mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
490d207be4
This patch adds support for the ISA 2.07 additions involving the branch history rolling buffer and event-based branching. These will not be used by typical applications, so built-in support is not required. They will only be available via inline assembly. Assembly/disassembly tests are included in the patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238032 91177308-0d34-0410-b5e6-96231b3b80d8
876 lines
38 KiB
C++
876 lines
38 KiB
C++
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that PPC uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
|
|
#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
|
|
|
|
#include "PPC.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCRegisterInfo.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
namespace llvm {
|
|
namespace PPCISD {
|
|
enum NodeType : unsigned {
|
|
// Start the numbering where the builtin ops and target ops leave off.
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
/// FSEL - Traditional three-operand fsel node.
|
|
///
|
|
FSEL,
|
|
|
|
/// FCFID - The FCFID instruction, taking an f64 operand and producing
|
|
/// and f64 value containing the FP representation of the integer that
|
|
/// was temporarily in the f64 operand.
|
|
FCFID,
|
|
|
|
/// Newer FCFID[US] integer-to-floating-point conversion instructions for
|
|
/// unsigned integers and single-precision outputs.
|
|
FCFIDU, FCFIDS, FCFIDUS,
|
|
|
|
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
|
|
/// operand, producing an f64 value containing the integer representation
|
|
/// of that FP value.
|
|
FCTIDZ, FCTIWZ,
|
|
|
|
/// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
|
|
/// unsigned integers.
|
|
FCTIDUZ, FCTIWUZ,
|
|
|
|
/// Reciprocal estimate instructions (unary FP ops).
|
|
FRE, FRSQRTE,
|
|
|
|
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
|
|
// three v4f32 operands and producing a v4f32 result.
|
|
VMADDFP, VNMSUBFP,
|
|
|
|
/// VPERM - The PPC VPERM Instruction.
|
|
///
|
|
VPERM,
|
|
|
|
/// The CMPB instruction (takes two operands of i32 or i64).
|
|
CMPB,
|
|
|
|
/// Hi/Lo - These represent the high and low 16-bit parts of a global
|
|
/// address respectively. These nodes have two operands, the first of
|
|
/// which must be a TargetGlobalAddress, and the second of which must be a
|
|
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
|
|
/// though these are usually folded into other nodes.
|
|
Hi, Lo,
|
|
|
|
/// The following two target-specific nodes are used for calls through
|
|
/// function pointers in the 64-bit SVR4 ABI.
|
|
|
|
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
|
|
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
|
|
/// compute an allocation on the stack.
|
|
DYNALLOC,
|
|
|
|
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
|
|
/// at function entry, used for PIC code.
|
|
GlobalBaseReg,
|
|
|
|
/// These nodes represent the 32-bit PPC shifts that operate on 6-bit
|
|
/// shift amounts. These nodes are generated by the multi-precision shift
|
|
/// code.
|
|
SRL, SRA, SHL,
|
|
|
|
/// The combination of sra[wd]i and addze used to implemented signed
|
|
/// integer division by a power of 2. The first operand is the dividend,
|
|
/// and the second is the constant shift amount (representing the
|
|
/// divisor).
|
|
SRA_ADDZE,
|
|
|
|
/// CALL - A direct function call.
|
|
/// CALL_NOP is a call with the special NOP which follows 64-bit
|
|
/// SVR4 calls.
|
|
CALL, CALL_NOP,
|
|
|
|
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
|
|
/// MTCTR instruction.
|
|
MTCTR,
|
|
|
|
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
|
|
/// BCTRL instruction.
|
|
BCTRL,
|
|
|
|
/// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
|
|
/// instruction and the TOC reload required on SVR4 PPC64.
|
|
BCTRL_LOAD_TOC,
|
|
|
|
/// Return with a flag operand, matched by 'blr'
|
|
RET_FLAG,
|
|
|
|
/// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
|
|
/// This copies the bits corresponding to the specified CRREG into the
|
|
/// resultant GPR. Bits corresponding to other CR regs are undefined.
|
|
MFOCRF,
|
|
|
|
/// Direct move from a VSX register to a GPR
|
|
MFVSR,
|
|
|
|
/// Direct move from a GPR to a VSX register (algebraic)
|
|
MTVSRA,
|
|
|
|
/// Direct move from a GPR to a VSX register (zero)
|
|
MTVSRZ,
|
|
|
|
// FIXME: Remove these once the ANDI glue bug is fixed:
|
|
/// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
|
|
/// eq or gt bit of CR0 after executing andi. x, 1. This is used to
|
|
/// implement truncation of i32 or i64 to i1.
