llvm-6502/lib/Target/Mips/MipsInstrFPU.td
Bruno Cardoso Lopes 7b76da145b Fixe typos and 80 column size problems
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53272 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-09 04:45:36 +00:00

298 lines
13 KiB
C++

//===- MipsInstrFPU.td - Mips FPU Instruction Information -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
// - 32 64-bit registers (default mode)
// - 16 even 32-bit registers (32-bit compatible mode) for
// single and double access.
// * 32bit fp:
// - 16 even 32-bit registers - single and double (aliased)
// - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//
// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisSameAs<0, 2>, SDTCisInt<0>,
SDTCisVT<1, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<0>,
SDTCisInt<2>]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
[SDNPHasChain]>;
def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp>;
// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand" in
def condcode : Operand<i32>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
def In32BitMode : Predicate<"!Subtarget.isFP64bit()">;
def In64BitMode : Predicate<"Subtarget.isFP64bit()">;
def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address this in one shot.
// SO32 - single precision only, uses all 32 32-bit fp registers
// require FGR32 Register Class and IsSingleFloat
// AS32 - 16 even fp registers are used for single precision
// require AFGR32 Register Class and In32BitMode
// S64 - 32 64 bit registers are used to hold 32-bit single precision values.
// require FGR64 Register Class and In64BitMode
// D32 - 16 even fp registers are used for double precision
// require AFGR64 Register Class and In32BitMode
// D64 - 32 64 bit registers are used to hold 64-bit double precision values.
// require FGR64 Register Class and In64BitMode
//
// Only SO32, AS32 and D32 are supported right now.
//
//===----------------------------------------------------------------------===//
multiclass FFR1_1<bits<6> funct, string asmstr>
{
def _SO32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
!strconcat(asmstr, ".s $fd, $fs"), []>, Requires<[IsSingleFloat]>;
def _AS32 : FFR<0x11, funct, 0x0, (outs AFGR32:$fd), (ins AFGR32:$fs),
!strconcat(asmstr, ".s $fd, $fs"), []>, Requires<[In32BitMode]>;
def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
!strconcat(asmstr, ".d $fd, $fs"), []>, Requires<[In32BitMode]>;
}
multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp>
{
def _SO32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
!strconcat(asmstr, ".s $fd, $fs"),
[(set FGR32:$fd, (FOp FGR32:$fs))]>, Requires<[IsSingleFloat]>;
def _AS32 : FFR<0x11, funct, 0x0, (outs AFGR32:$fd), (ins AFGR32:$fs),
!strconcat(asmstr, ".s $fd, $fs"),
[(set AFGR32:$fd, (FOp AFGR32:$fs))]>, Requires<[In32BitMode]>;
def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
!strconcat(asmstr, ".d $fd, $fs"),
[(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
}
class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc,
RegisterClass RcDst, string asmstr>:
FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs),
!strconcat(asmstr, " $fd, $fs"), []>;
multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp> {
def _SO32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd),
(ins FGR32:$fs, FGR32:$ft),
!strconcat(asmstr, ".s $fd, $fs, $ft"),
[(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>,
Requires<[IsSingleFloat]>;
def _AS32 : FFR<0x11, funct, 0x0, (outs AFGR32:$fd),
(ins AFGR32:$fs, AFGR32:$ft),
!strconcat(asmstr, ".s $fd, $fs, $ft"),
[(set AFGR32:$fd, (FOp AFGR32:$fs, AFGR32:$ft))]>,
Requires<[In32BitMode]>;
def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd),
(ins AFGR64:$fs, AFGR64:$ft),
!strconcat(asmstr, ".d $fd, $fs, $ft"),
[(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
Requires<[In32BitMode]>;
}
//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
let ft = 0 in {
defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
defm CEIL_W : FFR1_1<0b001110, "ceil.w">;
defm ROUND_W : FFR1_1<0b001100, "round.w">;
defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
defm CVTW : FFR1_1<0b100100, "cvt.w">;
defm FMOV : FFR1_1<0b000110, "mov">;
defm FABS : FFR1_2<0b000101, "abs", fabs>;
defm FNEG : FFR1_2<0b000111, "neg", fneg>;
defm FSQRT : FFR1_2<0b000100, "sqrt", fsqrt>;
let Predicates = [IsNotSingleFloat] in {
/// Ceil to long signed integer
def CEIL_LS : FFR1_3<0b001010, 0x0, AFGR32, AFGR32, "ceil.l">;
def CEIL_LD : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;
/// Round to long signed integer
def ROUND_LS : FFR1_3<0b001000, 0x0, AFGR32, AFGR32, "round.l">;
def ROUND_LD : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;
/// Floor to long signed integer
def FLOOR_LS : FFR1_3<0b001011, 0x0, AFGR32, AFGR32, "floor.l">;
def FLOOR_LD : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;
/// Trunc to long signed integer
def TRUNC_LS : FFR1_3<0b001001, 0x0, AFGR32, AFGR32, "trunc.l">;
def TRUNC_LD : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;
/// Convert to long signed integer
def CVTL_S : FFR1_3<0b100101, 0x0, AFGR32, AFGR32, "cvt.l">;
def CVTL_D : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">;
/// Convert to Double Precison
def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">;
def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">;
def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">;
/// Convert to Single Precison
def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">;
}
/// Convert to Single Precison
def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32, FGR32, "cvt.s.w">,
Requires<[IsSingleFloat]>;
}
// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.
