mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
3311a1f8f0
If a MachineInstr doesn't have a memoperand but has an opcode that is known to load or store, assume its memory reference may alias *anything*, including stack slots which the compiler completely controls. To partially compensate for this, teach the ScheduleDAG building code to do basic getUnderlyingValue analysis. This greatly reduces the number of instructions that require restrictive dependencies. This code will need to be revisited when we start doing real alias analysis, but it should suffice for now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63370 91177308-0d34-0410-b5e6-96231b3b80d8
536 lines
21 KiB
C++
536 lines
21 KiB
C++
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
|
|
// of MachineInstrs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sched-instrs"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtarget.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN LoopDependencies {
|
|
const MachineLoopInfo &MLI;
|
|
const MachineDominatorTree &MDT;
|
|
|
|
public:
|
|
typedef std::map<unsigned, std::pair<const MachineOperand *, unsigned> >
|
|
LoopDeps;
|
|
LoopDeps Deps;
|
|
|
|
LoopDependencies(const MachineLoopInfo &mli,
|
|
const MachineDominatorTree &mdt) :
|
|
MLI(mli), MDT(mdt) {}
|
|
|
|
void VisitLoop(const MachineLoop *Loop) {
|
|
Deps.clear();
|
|
MachineBasicBlock *Header = Loop->getHeader();
|
|
SmallSet<unsigned, 8> LoopLiveIns;
|
|
for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(),
|
|
LE = Header->livein_end(); LI != LE; ++LI)
|
|
LoopLiveIns.insert(*LI);
|
|
|
|
const MachineDomTreeNode *Node = MDT.getNode(Header);
|
|
const MachineBasicBlock *MBB = Node->getBlock();
|
|
assert(Loop->contains(MBB) &&
|
|
"Loop does not contain header!");
|
|
VisitRegion(Node, MBB, Loop, LoopLiveIns);
|
|
}
|
|
|
|
private:
|
|
void VisitRegion(const MachineDomTreeNode *Node,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineLoop *Loop,
|
|
const SmallSet<unsigned, 8> &LoopLiveIns) {
|
|
unsigned Count = 0;
|
|
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ++I, ++Count) {
|
|
const MachineInstr *MI = I;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (LoopLiveIns.count(MOReg))
|
|
Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count)));
|
|
}
|
|
}
|
|
|
|
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
|
|
for (std::vector<MachineDomTreeNode*>::const_iterator I =
|
|
Children.begin(), E = Children.end(); I != E; ++I) {
|
|
const MachineDomTreeNode *ChildNode = *I;
|
|
MachineBasicBlock *ChildBlock = ChildNode->getBlock();
|
|
if (Loop->contains(ChildBlock))
|
|
VisitRegion(ChildNode, ChildBlock, Loop, LoopLiveIns);
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
|
|
const MachineLoopInfo &mli,
|
|
const MachineDominatorTree &mdt)
|
|
: ScheduleDAG(mf), MLI(mli), MDT(mdt) {}
|
|
|
|
/// getOpcode - If this is an Instruction or a ConstantExpr, return the
|
|
/// opcode value. Otherwise return UserOp1.
|
|
static unsigned getOpcode(const Value *V) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
return I->getOpcode();
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
|
return CE->getOpcode();
|
|
// Use UserOp1 to mean there's no opcode.
|
|
return Instruction::UserOp1;
|
|
}
|
|
|
|
/// getUnderlyingObjectFromInt - This is the function that does the work of
|
|
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
|
|
static const Value *getUnderlyingObjectFromInt(const Value *V) {
|
|
do {
|
|
if (const User *U = dyn_cast<User>(V)) {
|
|
// If we find a ptrtoint, we can transfer control back to the
|
|
// regular getUnderlyingObjectFromInt.
|
|
if (getOpcode(U) == Instruction::PtrToInt)
|
|
return U->getOperand(0);
|
|
// If we find an add of a constant or a multiplied value, it's
|
|
// likely that the other operand will lead us to the base
|
|
// object. We don't have to worry about the case where the
|
|
// object address is somehow being computed bt the multiply,
|
|
// because our callers only care when the result is an
|
|
// identifibale object.