|
|
ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
|
|
|
|
// READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
|
|
// target (returns (Lo, Hi)). It takes a chain operand.
|
|
READ_TIME_BASE,
|
|
|
|
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
|
|
EH_SJLJ_SETJMP,
|
|
|
|
// EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
|
|
EH_SJLJ_LONGJMP,
|
|
|
|
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
|
|
/// instructions. For lack of better number, we use the opcode number
|
|
/// encoding for the OPC field to identify the compare. For example, 838
|
|
/// is VCMPGTSH.
|
|
VCMP,
|
|
|
|
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
|
|
/// altivec VCMP*o instructions. For lack of better number, we use the
|
|
/// opcode number encoding for the OPC field to identify the compare. For
|
|
/// example, 838 is VCMPGTSH.
|
|
VCMPo,
|
|
|
|
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
|
|
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
|
|
/// condition register to branch on, OPC is the branch opcode to use (e.g.
|
|
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
|
|
/// an optional input flag argument.
|
|
COND_BRANCH,
|
|
|
|
/// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
|
|
/// loops.
|
|
BDNZ, BDZ,
|
|
|
|
/// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
|
|
/// towards zero. Used only as part of the long double-to-int
|
|
/// conversion sequence.
|
|
FADDRTZ,
|
|
|
|
/// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
|
|
MFFS,
|
|
|
|
/// TC_RETURN - A tail call return.
|
|
/// operand #0 chain
|
|
/// operand #1 callee (register or absolute)
|
|
/// operand #2 stack adjustment
|
|
/// operand #3 optional in flag
|
|
TC_RETURN,
|
|
|
|
/// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
|
|
CR6SET,
|
|
CR6UNSET,
|
|
|
|
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
|
|
/// on PPC32.
|
|
PPC32_GOT,
|
|
|
|
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
|
|
/// local dynamic TLS on PPC32.
|
|
PPC32_PICGOT,
|
|
|
|
/// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
|
|
/// TLS model, produces an ADDIS8 instruction that adds the GOT
|
|
/// base to sym\@got\@tprel\@ha.
|
|
ADDIS_GOT_TPREL_HA,
|
|
|
|
/// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
|
|
/// TLS model, produces a LD instruction with base register G8RReg
|
|
/// and offset sym\@got\@tprel\@l. This completes the addition that
|
|
/// finds the offset of "sym" relative to the thread pointer.
|
|
LD_GOT_TPREL_L,
|
|
|
|
/// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
|
|
/// model, produces an ADD instruction that adds the contents of
|
|
/// G8RReg to the thread pointer. Symbol contains a relocation
|
|
/// sym\@tls which is to be replaced by the thread pointer and
|
|
/// identifies to the linker that the instruction is part of a
|
|
/// TLS sequence.
|
|
ADD_TLS,
|
|
|
|
/// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds the GOT base
|
|
/// register to sym\@got\@tlsgd\@ha.
|
|
ADDIS_TLSGD_HA,
|
|
|
|
/// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
|
|
/// ADDIS_TLSGD_L_ADDR until after register assignment.
|
|
ADDI_TLSGD_L,
|
|
|
|
/// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
|
|
/// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
|
|
/// ADDIS_TLSGD_L_ADDR until after register assignment.
|
|
GET_TLS_ADDR,
|
|
|
|
/// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
|
|
/// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
|
|
/// register assignment.
|
|
ADDI_TLSGD_L_ADDR,
|
|
|
|
/// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds the GOT base
|
|
/// register to sym\@got\@tlsld\@ha.
|
|
ADDIS_TLSLD_HA,
|
|
|
|
/// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
|
|
/// ADDIS_TLSLD_L_ADDR until after register assignment.
|
|
ADDI_TLSLD_L,
|
|
|
|
/// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
|
|
/// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
|
|
/// ADDIS_TLSLD_L_ADDR until after register assignment.
|
|
GET_TLSLD_ADDR,
|
|
|
|
/// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
|
|
/// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
|
|
/// following register assignment.
|
|
ADDI_TLSLD_L_ADDR,
|
|
|
|
/// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDIS8 instruction that adds X3 to
|
|
/// sym\@dtprel\@ha.
