolvedStandardPass : public StandardPassEntry {
/// The set into which this is stored
StandardPass::StandardSet set;
/// The unique ID of the pass that should follow this one in the sequence
unsigned char *next;
UnresolvedStandardPass(PassInfo::NormalCtor_t constructor,
unsigned char *newPass,
unsigned char *oldPass,
StandardPass::StandardSet s,
unsigned f) :
StandardPassEntry(constructor, newPass, f), set(s), next(oldPass) {}
};
/// The passes that can not be inserted into the correct lists yet because of
/// their place in the sequence.
static llvm::SmallVector<UnresolvedStandardPass, 16> UnresolvedPasses;
/// Returns a reference to the pass list for the corresponding set of
/// optimisations.
llvm::SmallVectorImpl<StandardPassEntry>&
PassList(StandardPass::StandardSet set) {
switch (set) {
case StandardPass::AliasAnalysis: return AAPasses;
case StandardPass::Function: return FunctionPasses;
case StandardPass::Module: return ModulePasses;
case StandardPass::LTO: return LTOPasses;
}
// We could use a map of standard pass lists to allow definition of new
// default sets
llvm_unreachable("Invalid standard optimization set requested");
}
static ManagedStatic<sys::SmartMutex<true> > Lock;
/// Registers the default set of standard passes. This is called lazily when
/// an attempt is made to read or modify the standard pass list
void RegisterDefaultStandardPasses(void(*doRegister)(void)) {
// Only initialize the standard passes once
static volatile bool initialized = false;
if (initialized) return;
llvm::sys::SmartScopedLock<true> Guard(*Lock);
if (initialized) return;
if (doRegister) {
assert("No passes registered before setting default passes" &&
AAPasses.size() == 0 &&
FunctionPasses.size() == 0 &&
LTOPasses.size() == 0 &&
ModulePasses.size() == 0);
// We must set initialized to true before calling this function, because
// the doRegister() function will probably call RegisterDefaultPasses(),
// which will call this function, and we'd end up with infinite recursion
// and breakage if we didn't.
initialized = true;
doRegister();
}
}
} // Anonymous namespace
void (*StandardPass::RegisterDefaultPasses)(void);
Pass* (*StandardPass::CreateVerifierPass)(void);
void StandardPass::RegisterDefaultPass(PassInfo::NormalCtor_t constructor,
unsigned char *newPass,
unsigned char *oldPass,
StandardPass::StandardSet set,
unsigned flags) {
// Make sure that the standard sets are already regstered
RegisterDefaultStandardPasses(RegisterDefaultPasses);
// Get the correct list to modify
llvm::SmallVectorImpl<StandardPassEntry>& passList = PassList(set);
// If there is no old pass specified, then we are adding a new final pass, so
// just push it onto the end.
if (!oldPass) {
StandardPassEntry pass(constructor, newPass, flags);
passList.push_back(pass);
return;
}
// Find the correct place to insert the pass. This is a linear search, but
// this shouldn't be too slow since the SmallVector will store the values in
// a contiguous block of memory. Each entry is just three words of memory, so
// in most cases we are only going to be looking in one or two cache lines.
// The extra memory accesses from a more complex search structure would
// offset any performance gain (unless someone decides to add an insanely
// large set of standard passes to a set)
for (SmallVectorImpl<StandardPassEntry>::iterator i=passList.begin(),
e=passList.end() ; i!=e ; ++i) {
if (i->passID == oldPass) {
StandardPassEntry pass(constructor, newPass, flags);
passList.insert(i, pass);
// If we've added a new pass, then there may have gained the ability to
// insert one of the previously unresolved ones. If so, insert the new
// one.