|
|
if (getOpcode(U) != Instruction::Add ||
|
|
(!isa<ConstantInt>(U->getOperand(1)) &&
|
|
getOpcode(U->getOperand(1)) != Instruction::Mul))
|
|
return V;
|
|
V = U->getOperand(0);
|
|
} else {
|
|
return V;
|
|
}
|
|
assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
|
|
} while (1);
|
|
}
|
|
|
|
/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
|
|
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
|
|
static const Value *getUnderlyingObject(const Value *V) {
|
|
// First just call Value::getUnderlyingObject to let it do what it does.
|
|
do {
|
|
V = V->getUnderlyingObject();
|
|
// If it found an inttoptr, use special code to continue climing.
|
|
if (getOpcode(V) != Instruction::IntToPtr)
|
|
break;
|
|
const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
|
|
// If that succeeded in finding a pointer, continue the search.
|
|
if (!isa<PointerType>(O->getType()))
|
|
break;
|
|
V = O;
|
|
} while (1);
|
|
return V;
|
|
}
|
|
|
|
/// getUnderlyingObjectForInstr - If this machine instr has memory reference
|
|
/// information and it can be tracked to a normal reference to a known
|
|
/// object, return the Value for that object. Otherwise return null.
|
|
static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
|
|
if (!MI->hasOneMemOperand() ||
|
|
!MI->memoperands_begin()->getValue() ||
|
|
MI->memoperands_begin()->isVolatile())
|
|
return 0;
|
|
|
|
const Value *V = MI->memoperands_begin()->getValue();
|
|
if (!V)
|
|
return 0;
|
|
|
|
V = getUnderlyingObject(V);
|
|
if (!isa<PseudoSourceValue>(V) && !isIdentifiedObject(V))
|
|
return 0;
|
|
|
|
return V;
|
|
}
|
|
|
|
void ScheduleDAGInstrs::BuildSchedGraph() {
|
|
SUnits.reserve(BB->size());
|
|
|
|
// We build scheduling units by walking a block's instruction list from bottom
|
|
// to top.
|
|
|
|
// Remember where a generic side-effecting instruction is as we procede. If
|
|
// ChainMMO is null, this is assumed to have arbitrary side-effects. If
|
|
// ChainMMO is non-null, then Chain makes only a single memory reference.
|
|
SUnit *Chain = 0;
|
|
MachineMemOperand *ChainMMO = 0;
|
|
|
|
// Memory references to specific known memory locations are tracked so that
|
|
// they can be given more precise dependencies.
|
|
std::map<const Value *, SUnit *> MemDefs;
|
|
std::map<const Value *, std::vector<SUnit *> > MemUses;
|
|
|
|
// If we have an SUnit which is representing a terminator instruction, we
|
|
// can use it as a place-holder successor for inter-block dependencies.
|
|
SUnit *Terminator = 0;
|
|
|
|
// Terminators can perform control transfers, we we need to make sure that
|
|
// all the work of the block is done before the terminator. Labels can
|
|
// mark points of interest for various types of meta-data (eg. EH data),
|
|
// and we need to make sure nothing is scheduled around them.
|
|
SUnit *SchedulingBarrier = 0;
|
|
|
|
LoopDependencies LoopRegs(MLI, MDT);
|
|
|
|
// Track which regs are live into a loop, to help guide back-edge-aware
|
|
// scheduling.
|
|
SmallSet<unsigned, 8> LoopLiveInRegs;
|
|
if (MachineLoop *ML = MLI.getLoopFor(BB))
|
|
if (BB == ML->getLoopLatch()) {
|
|
MachineBasicBlock *Header = ML->getHeader();
|
|
for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
|
|
E = Header->livein_end(); I != E; ++I)
|
|
LoopLiveInRegs.insert(*I);
|
|
LoopRegs.VisitLoop(ML);
|
|
}
|
|
|
|
// Check to see if the scheduler cares about latencies.
|
|
bool UnitLatencies = ForceUnitLatencies();
|
|
|
|
// Ask the target if address-backscheduling is desirable, and if so how much.