|
|
ADDIS_DTPREL_HA,
|
|
|
|
/// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
|
|
/// model, produces an ADDI8 instruction that adds G8RReg to
|
|
/// sym\@got\@dtprel\@l.
|
|
ADDI_DTPREL_L,
|
|
|
|
/// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
|
|
/// during instruction selection to optimize a BUILD_VECTOR into
|
|
/// operations on splats. This is necessary to avoid losing these
|
|
/// optimizations due to constant folding.
|
|
VADD_SPLAT,
|
|
|
|
/// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
|
|
/// operand identifies the operating system entry point.
|
|
SC,
|
|
|
|
/// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
|
|
CLRBHRB,
|
|
|
|
/// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
|
|
/// history rolling buffer entry.
|
|
MFBHRBE,
|
|
|
|
/// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
|
|
RFEBB,
|
|
|
|
/// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
|
|
/// endian. Maps to an xxswapd instruction that corrects an lxvd2x
|
|
/// or stxvd2x instruction. The chain is necessary because the
|
|
/// sequence replaces a load and needs to provide the same number
|
|
/// of outputs.
|
|
XXSWAPD,
|
|
|
|
/// QVFPERM = This corresponds to the QPX qvfperm instruction.
|
|
QVFPERM,
|
|
|
|
/// QVGPCI = This corresponds to the QPX qvgpci instruction.
|
|
QVGPCI,
|
|
|
|
/// QVALIGNI = This corresponds to the QPX qvaligni instruction.
|
|
QVALIGNI,
|
|
|
|
/// QVESPLATI = This corresponds to the QPX qvesplati instruction.
|
|
QVESPLATI,
|
|
|
|
/// QBFLT = Access the underlying QPX floating-point boolean
|
|
/// representation.
|
|
QBFLT,
|
|
|
|
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
|
|
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
|
|
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
|
|
/// i32.
|
|
STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
|
|
|
|
/// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
|
|
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
|
|
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
|
|
/// or i32.
|
|
LBRX,
|
|
|
|
/// STFIWX - The STFIWX instruction. The first operand is an input token
|
|
/// chain, then an f64 value to store, then an address to store it to.
|
|
STFIWX,
|
|
|
|
/// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
|
|
/// load which sign-extends from a 32-bit integer value into the
|
|
/// destination 64-bit register.
|
|
LFIWAX,
|
|
|
|
/// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
|
|
/// load which zero-extends from a 32-bit integer value into the
|
|
/// destination 64-bit register.
|
|
LFIWZX,
|
|
|
|
/// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
|
|
/// Maps directly to an lxvd2x instruction that will be followed by
|
|
/// an xxswapd.
|
|
LXVD2X,
|
|
|
|
/// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
|
|
/// Maps directly to an stxvd2x instruction that will be preceded by
|
|
/// an xxswapd.
|
|
STXVD2X,
|
|
|
|
/// QBRC, CHAIN = QVLFSb CHAIN, Ptr
|
|
/// The 4xf32 load used for v4i1 constants.
|
|
QVLFSb,
|
|
|
|
/// GPRC = TOC_ENTRY GA, TOC
|
|
/// Loads the entry for GA from the TOC, where the TOC base is given by
|
|
/// the last operand.
|
|
TOC_ENTRY
|
|
};
|
|
}
|
|
|
|
/// Define some predicates that are used for node matching.
|
|
namespace PPC {
|
|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUHUM instruction.
|
|
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUWUM instruction.
|
|
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUDUM instruction.
|
|
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
|
|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG);
|
|
|
|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
|
|
/// shift amount, otherwise return -1.
|
|
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG);
|
|
|
|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a splat of a single element that is suitable for input to
|
|
/// VSPLTB/VSPLTH/VSPLTW.
|
|
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
|
|
|
|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
|
unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
|
|
|
|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
|
|
/// formed by using a vspltis[bhw] instruction of the specified element
|
|
/// size, return the constant being splatted. The ByteSize field indicates
|
|
/// the number of bytes of each element [124] -> [bhw].
|
|
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
|
|
|
|
/// If this is a qvaligni shuffle mask, return the shift
|
|
/// amount, otherwise return -1.
|
|
int isQVALIGNIShuffleMask(SDNode *N);
|
|
}
|
|
|
|
class PPCTargetLowering : public TargetLowering {
|
|
const PPCSubtarget &Subtarget;
|
|
|
|
public:
|
|
explicit PPCTargetLowering(const PPCTargetMachine &TM,
|
|
const PPCSubtarget &STI);
|
|
|
|
/// getTargetNodeName() - This method returns the name of a target specific
|
|
/// DAG node.