for (SmallVectorImpl<UnresolvedStandardPass>::iterator
u=UnresolvedPasses.begin(), eu=UnresolvedPasses.end() ; u!=eu ; ++u){
if (u->next == newPass && u->set == set) {
UnresolvedStandardPass p = *u;
UnresolvedPasses.erase(u);
RegisterDefaultPass(p.createPass, p.passID, p.next, p.set, p.flags);
}
}
return;
}
}
// If we get to here, then we didn't find the correct place to insert the new
// pass
UnresolvedStandardPass pass(constructor, newPass, oldPass, set, flags);
UnresolvedPasses.push_back(pass);
}
void StandardPass::AddPassesFromSet(PassManagerBase *PM,
StandardSet set,
unsigned flags,
bool VerifyEach,
Pass *inliner) {
RegisterDefaultStandardPasses(RegisterDefaultPasses);
unsigned level = OptimizationLevel(flags);
flags = RequiredFlags(flags);
llvm::SmallVectorImpl<StandardPassEntry>& passList = PassList(set);
// Add all of the passes from this set
for (SmallVectorImpl<StandardPassEntry>::iterator i=passList.begin(),
e=passList.end() ; i!=e ; ++i) {
// Skip passes that don't have conditions that match the ones specified
// here. For a pass to match:
// - Its minimum optimisation level must be less than or equal to the
// specified level.
// - Its maximum optimisation level must be greater than or equal to the
// specified level
// - All of its required flags must be set
// - None of its disallowed flags may be set
if ((level >= OptimizationLevel(i->flags)) &&
((level <= MaxOptimizationLevel(i->flags))
|| MaxOptimizationLevel(i->flags) == 0) &&
((RequiredFlags(i->flags) & flags) == RequiredFlags(i->flags)) &&
((DisallowedFlags(i->flags) & flags) == 0)) {
// This is quite an ugly way of allowing us to specify an inliner pass to
// insert. Ideally, we'd replace this with a general mechanism allowing
// callers to replace arbitrary passes in the list.
Pass *p = 0;
if (&InlinerPlaceholderID == i->passID) {
p = inliner;
} else if (i->createPass)
p = i->createPass();
if (p) {
PM->add(p);
if (VerifyEach)
PM->add(CreateVerifierPass());
}
}
}
}
unsigned char DefaultStandardPasses::AggressiveDCEID;
unsigned char DefaultStandardPasses::ArgumentPromotionID;
unsigned char DefaultStandardPasses::BasicAliasAnalysisID;
unsigned char DefaultStandardPasses::CFGSimplificationID;
unsigned char DefaultStandardPasses::ConstantMergeID;
unsigned char DefaultStandardPasses::CorrelatedValuePropagationID;
unsigned char DefaultStandardPasses::DeadArgEliminationID;
unsigned char DefaultStandardPasses::DeadStoreEliminationID;
unsigned char DefaultStandardPasses::DeadTypeEliminationID;
unsigned char DefaultStandardPasses::EarlyCSEID;
unsigned char DefaultStandardPasses::FunctionAttrsID;
unsigned char DefaultStandardPasses::FunctionInliningID;
unsigned char DefaultStandardPasses::GVNID;
unsigned char DefaultStandardPasses::GlobalDCEID;
unsigned char DefaultStandardPasses::GlobalOptimizerID;
unsigned char DefaultStandardPasses::GlobalsModRefID;
unsigned char DefaultStandardPasses::IPSCCPID;
unsigned char DefaultStandardPasses::IndVarSimplifyID;
unsigned char DefaultStandardPasses::InlinerPlaceholderID;
unsigned char DefaultStandardPasses::InstructionCombiningID;
unsigned char DefaultStandardPasses::JumpThreadingID;
unsigned char DefaultStandardPasses::LICMID;
unsigned char DefaultStandardPasses::LoopDeletionID;
unsigned char DefaultStandardPasses::LoopIdiomID;
unsigned char DefaultStandardPasses::LoopRotateID;
unsigned char DefaultStandardPasses::LoopUnrollID;
unsigned char DefaultStandardPasses::LoopUnswitchID;
unsigned char DefaultStandardPasses::MemCpyOptID;
unsigned char DefaultStandardPasses::PruneEHID;
unsigned char DefaultStandardPasses::ReassociateID;
unsigned char DefaultStandardPasses::SCCPID;
unsigned char DefaultStandardPasses::ScalarReplAggregatesID;
unsigned char DefaultStandardPasses::SimplifyLibCallsID;
unsigned char DefaultStandardPasses::StripDeadPrototypesID;
unsigned char DefaultStandardPasses::TailCallEliminationID;
unsigned char DefaultStandardPasses::TypeBasedAliasAnalysisID;