mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-07 14:33:15 +00:00
The zEC12 provides the transactional-execution facility. This is exposed to users via a set of builtin routines on other compilers. This patch adds LLVM support to enable those builtins. In partciular, the patch: - adds the transactional-execution and processor-assist facilities - adds MC support for all instructions provided by those facilities - adds LLVM intrinsics for those instructions and hooks them up for CodeGen - adds CodeGen support to optimize CC return value checking Since this is first use of target-specific intrinsics on the platform, the patch creates the include/llvm/IR/IntrinsicsSystemZ.td file and hooks it up in Intrinsics.td. I've also changed Triple::getArchTypePrefix to return "s390" instead of "systemz", since the naming convention for GCC intrinsics uses "s390" on the platform, and it neemed more straight- forward to use the same convention for LLVM IR intrinsics. An associated clang patch makes the intrinsics (and command line switches) available at the source-language level. For reference, the transactional-execution instructions are documented in the z/Architecture Principles of Operation for the zEC12: http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR009.pdf The associated builtins are documented in the GCC manual: http://gcc.gnu.org/onlinedocs/gcc/S_002f390-System-z-Built-in-Functions.html Index: llvm-head/lib/Target/SystemZ/SystemZOperators.td =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZOperators.td +++ llvm-head/lib/Target/SystemZ/SystemZOperators.td @@ -79,6 +79,9 @@ def SDT_ZI32Intrinsic : SDTypeProf def SDT_ZPrefetch : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>; +def SDT_ZTBegin : SDTypeProfile<0, 2, + [SDTCisPtrTy<0>, + SDTCisVT<1, i32>]>; //===----------------------------------------------------------------------===// // Node definitions @@ -180,6 +183,15 @@ def z_prefetch : SDNode<"System [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>; +def z_tbegin : SDNode<"SystemZISD::TBEGIN", SDT_ZTBegin, + [SDNPHasChain, SDNPOutGlue, SDNPMayStore, + SDNPSideEffect]>; +def z_tbegin_nofloat : SDNode<"SystemZISD::TBEGIN_NOFLOAT", SDT_ZTBegin, + [SDNPHasChain, SDNPOutGlue, SDNPMayStore, + SDNPSideEffect]>; +def z_tend : SDNode<"SystemZISD::TEND", SDTNone, + [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; + //===----------------------------------------------------------------------===// // Pattern fragments //===----------------------------------------------------------------------===// Index: llvm-head/lib/Target/SystemZ/SystemZInstrFormats.td =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZInstrFormats.td +++ llvm-head/lib/Target/SystemZ/SystemZInstrFormats.td @@ -473,6 +473,17 @@ class InstSS<bits<8> op, dag outs, dag i let Inst{15-0} = BD2; } +class InstS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<16> BD2; + + let Inst{31-16} = op; + let Inst{15-0} = BD2; +} + //===----------------------------------------------------------------------===// // Instruction definitions with semantics //===----------------------------------------------------------------------===// Index: llvm-head/lib/Target/SystemZ/SystemZInstrInfo.td =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZInstrInfo.td +++ llvm-head/lib/Target/SystemZ/SystemZInstrInfo.td @@ -1362,6 +1362,60 @@ let Defs = [CC] in { } //===----------------------------------------------------------------------===// +// Transactional execution +//===----------------------------------------------------------------------===// + +let Predicates = [FeatureTransactionalExecution] in { + // Transaction Begin + let hasSideEffects = 1, mayStore = 1, + usesCustomInserter = 1, Defs = [CC] in { + def TBEGIN : InstSIL<0xE560, + (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2), + "tbegin\t$BD1, $I2", + [(z_tbegin bdaddr12only:$BD1, imm32zx16:$I2)]>; + def TBEGIN_nofloat : Pseudo<(outs), (ins bdaddr12only:$BD1, imm32zx16:$I2), + [(z_tbegin_nofloat bdaddr12only:$BD1, + imm32zx16:$I2)]>; + def TBEGINC : InstSIL<0xE561, + (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2), + "tbeginc\t$BD1, $I2", + [(int_s390_tbeginc bdaddr12only:$BD1, + imm32zx16:$I2)]>; + } + + // Transaction End + let hasSideEffects = 1, Defs = [CC], BD2 = 0 in + def TEND : InstS<0xB2F8, (outs), (ins), "tend", [(z_tend)]>; + + // Transaction Abort + let hasSideEffects = 1, isTerminator = 1, isBarrier = 1 in + def TABORT : InstS<0xB2FC, (outs), (ins bdaddr12only:$BD2), + "tabort\t$BD2", + [(int_s390_tabort bdaddr12only:$BD2)]>; + + // Nontransactional Store + let hasSideEffects = 1 in + def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>; + + // Extract Transaction Nesting Depth + let hasSideEffects = 1 in + def ETND : InherentRRE<"etnd", 0xB2EC, GR32, (int_s390_etnd)>; +} + +//===----------------------------------------------------------------------===// +// Processor assist +//===----------------------------------------------------------------------===// + +let Predicates = [FeatureProcessorAssist] in { + let hasSideEffects = 1, R4 = 0 in + def PPA : InstRRF<0xB2E8, (outs), (ins GR64:$R1, GR64:$R2, imm32zx4:$R3), + "ppa\t$R1, $R2, $R3", []>; + def : Pat<(int_s390_ppa_txassist GR32:$src), + (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), + 0, 1)>; +} + +//===----------------------------------------------------------------------===// // Miscellaneous Instructions. //===----------------------------------------------------------------------===// Index: llvm-head/lib/Target/SystemZ/SystemZProcessors.td =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZProcessors.td +++ llvm-head/lib/Target/SystemZ/SystemZProcessors.td @@ -60,6 +60,16 @@ def FeatureMiscellaneousExtensions : Sys "Assume that the miscellaneous-extensions facility is installed" >; +def FeatureTransactionalExecution : SystemZFeature< + "transactional-execution", "TransactionalExecution", + "Assume that the transactional-execution facility is installed" +>; + +def FeatureProcessorAssist : SystemZFeature< + "processor-assist", "ProcessorAssist", + "Assume that the processor-assist facility is installed" +>; + def : Processor<"generic", NoItineraries, []>; def : Processor<"z10", NoItineraries, []>; def : Processor<"z196", NoItineraries, @@ -70,4 +80,5 @@ def : Processor<"zEC12", NoItineraries, [FeatureDistinctOps, FeatureLoadStoreOnCond, FeatureHighWord, FeatureFPExtension, FeaturePopulationCount, FeatureFastSerialization, FeatureInterlockedAccess1, - FeatureMiscellaneousExtensions]>; + FeatureMiscellaneousExtensions, + FeatureTransactionalExecution, FeatureProcessorAssist]>; Index: llvm-head/lib/Target/SystemZ/SystemZSubtarget.cpp =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZSubtarget.cpp +++ llvm-head/lib/Target/SystemZ/SystemZSubtarget.cpp @@ -40,6 +40,7 @@ SystemZSubtarget::SystemZSubtarget(const HasLoadStoreOnCond(false), HasHighWord(false), HasFPExtension(false), HasPopulationCount(false), HasFastSerialization(false), HasInterlockedAccess1(false), HasMiscellaneousExtensions(false), + HasTransactionalExecution(false), HasProcessorAssist(false), TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this), TSInfo(*TM.getDataLayout()), FrameLowering() {} Index: llvm-head/lib/Target/SystemZ/SystemZSubtarget.h =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZSubtarget.h +++ llvm-head/lib/Target/SystemZ/SystemZSubtarget.h @@ -42,6 +42,8 @@ protected: bool HasFastSerialization; bool HasInterlockedAccess1; bool HasMiscellaneousExtensions; + bool HasTransactionalExecution; + bool