|
|
const char *getTargetNodeName(unsigned Opcode) const override;
|
|
|
|
MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
|
|
|
|
bool isCheapToSpeculateCttz() const override {
|
|
return true;
|
|
}
|
|
|
|
bool isCheapToSpeculateCtlz() const override {
|
|
return true;
|
|
}
|
|
|
|
/// getSetCCResultType - Return the ISD::SETCC ValueType
|
|
EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
|
|
|
|
/// Return true if target always beneficiates from combining into FMA for a
|
|
/// given value type. This must typically return false on targets where FMA
|
|
/// takes more cycles to execute than FADD.
|
|
bool enableAggressiveFMAFusion(EVT VT) const override;
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
|
|
/// can be represented as an indexed [r+r] operation. Returns false if it
|
|
/// can be more efficiently represented with [r+imm].
|
|
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// SelectAddressRegImm - Returns true if the address N can be represented
|
|
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
|
|
/// is not better represented as reg+reg. If Aligned is true, only accept
|
|
/// displacements suitable for STD and friends, i.e. multiples of 4.
|
|
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
|
|
SelectionDAG &DAG, bool Aligned) const;
|
|
|
|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
|
|
SelectionDAG &DAG) const;
|
|
|
|
Sched::Preference getSchedulingPreference(SDNode *N) const override;
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
|
|
|
|
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
|
|
std::vector<SDNode *> *Created) const override;
|
|
|
|
unsigned getRegisterByName(const char* RegName, EVT VT) const override;
|
|
|
|
void computeKnownBitsForTargetNode(const SDValue Op,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const override;
|
|
|
|
unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
|
|
|
|
Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
|
|
bool IsStore, bool IsLoad) const override;
|
|
Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
|
|
bool IsStore, bool IsLoad) const override;
|
|
|
|
MachineBasicBlock *
|
|
EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const override;
|
|
MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned AtomicSize,
|
|
unsigned BinOpcode) const;
|
|
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
bool is8bit, unsigned Opcode) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
ConstraintType
|
|
getConstraintType(const std::string &Constraint) const override;
|
|
|
|
/// Examine constraint string and operand type and determine a weight value.
|
|
/// The operand object must already have been set up with the operand type.
|
|
ConstraintWeight getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const override;
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
const std::string &Constraint,
|
|
MVT VT) const override;
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. This is the actual
|
|
/// alignment, not its logarithm.
|
|
unsigned getByValTypeAlignment(Type *Ty) const override;
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
unsigned getInlineAsmMemConstraint(
|
|
const std::string &ConstraintCode) const override {
|
|
if (ConstraintCode == "es")
|
|
return InlineAsm::Constraint_es;
|
|
else if (ConstraintCode == "o")
|
|
return InlineAsm::Constraint_o;
|
|
else if (ConstraintCode == "Q")
|
|
return InlineAsm::Constraint_Q;
|
|
else if (ConstraintCode == "Z")
|
|
return InlineAsm::Constraint_Z;
|
|
else if (ConstraintCode == "Zy")
|
|
return InlineAsm::Constraint_Zy;
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
|
|
|
|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can
|
|
/// compare a register against the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalICmpImmediate(int64_t Imm) const override;
|
|
|
|
/// isLegalAddImmediate - Return true if the specified immediate is legal
|
|
/// add immediate, that is the target has add instructions which can
|
|
/// add a register and the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalAddImmediate(int64_t Imm) const override;
|
|
|
|
/// isTruncateFree - Return true if it's free to truncate a value of
|
|
/// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
|
|
/// register X1 to i32 by referencing its sub-register R1.