|
|
unsigned SpecialAddressLatency =
|
|
TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();
|
|
|
|
for (MachineBasicBlock::iterator MII = End, MIE = Begin;
|
|
MII != MIE; --MII) {
|
|
MachineInstr *MI = prior(MII);
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
SUnit *SU = NewSUnit(MI);
|
|
|
|
// Assign the Latency field of SU using target-provided information.
|
|
if (UnitLatencies)
|
|
SU->Latency = 1;
|
|
else
|
|
ComputeLatency(SU);
|
|
|
|
// Add register-based dependencies (data, anti, and output).
|
|
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
|
|
const MachineOperand &MO = MI->getOperand(j);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
|
|
assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
|
|
std::vector<SUnit *> &UseList = Uses[Reg];
|
|
std::vector<SUnit *> &DefList = Defs[Reg];
|
|
// Optionally add output and anti dependencies.
|
|
// TODO: Using a latency of 1 here assumes there's no cost for
|
|
// reusing registers.
|
|
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
|
|
for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
|
|
SUnit *DefSU = DefList[i];
|
|
if (DefSU != SU &&
|
|
(Kind != SDep::Output || !MO.isDead() ||
|
|
!DefSU->getInstr()->registerDefIsDead(Reg)))
|
|
DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
|
|
}
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
std::vector<SUnit *> &DefList = Defs[*Alias];
|
|
for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
|
|
SUnit *DefSU = DefList[i];
|
|
if (DefSU != SU &&
|
|
(Kind != SDep::Output || !MO.isDead() ||
|
|
!DefSU->getInstr()->registerDefIsDead(Reg)))
|
|
DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
|
|
}
|
|
}
|
|
|
|
if (MO.isDef()) {
|
|
// Add any data dependencies.
|
|
unsigned DataLatency = SU->Latency;
|
|
for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
|
|
SUnit *UseSU = UseList[i];
|
|
if (UseSU != SU) {
|
|
unsigned LDataLatency = DataLatency;
|
|
// Optionally add in a special extra latency for nodes that
|
|
// feed addresses.
|
|
// TODO: Do this for register aliases too.
|
|
if (SpecialAddressLatency != 0 && !UnitLatencies) {
|
|
MachineInstr *UseMI = UseSU->getInstr();
|
|
const TargetInstrDesc &UseTID = UseMI->getDesc();
|
|
int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
|
|
assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
|
|
if ((UseTID.mayLoad() || UseTID.mayStore()) &&
|
|
(unsigned)RegUseIndex < UseTID.getNumOperands() &&
|
|
UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
|
|
LDataLatency += SpecialAddressLatency;
|
|
}
|
|
UseSU->addPred(SDep(SU, SDep::Data, LDataLatency, Reg));
|
|
}
|
|
}
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
|
std::vector<SUnit *> &UseList = Uses[*Alias];
|
|
for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
|
|
SUnit *UseSU = UseList[i];
|
|
if (UseSU != SU)
|
|
UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias));
|
|
}
|
|
}
|
|
|
|
// If a def is going to wrap back around to the top of the loop,
|
|
// backschedule it.
|
|
// TODO: Blocks in loops without terminators can benefit too.
|
|
if (!UnitLatencies && Terminator && DefList.empty()) {
|
|
LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
|
|
if (I != LoopRegs.Deps.end()) {
|
|
const MachineOperand *UseMO = I->second.first;
|
|
unsigned Count = I->second.second;
|
|
const MachineInstr *UseMI = UseMO->getParent();
|
|
unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
|
|
const TargetInstrDesc &UseTID = UseMI->getDesc();
|
|
// TODO: If we knew the total depth of the region here, we could
|
|
// handle the case where the whole loop is inside the region but
|
|
// is large enough that the isScheduleHigh trick isn't needed.
|
|
if (UseMOIdx < UseTID.getNumOperands()) {
|
|
// Currently, we only support scheduling regions consisting of
|
|
// single basic blocks. Check to see if the instruction is in
|
|
// the same region by checking to see if it has the same parent.