HasProcessorAssist; private: Triple TargetTriple; @@ -102,6 +104,12 @@ public: return HasMiscellaneousExtensions; } + // Return true if the target has the transactional-execution facility. + bool hasTransactionalExecution() const { return HasTransactionalExecution; } + + // Return true if the target has the processor-assist facility. + bool hasProcessorAssist() const { return HasProcessorAssist; } + // Return true if GV can be accessed using LARL for reloc model RM // and code model CM. bool isPC32DBLSymbol(const GlobalValue *GV, Reloc::Model RM, Index: llvm-head/lib/Support/Triple.cpp =================================================================== --- llvm-head.orig/lib/Support/Triple.cpp +++ llvm-head/lib/Support/Triple.cpp @@ -92,7 +92,7 @@ const char *Triple::getArchTypePrefix(Ar case sparcv9: case sparc: return "sparc"; - case systemz: return "systemz"; + case systemz: return "s390"; case x86: case x86_64: return "x86"; Index: llvm-head/include/llvm/IR/Intrinsics.td =================================================================== --- llvm-head.orig/include/llvm/IR/Intrinsics.td +++ llvm-head/include/llvm/IR/Intrinsics.td @@ -634,3 +634,4 @@ include "llvm/IR/IntrinsicsNVVM.td" include "llvm/IR/IntrinsicsMips.td" include "llvm/IR/IntrinsicsR600.td" include "llvm/IR/IntrinsicsBPF.td" +include "llvm/IR/IntrinsicsSystemZ.td" Index: llvm-head/include/llvm/IR/IntrinsicsSystemZ.td =================================================================== --- /dev/null +++ llvm-head/include/llvm/IR/IntrinsicsSystemZ.td @@ -0,0 +1,46 @@ +//===- IntrinsicsSystemZ.td - Defines SystemZ intrinsics ---*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines all of the SystemZ-specific intrinsics. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// +// Transactional-execution intrinsics +// +//===----------------------------------------------------------------------===// + +let TargetPrefix = "s390" in { + def int_s390_tbegin : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty, llvm_i32_ty], + [IntrNoDuplicate]>; + + def int_s390_tbegin_nofloat : Intrinsic<[llvm_i32_ty], + [llvm_ptr_ty, llvm_i32_ty], + [IntrNoDuplicate]>; + + def int_s390_tbeginc : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], + [IntrNoDuplicate]>; + + def int_s390_tabort : Intrinsic<[], [llvm_i64_ty], + [IntrNoReturn, Throws]>; + + def int_s390_tend : GCCBuiltin<"__builtin_tend">, + Intrinsic<[llvm_i32_ty], []>; + + def int_s390_etnd : GCCBuiltin<"__builtin_tx_nesting_depth">, + Intrinsic<[llvm_i32_ty], [], [IntrNoMem]>; + + def int_s390_ntstg : Intrinsic<[], [llvm_i64_ty, llvm_ptr64_ty], + [IntrReadWriteArgMem]>; + + def int_s390_ppa_txassist : GCCBuiltin<"__builtin_tx_assist">, + Intrinsic<[], [llvm_i32_ty]>; +} + Index: llvm-head/lib/Target/SystemZ/SystemZ.h =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZ.h +++ llvm-head/lib/Target/SystemZ/SystemZ.h @@ -68,6 +68,18 @@ const unsigned CCMASK_TM_MSB_0 = C const unsigned CCMASK_TM_MSB_1 = CCMASK_2 | CCMASK_3; const unsigned CCMASK_TM = CCMASK_ANY; +// Condition-code mask assignments for TRANSACTION_BEGIN. +const unsigned CCMASK_TBEGIN_STARTED = CCMASK_0; +const unsigned CCMASK_TBEGIN_INDETERMINATE = CCMASK_1; +const unsigned CCMASK_TBEGIN_TRANSIENT = CCMASK_2; +const unsigned CCMASK_TBEGIN_PERSISTENT = CCMASK_3; +const unsigned CCMASK_TBEGIN = CCMASK_ANY; + +// Condition-code mask assignments for TRANSACTION_END. +const unsigned CCMASK_TEND_TX = CCMASK_0; +const unsigned CCMASK_TEND_NOTX = CCMASK_2; +const unsigned CCMASK_TEND = CCMASK_TEND_TX | CCMASK_TEND_NOTX; + // The position of the low CC bit in an IPM result. const unsigned IPM_CC = 28; Index: llvm-head/lib/Target/SystemZ/SystemZISelLowering.h =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZISelLowering.h +++ llvm-head/lib/Target/SystemZ/SystemZISelLowering.h @@ -146,6 +146,15 @@ enum { // Perform a serialization operation. (BCR 15,0 or BCR 14,0.) SERIALIZE, + // Transaction begin. The first operand is the chain, the second + // the TDB pointer, and the third the immediate control field. + // Returns chain and glue. + TBEGIN, + TBEGIN_NOFLOAT, + + // Transaction end. Just the chain operand. Returns chain and glue. + TEND, + // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or // ATOMIC_LOAD_<op>. // @@ -318,6 +327,7 @@ private: SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const; + SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const; // If the last instruction before MBBI in MBB was some form of COMPARE, // try to replace it with a COMPARE AND BRANCH just before MBBI. @@ -355,6 +365,10 @@ private: MachineBasicBlock *emitStringWrapper(MachineInstr *MI, MachineBasicBlock *BB, unsigned Opcode) const; + MachineBasicBlock *emitTransactionBegin(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode, + bool NoFloat) const; }; } // end namespace llvm Index: llvm-head/lib/Target/SystemZ/SystemZISelLowering.cpp =================================================================== --- llvm-head.orig/lib/Target/SystemZ/SystemZISelLowering.cpp +++ llvm-head/lib/Target/SystemZ/SystemZISelLowering.cpp @@ -20,6 +20,7 @@ #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/IR/Intrinsics.h" #include <cctype> using namespace llvm; @@ -304,6 +305,9 @@ SystemZTargetLowering::SystemZTargetLowe // Codes for which we want to perform some z-specific combinations. setTargetDAGCombine(ISD::SIGN_EXTEND); + // Handle intrinsics. + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); + // We want to use MVC in preference to even a single load/store pair. MaxStoresPerMemcpy = 0; MaxStoresPerMemcpyOptSize = 0; @@ -1031,6 +1035,53 @@ prepareVolatileOrAtomicLoad(SDValue Chai return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); } +// Return true if Op is an intrinsic node with chain that returns the CC value +// as its only (other) argument. Provide the associated SystemZISD opcode and +// the mask of valid CC values if so. +static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, + unsigned &CCValid) { + unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + switch (Id) { + case Intrinsic::s390_tbegin: + Opcode = SystemZISD::TBEGIN; + CCValid = SystemZ::CCMASK_TBEGIN; + return true; + + case Intrinsic::s390_tbegin_nofloat: + Opcode = SystemZISD::TBEGIN_NOFLOAT; + CCValid = SystemZ::CCMASK_TBEGIN; + return true; + + case Intrinsic::s390_tend: + Opcode = SystemZISD::TEND; + CCValid = SystemZ::CCMASK_TEND; + return true; + + default: + return false; + } +} + +// Emit an intrinsic with chain with a glued value instead of its CC result. +static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, + unsigned Opcode) { + // Copy all operands except the intrinsic ID. + unsigned NumOps = Op.getNumOperands(); + SmallVector<SDValue, 6> Ops; + Ops.reserve(NumOps - 1); + Ops.push_back(Op.getOperand(0)); + for (unsigned I = 2; I < NumOps; ++I) + Ops.push_back(Op.getOperand(I)); + + assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); + SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); + SDValue OldChain = SDValue(Op.getNode(), 1); + SDValue NewChain = SDValue(Intr.getNode(), 0); + DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); + return Intr; +} + // CC is a comparison that will be implemented using an integer or // floating-point comparison. Return the condition code mask for // a branch on true. In the integer case, CCMASK_CMP_UO is set for @@ -1588,9 +1639,53 @@ static void adjustForTestUnderMask(Selec C.CCMask = NewCCMask; } +// Return a Comparison that tests the condition-code result of intrinsic +// node Call against constant integer CC using