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isTruncateFree(EVT VT1, EVT VT2) const override;
|
|
|
|
bool isZExtFree(SDValue Val, EVT VT2) const override;
|
|
|
|
bool isFPExtFree(EVT VT) const override;
|
|
|
|
/// \brief Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const override;
|
|
|
|
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
|
|
|
|
bool getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
unsigned Intrinsic) const override;
|
|
|
|
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
|
/// source is constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT
|
|
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
|
|
MachineFunction &MF) const override;
|
|
|
|
/// Is unaligned memory access allowed for the given type, and is it fast
|
|
/// relative to software emulation.
|
|
bool allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Align = 1,
|
|
bool *Fast = nullptr) const override;
|
|
|
|
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
|
|
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
|
|
/// expanded to FMAs when this method returns true, otherwise fmuladd is
|
|
/// expanded to fmul + fadd.
|
|
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
|
|
|
|
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
|
|
|
|
// Should we expand the build vector with shuffles?
|
|
bool
|
|
shouldExpandBuildVectorWithShuffles(EVT VT,
|
|
unsigned DefinedValues) const override;
|
|
|
|
/// createFastISel - This method returns a target-specific FastISel object,
|
|
/// or null if the target does not support "fast" instruction selection.
|
|
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo) const override;
|
|
|
|
/// \brief Returns true if an argument of type Ty needs to be passed in a
|
|
/// contiguous block of registers in calling convention CallConv.
|
|
bool functionArgumentNeedsConsecutiveRegisters(
|
|
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
|
|
// We support any array type as "consecutive" block in the parameter
|
|
// save area. The element type defines the alignment requirement and
|
|
// whether the argument should go in GPRs, FPRs, or VRs if available.
|
|
//
|
|
// Note that clang uses this capability both to implement the ELFv2
|
|
// homogeneous float/vector aggregate ABI, and to avoid having to use
|
|
// "byval" when passing aggregates that might fully fit in registers.
|
|
return Ty->isArrayTy();
|
|
}
|
|
|
|
private:
|
|
|
|
struct ReuseLoadInfo {
|
|
SDValue Ptr;
|
|
SDValue Chain;
|
|
SDValue ResChain;
|
|
MachinePointerInfo MPI;
|
|
bool IsInvariant;
|
|
unsigned Alignment;
|
|
AAMDNodes AAInfo;
|
|
const MDNode *Ranges;
|
|
|
|
ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
|
|
};
|
|
|
|
bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
|
|
SelectionDAG &DAG,
|
|
ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
|
|
void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
|
|
SelectionDAG &DAG) const;
|
|
|
|
void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
|
|
SelectionDAG &DAG, SDLoc dl) const;
|
|
SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
|
|
SDLoc dl) const;
|
|
SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
|
|
SDLoc dl) const;
|
|
|
|
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
|
|
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
|
|
|
|
bool
|
|
IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
|
|
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
|
|
int SPDiff,
|
|
SDValue Chain,
|
|
SDValue &LROpOut,
|
|
SDValue &FPOpOut,
|
|
bool isDarwinABI,
|
|
SDLoc dl) const;
|
|
|
|
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const;
|
|
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const;
|
|
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const;
|
|
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const;
|
|
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const;
|
|
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
|
|
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
|
|
bool isVarArg, bool IsPatchPoint,
|
|
SelectionDAG &DAG,
|
|
SmallVector<std::pair<unsigned, SDValue>, 8>
|
|
&RegsToPass,
|
|
SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
|
|
SDValue &Callee,
|
|
int SPDiff, unsigned NumBytes,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
|
|
SDValue
|
|
LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
SDValue
|
|
LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
bool
|
|
CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const override;
|
|
|
|
SDValue
|
|
LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc dl, SelectionDAG &DAG) const override;
|
|
|
|
SDValue
|
|
extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
|
|
SDValue ArgVal, SDLoc dl) const;
|
|
|
|
SDValue
|
|
LowerFormalArguments_Darwin(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue
|
|
LowerFormalArguments_64SVR4(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue
|
|
LowerFormalArguments_32SVR4(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const;
|
|
|
|
SDValue
|
|
createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
|
|
SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
|
|
SelectionDAG &DAG, SDLoc dl) const;
|
|
|
|
SDValue
|
|
LowerCall_Darwin(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg, bool isTailCall, bool IsPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
SDValue
|
|
LowerCall_64SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg, bool isTailCall, bool IsPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
SDValue
|
|
LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
|
|
bool isVarArg, bool isTailCall, bool IsPatchPoint,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
ImmutableCallSite *CS) const;
|
|
|
|
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps,
|
|
bool &UseOneConstNR) const override;
|
|
SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps) const override;
|
|
bool combineRepeatedFPDivisors(unsigned NumUsers) const override;
|
|
|
|
CCAssignFn *useFastISelCCs(unsigned Flag) const;
|
|
};
|
|
|
|
namespace PPC {
|
|
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo);
|
|
}
|
|
|
|
bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
}
|
|
|
|
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
|