|
|
if (UseMI->getParent() != MI->getParent()) {
|
|
unsigned Latency = SU->Latency;
|
|
if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
|
|
Latency += SpecialAddressLatency;
|
|
// This is a wild guess as to the portion of the latency which
|
|
// will be overlapped by work done outside the current
|
|
// scheduling region.
|
|
Latency -= std::min(Latency, Count);
|
|
// Add the artifical edge.
|
|
Terminator->addPred(SDep(SU, SDep::Order, Latency,
|
|
/*Reg=*/0, /*isNormalMemory=*/false,
|
|
/*isMustAlias=*/false,
|
|
/*isArtificial=*/true));
|
|
} else if (SpecialAddressLatency > 0 &&
|
|
UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
|
|
// The entire loop body is within the current scheduling region
|
|
// and the latency of this operation is assumed to be greater
|
|
// than the latency of the loop.
|
|
// TODO: Recursively mark data-edge predecessors as
|
|
// isScheduleHigh too.
|
|
SU->isScheduleHigh = true;
|
|
}
|
|
}
|
|
LoopRegs.Deps.erase(I);
|
|
}
|
|
}
|
|
|
|
UseList.clear();
|
|
if (!MO.isDead())
|
|
DefList.clear();
|
|
DefList.push_back(SU);
|
|
} else {
|
|
UseList.push_back(SU);
|
|
}
|
|
}
|
|
|
|
// Add chain dependencies.
|
|
// Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
|
|
// after stack slots are lowered to actual addresses.
|
|
// TODO: Use an AliasAnalysis and do real alias-analysis queries, and
|
|
// produce more precise dependence information.
|
|
if (TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) {
|
|
new_chain:
|
|
// This is the conservative case. Add dependencies on all memory
|
|
// references.
|
|
if (Chain)
|
|
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
Chain = SU;
|
|
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
|
|
PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
PendingLoads.clear();
|
|
for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
|
|
E = MemDefs.end(); I != E; ++I) {
|
|
I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
I->second = SU;
|
|
}
|
|
for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
|
|
MemUses.begin(), E = MemUses.end(); I != E; ++I) {
|
|
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
|
|
I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
I->second.clear();
|
|
}
|
|
// See if it is known to just have a single memory reference.
|
|
MachineInstr *ChainMI = Chain->getInstr();
|
|
const TargetInstrDesc &ChainTID = ChainMI->getDesc();
|
|
if (!ChainTID.isCall() && !ChainTID.isTerminator() &&
|
|
!ChainTID.hasUnmodeledSideEffects() &&
|
|
ChainMI->hasOneMemOperand() &&
|
|
!ChainMI->memoperands_begin()->isVolatile() &&
|
|
ChainMI->memoperands_begin()->getValue())
|
|
// We know that the Chain accesses one specific memory location.
|
|
ChainMMO = &*ChainMI->memoperands_begin();
|
|
else
|
|
// Unknown memory accesses. Assume the worst.
|
|
ChainMMO = 0;
|
|
} else if (TID.mayStore()) {
|
|
if (const Value *V = getUnderlyingObjectForInstr(MI)) {
|
|
// A store to a specific PseudoSourceValue. Add precise dependencies.
|
|
// Handle the def in MemDefs, if there is one.
|
|
std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
|
|
if (I != MemDefs.end()) {
|
|
I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
|
|
/*isNormalMemory=*/true));
|
|
I->second = SU;
|
|
} else {
|
|
MemDefs[V] = SU;
|
|
}
|
|
// Handle the uses in MemUses, if there are any.
|
|
std::map<const Value *, std::vector<SUnit *> >::iterator J =
|
|
MemUses.find(V);
|
|
if (J != MemUses.end()) {
|
|
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
|
|
J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
|
|
/*isNormalMemory=*/true));
|
|
J->second.clear();
|
|
}
|
|
// Add dependencies from all the PendingLoads, since without
|
|
// memoperands we must assume they alias anything.
|
|
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
|
|
PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
// Add a general dependence too, if needed.
|
|
if (Chain)
|
|
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
} else
|
|
// Treat all other stores conservatively.
|
|
goto new_chain;
|
|
} else if (TID.mayLoad()) {
|
|
if (TII->isInvariantLoad(MI)) {
|
|
// Invariant load, no chain dependencies needed!