let fd = 0 in {
/// Move Control Registers From/To CPU Registers
///def CFC1 : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins FGR32:$fs),
/// "cfc1 $rt, $fs", []>;
///def CTC1 : FFR<0x11, 0x0, 0x6, (outs CPURegs:$rt), (ins FGR32:$fs),
/// "ctc1 $rt, $fs", []>;
///
///def CFC1A : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins AFGR32:$fs),
/// "cfc1 $rt, $fs", []>;
///def CTC1A : FFR<0x11, 0x0, 0x6, (outs CPURegs:$rt), (ins AFGR32:$fs),
/// "ctc1 $rt, $fs", []>;
def MFC1 : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
"mfc1 $rt, $fs", []>;
def MTC1 : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
"mtc1 $fs, $rt", []>;
def MFC1A : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins AFGR32:$fs),
"mfc1 $rt, $fs", []>;
def MTC1A : FFR<0x11, 0x00, 0x04, (outs AFGR32:$fs), (ins CPURegs:$rt),
"mtc1 $fs, $rt", []>;
}
/// Floating Point Memory Instructions
let Predicates = [IsNotSingleFloat] in {
def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
"ldc1 $ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
"sdc1 $ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
}
// LWC1 and SWC1 can always be emited with odd registers.
def LWC1 : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
[(set FGR32:$ft, (load addr:$addr))]>;
def SWC1 : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr), "swc1 $ft, $addr",
[(store FGR32:$ft, addr:$addr)]>;
def LWC1A : FFI<0b110001, (outs AFGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
[(set AFGR32:$ft, (load addr:$addr))]>;
def SWC1A : FFI<0b111001, (outs), (ins AFGR32:$ft, mem:$addr),
"swc1 $ft, $addr", [(store AFGR32:$ft, addr:$addr)]>;
/// Floating-point Aritmetic
defm FADD : FFR1_4<0x10, "add", fadd>;
defm FDIV : FFR1_4<0x03, "div", fdiv>;
defm FMUL : FFR1_4<0x02, "mul", fmul>;
defm FSUB : FFR1_4<0x01, "sub", fsub>;
//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;
/// Floating Point Branch of False/True (Likely)
let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in {
class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (ops),
(ins brtarget:$dst), !strconcat(asmstr, " $dst"),
[(MipsFPBrcond op, bb:$dst, FCR31)]>;
}
def BC1F : FBRANCH<MIPS_BRANCH_F, "bc1f">;
def BC1T : FBRANCH<MIPS_BRANCH_T, "bc1t">;
def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;
//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_FCOND_F : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
def MIPS_FCOND_EQ : PatLeaf<(i32 2)>;
def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
/// Floating Point Compare
let hasDelaySlot = 1, Defs=[FCR31] in {
//multiclass FCC1_1<RegisterClass RC>
def FCMP_SO32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
"c.$cc.s $fs $ft", [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc),
(implicit FCR31)]>, Requires<[IsSingleFloat]>;
def FCMP_AS32 : FCC<0x0, (outs), (ins AFGR32:$fs, AFGR32:$ft, condcode:$cc),
"c.$cc.s $fs $ft", [(MipsFPCmp AFGR32:$fs, AFGR32:$ft, imm:$cc),
(implicit FCR31)]>, Requires<[In32BitMode]>;
def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
"c.$cc.d $fs $ft", [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc),
(implicit FCR31)]>, Requires<[In32BitMode]>;
}
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_SO32 FGR32:$src))>;
def : Pat<(i32 (fp_to_sint AFGR32:$src)), (MFC1 (TRUNC_W_AS32 AFGR32:$src))>;