llvm-6502/include/llvm/Analysis/PHITransAddr.h
Chandler Carruth 5a9cd4d44e [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225131 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-04 12:03:27 +00:00

127 lines
4.8 KiB
C++

//===- PHITransAddr.h - PHI Translation for Addresses -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the PHITransAddr class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_PHITRANSADDR_H
#define LLVM_ANALYSIS_PHITRANSADDR_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Instruction.h"
namespace llvm {
class AssumptionCache;
class DominatorTree;
class DataLayout;
class TargetLibraryInfo;
/// PHITransAddr - An address value which tracks and handles phi translation.
/// As we walk "up" the CFG through predecessors, we need to ensure that the
/// address we're tracking is kept up to date. For example, if we're analyzing
/// an address of "&A[i]" and walk through the definition of 'i' which is a PHI
/// node, we *must* phi translate i to get "&A[j]" or else we will analyze an
/// incorrect pointer in the predecessor block.
///
/// This is designed to be a relatively small object that lives on the stack and
/// is copyable.
///
class PHITransAddr {
/// Addr - The actual address we're analyzing.
Value *Addr;
/// The DataLayout we are playing with if known, otherwise null.
const DataLayout *DL;
/// TLI - The target library info if known, otherwise null.
const TargetLibraryInfo *TLI;
/// A cache of @llvm.assume calls used by SimplifyInstruction.
AssumptionCache *AC;
/// InstInputs - The inputs for our symbolic address.
SmallVector<Instruction*, 4> InstInputs;
public:
PHITransAddr(Value *addr, const DataLayout *DL, AssumptionCache *AC)
: Addr(addr), DL(DL), TLI(nullptr), AC(AC) {
// If the address is an instruction, the whole thing is considered an input.
if (Instruction *I = dyn_cast<Instruction>(Addr))
InstInputs.push_back(I);
}
Value *getAddr() const { return Addr; }
/// NeedsPHITranslationFromBlock - Return true if moving from the specified
/// BasicBlock to its predecessors requires PHI translation.
bool NeedsPHITranslationFromBlock(BasicBlock *BB) const {
// We do need translation if one of our input instructions is defined in
// this block.
for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
if (InstInputs[i]->getParent() == BB)
return true;
return false;
}
/// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
/// if we have some hope of doing it. This should be used as a filter to
/// avoid calling PHITranslateValue in hopeless situations.
bool IsPotentiallyPHITranslatable() const;
/// PHITranslateValue - PHI translate the current address up the CFG from
/// CurBB to Pred, updating our state to reflect any needed changes. If the
/// dominator tree DT is non-null, the translated value must dominate
/// PredBB. This returns true on failure and sets Addr to null.
bool PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
const DominatorTree *DT);
/// PHITranslateWithInsertion - PHI translate this value into the specified
/// predecessor block, inserting a computation of the value if it is
/// unavailable.
///
/// All newly created instructions are added to the NewInsts list. This
/// returns null on failure.
///
Value *PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
const DominatorTree &DT,
SmallVectorImpl<Instruction*> &NewInsts);
void dump() const;
/// Verify - Check internal consistency of this data structure. If the
/// structure is valid, it returns true. If invalid, it prints errors and
/// returns false.
bool Verify() const;
private:
Value *PHITranslateSubExpr(Value *V, BasicBlock *CurBB, BasicBlock *PredBB,
const DominatorTree *DT);
/// InsertPHITranslatedSubExpr - Insert a computation of the PHI translated
/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
/// block. All newly created instructions are added to the NewInsts list.
/// This returns null on failure.
///
Value *InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
BasicBlock *PredBB, const DominatorTree &DT,
SmallVectorImpl<Instruction*> &NewInsts);
/// AddAsInput - If the specified value is an instruction, add it as an input.
Value *AddAsInput(Value *V) {
// If V is an instruction, it is now an input.
if (Instruction *VI = dyn_cast<Instruction>(V))
InstInputs.push_back(VI);
return V;
}
};
} // end namespace llvm
#endif