|
|
} else if (const Value *V = getUnderlyingObjectForInstr(MI)) {
|
|
// A load from a specific PseudoSourceValue. Add precise dependencies.
|
|
std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
|
|
if (I != MemDefs.end())
|
|
I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
|
|
/*isNormalMemory=*/true));
|
|
MemUses[V].push_back(SU);
|
|
|
|
// Add a general dependence too, if needed.
|
|
if (Chain && (!ChainMMO ||
|
|
(ChainMMO->isStore() || ChainMMO->isVolatile())))
|
|
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
} else if (MI->hasVolatileMemoryRef()) {
|
|
// Treat volatile loads conservatively. Note that this includes
|
|
// cases where memoperand information is unavailable.
|
|
goto new_chain;
|
|
} else {
|
|
// A normal load. Depend on the general chain, as well as on
|
|
// all stores. In the absense of MachineMemOperand information,
|
|
// we can't even assume that the load doesn't alias well-behaved
|
|
// memory locations.
|
|
if (Chain)
|
|
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
|
|
E = MemDefs.end(); I != E; ++I)
|
|
I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
PendingLoads.push_back(SU);
|
|
}
|
|
}
|
|
|
|
// Add chain edges from terminators and labels to ensure that no
|
|
// instructions are scheduled past them.
|
|
if (SchedulingBarrier && SU->Succs.empty())
|
|
SchedulingBarrier->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
// If we encounter a mid-block label, we need to go back and add
|
|
// dependencies on SUnits we've already processed to prevent the
|
|
// label from moving downward.
|
|
if (MI->isLabel())
|
|
for (SUnit *I = SU; I != &SUnits[0]; --I) {
|
|
SUnit *SuccSU = SU-1;
|
|
SuccSU->addPred(SDep(SU, SDep::Order, SU->Latency));
|
|
MachineInstr *SuccMI = SuccSU->getInstr();
|
|
if (SuccMI->getDesc().isTerminator() || SuccMI->isLabel())
|
|
break;
|
|
}
|
|
// If this instruction obstructs all scheduling, remember it.
|
|
if (TID.isTerminator() || MI->isLabel())
|
|
SchedulingBarrier = SU;
|
|
// If this instruction is a terminator, remember it.
|
|
if (TID.isTerminator())
|
|
Terminator = SU;
|
|
}
|
|
|
|
for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
|
|
Defs[i].clear();
|
|
Uses[i].clear();
|
|
}
|
|
PendingLoads.clear();
|
|
}
|
|
|
|
void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
|
|
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
|
|
|
|
// Compute the latency for the node. We use the sum of the latencies for
|
|
// all nodes flagged together into this SUnit.
|
|
SU->Latency =
|
|
InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
|
|
|
|
// Simplistic target-independent heuristic: assume that loads take
|
|
// extra time.
|
|
if (InstrItins.isEmpty())
|
|
if (SU->getInstr()->getDesc().mayLoad())
|
|
SU->Latency += 2;
|
|
}
|
|
|
|
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
|
|
SU->getInstr()->dump();
|
|
}
|
|
|
|
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
|
|
std::string s;
|
|
raw_string_ostream oss(s);
|
|
SU->getInstr()->print(oss);
|
|
return oss.str();
|
|
}
|
|
|
|
// EmitSchedule - Emit the machine code in scheduled order.
|
|
MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
|
|
// For MachineInstr-based scheduling, we're rescheduling the instructions in
|
|
// the block, so start by removing them from the block.
|
|
while (Begin != End) {
|
|
MachineBasicBlock::iterator I = Begin;
|
|
++Begin;
|
|
BB->remove(I);
|
|
}
|
|
|
|
// Then re-insert them according to the given schedule.
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
SUnit *SU = Sequence[i];
|
|
if (!SU) {
|
|
// Null SUnit* is a noop.
|
|
EmitNoop();
|
|
continue;
|
|
}
|
|
|
|
BB->insert(End, SU->getInstr());
|
|
}
|
|
|
|
return BB;
|
|
}
|