comparison code Cond. +// Opcode is the opcode of the SystemZISD operation for the intrinsic +// and CCValid is the set of possible condition-code results. +static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, + SDValue Call, unsigned CCValid, uint64_t CC, + ISD::CondCode Cond) { + Comparison C(Call, SDValue()); + C.Opcode = Opcode; + C.CCValid = CCValid; + if (Cond == ISD::SETEQ) + // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. + C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; + else if (Cond == ISD::SETNE) + // ...and the inverse of that. + C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; + else if (Cond == ISD::SETLT || Cond == ISD::SETULT) + // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, + // always true for CC>3. + C.CCMask = CC < 4 ? -1 << (4 - CC) : -1; + else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) + // ...and the inverse of that. + C.CCMask = CC < 4 ? ~(-1 << (4 - CC)) : 0; + else if (Cond == ISD::SETLE || Cond == ISD::SETULE) + // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), + // always true for CC>3. + C.CCMask = CC < 4 ? -1 << (3 - CC) : -1; + else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) + // ...and the inverse of that. + C.CCMask = CC < 4 ? ~(-1 << (3 - CC)) : 0; + else + llvm_unreachable("Unexpected integer comparison type"); + C.CCMask &= CCValid; + return C; +} + // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, ISD::CondCode Cond) { + if (CmpOp1.getOpcode() == ISD::Constant) { + uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); + unsigned Opcode, CCValid; + if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && + CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && + isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) + return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); + } Comparison C(CmpOp0, CmpOp1); C.CCMask = CCMaskForCondCode(Cond); if (C.Op0.getValueType().isFloatingPoint()) { @@ -1632,6 +1727,17 @@ static Comparison getCmp(SelectionDAG &D // Emit the comparison instruction described by C. static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { + if (!C.Op1.getNode()) { + SDValue Op; + switch (C.Op0.getOpcode()) { + case ISD::INTRINSIC_W_CHAIN: + Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); + break; + default: + llvm_unreachable("Invalid comparison operands"); + } + return SDValue(Op.getNode(), Op->getNumValues() - 1); + } if (C.Opcode == SystemZISD::ICMP) return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, DAG.getConstant(C.ICmpType, MVT::i32)); @@ -1713,7 +1819,6 @@ SDValue SystemZTargetLowering::lowerSETC } SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { - SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); SDValue CmpOp0 = Op.getOperand(2); SDValue CmpOp1 = Op.getOperand(3); @@ -1723,7 +1828,7 @@ SDValue SystemZTargetLowering::lowerBR_C Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC)); SDValue Glue = emitCmp(DAG, DL, C); return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), - Chain, DAG.getConstant(C.CCValid, MVT::i32), + Op.getOperand(0), DAG.getConstant(C.CCValid, MVT::i32), DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue); } @@ -2561,6 +2666,30 @@ SDValue SystemZTargetLowering::lowerPREF Node->getMemoryVT(), Node->getMemOperand()); } +// Return an i32 that contains the value of CC immediately after After, +// whose final operand must be MVT::Glue. +static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { + SDValue Glue = SDValue(After, After->getNumValues() - 1); + SDValue IPM = DAG.getNode(SystemZISD::IPM, SDLoc(After), MVT::i32, Glue); + return DAG.getNode(ISD::SRL, SDLoc(After), MVT::i32, IPM, + DAG.getConstant(SystemZ::IPM_CC, MVT::i32)); +} + +SDValue +SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned Opcode, CCValid; + if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { + assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); + SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); + SDValue CC = getCCResult(DAG, Glued.getNode()); + DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); + return SDValue(); + } + + return SDValue(); +} + SDValue SystemZTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { @@ -2634,6 +2763,8 @@ SDValue SystemZTargetLowering::LowerOper return lowerSTACKRESTORE(Op, DAG); case ISD::PREFETCH: return lowerPREFETCH(Op, DAG); + case ISD::INTRINSIC_W_CHAIN: + return lowerINTRINSIC_W_CHAIN(Op, DAG); default: llvm_unreachable("Unexpected node to lower"); } @@ -2674,6 +2805,9 @@ const char *SystemZTargetLowering::getTa OPCODE(SEARCH_STRING); OPCODE(IPM); OPCODE(SERIALIZE); + OPCODE(TBEGIN); + OPCODE(TBEGIN_NOFLOAT); + OPCODE(TEND); OPCODE(ATOMIC_SWAPW); OPCODE(ATOMIC_LOADW_ADD); OPCODE(ATOMIC_LOADW_SUB); @@ -3501,6 +3635,50 @@ SystemZTargetLowering::emitStringWrapper return DoneMBB; } +// Update TBEGIN instruction with final opcode and register clobbers. +MachineBasicBlock * +SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode, + bool NoFloat) const { + MachineFunction &MF = *MBB->getParent(); + const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); + const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); + + // Update opcode. + MI->setDesc(TII->get(Opcode)); + + // We cannot handle a TBEGIN that clobbers the stack or frame pointer. + // Make sure to add the corresponding GRSM bits if they are missing. + uint64_t Control = MI->getOperand(2).getImm(); + static const unsigned GPRControlBit[16] = { + 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, + 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 + }; + Control |= GPRControlBit[15]; + if (TFI->hasFP(MF)) + Control |= GPRControlBit[11]; + MI->getOperand(2).setImm(Control); + + // Add GPR clobbers. + for (int I = 0; I < 16; I++) { + if ((Control & GPRControlBit[I]) == 0) { + unsigned Reg = SystemZMC::GR64Regs[I]; + MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); + } + } + + // Add FPR clobbers. + if (!NoFloat && (Control & 4) != 0) { + for (int I = 0; I < 16; I++) { + unsigned Reg = SystemZMC::FP64Regs[I]; + MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); + } + } + + return MBB; +} + MachineBasicBlock *SystemZTargetLowering:: EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { switch (MI->getOpcode()) { @@ -3742,6 +3920,12 @@ EmitInstrWithCustomInserter(MachineInstr return emitStringWrapper(MI, MBB, SystemZ::MVST); case SystemZ::SRSTLoop: return emitStringWrapper(MI, MBB, SystemZ::SRST); + case SystemZ::TBEGIN: + return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); + case SystemZ::TBEGIN_nofloat: + return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); + case SystemZ::TBEGINC: + return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); default: llvm_unreachable("Unexpected instr type to insert"); } Index: llvm-head/test/CodeGen/SystemZ/htm-intrinsics.ll =================================================================== --- /dev/null +++ llvm-head/test/CodeGen/SystemZ/htm-intrinsics.ll @@ -0,0 +1,352 @@ +; Test transactional-execution intrinsics. +; +; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=zEC12 | FileCheck %s + +declare i32 @llvm.s390.tbegin(i8 *, i32) +declare i32 @llvm.s390.tbegin.nofloat(i8 *, i32) +declare void @llvm.s390.tbeginc(i8 *, i32) +declare i32 @llvm.s390.tend() +declare void @llvm.s390.tabort(i64) +declare void @llvm.s390.ntstg(i64, i64 *) +declare i32 @llvm.s390.etnd() +declare void @llvm.s390.ppa.txassist(i32) + +; TBEGIN. +define void @test_tbegin() { +; CHECK-LABEL: test_tbegin: +; CHECK-NOT: stmg +; CHECK: std %f8, +; CHECK: std %f9, +; CHECK: std %f10, +; CHECK: std %f11, +; CHECK: std %f12, +; CHECK: std %f13, +; CHECK: std %f14, +; CHECK: std %f15, +; CHECK: tbegin 0, 65292 +; CHECK: ld %f8, +; CHECK: ld %f9, +; CHECK: ld %f10, +; CHECK: ld %f11, +; CHECK: ld %f12, +; CHECK: ld %f13, +; CHECK: ld %f14, +; CHECK: ld %f15, +; CHECK: br %r14 + call i32 @llvm.s390.tbegin(i8 *null, i32 65292) + ret void +} + +; TBEGIN (nofloat). +define void @test_tbegin_nofloat1() { +; CHECK-LABEL: test_tbegin_nofloat1: +; CHECK-NOT: stmg +; CHECK-NOT: std +; CHECK: tbegin 0, 65292 +; CHECK: br %r14 + call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 65292) + ret void +} + +; TBEGIN (nofloat) with integer CC return value. +define i32 @test_tbegin_nofloat2() { +; CHECK-LABEL: test_tbegin_nofloat2: +; CHECK-NOT: stmg +; CHECK-NOT: std +; CHECK: tbegin 0, 65292 +; CHECK: ipm %r2 +; CHECK: srl %r2, 28 +; CHECK: br %r14 + %res = call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 65292) + ret i32 %res +} + +; TBEGIN (nofloat) with implicit CC check. +define void @test_tbegin_nofloat3(i32 *%ptr) { +; CHECK-LABEL: test_tbegin_nofloat3: +; CHECK-NOT: stmg +; CHECK-NOT: std +; CHECK: tbegin 0, 65292 +; CHECK: jnh {{\.L*}} +; CHECK: mvhi 0(%r2), 0 +; CHECK: br %r14 + %res = call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 65292) + %cmp = icmp eq i32 %res, 2 + br i1 %cmp, label %if.then, label %if.end + +if.then: ; preds = %entry + store i32 0, i32* %ptr, align 4 + br label %if.end + +if.end: ; preds = %if.then, %entry + ret void +} + +; TBEGIN (nofloat) with dual CC use. +define i32 @test_tbegin_nofloat4(i32 %pad, i32 *%ptr) { +; CHECK-LABEL: test_tbegin_nofloat4: +; CHECK-NOT: stmg +; CHECK-NOT: std +; CHECK: tbegin 0, 65292 +; CHECK: ipm %r2 +; CHECK: srl %r2, 28 +; CHECK: cijlh %r2, 2, {{\.L*}} +; CHECK: mvhi 0(%r3), 0 +; CHECK: br %r14 + %res = call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 65292) + %cmp = icmp eq i32 %res, 2 + br i1 %cmp, label %if.then, label %if.end + +if.then: ; preds = %entry + store i32 0, i32* %ptr, align 4 + br label %if.end + +if.end: ; preds = %if.then, %entry + ret i32 %res +} + +; TBEGIN (nofloat) with register. +define void @test_tbegin_nofloat5(i8 *%ptr) { +; CHECK-LABEL: test_tbegin_nofloat5: +; CHECK-NOT: stmg +; CHECK-NOT: std +; CHECK: tbegin 0(%r2), 65292 +; CHECK: br %r14 + call i32 @llvm.s390.tbegin.nofloat(i8 *%ptr, i32 65292) + ret void +} + +; TBEGIN (nofloat) with GRSM 0x0f00. +define void @test_tbegin_nofloat6() { +; CHECK-LABEL: test_tbegin_nofloat6: +; CHECK: stmg %r6, %r15, +; CHECK-NOT: std +; CHECK: tbegin 0, 3840 +; CHECK: br %r14 + call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 3840) + ret void +} + +; TBEGIN (nofloat) with GRSM 0xf100. +define void @test_tbegin_nofloat7() { +; CHECK-LABEL: test_tbegin_nofloat7: +; CHECK: stmg %r8, %r15, +; CHECK-NOT: std +; CHECK: tbegin 0, 61696 +; CHECK: br %r14 + call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 61696) + ret void +} + +; TBEGIN (nofloat) with GRSM 0xfe00 -- stack pointer added automatically. +define void @test_tbegin_nofloat8() { +; CHECK-LABEL: test_tbegin_nofloat8: +; CHECK-NOT: stmg +; CHECK-NOT: std +; CHECK: tbegin 0, 65280 +; CHECK: br %r14 + call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 65024) + ret void +} + +; TBEGIN (nofloat) with GRSM 0xfb00 -- no frame pointer needed. +define void @test_tbegin_nofloat9() { +; CHECK-LABEL: test_tbegin_nofloat9: +; CHECK: stmg %r10, %r15, +; CHECK-NOT: std +; CHECK: tbegin 0, 64256 +; CHECK: br %r14 + call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 64256) + ret void +} + +; TBEGIN (nofloat) with GRSM 0xfb00 -- frame pointer added automatically. +define void @test_tbegin_nofloat10(i64 %n) { +; CHECK-LABEL: test_tbegin_nofloat10: +; CHECK: stmg %r11, %r15, +; CHECK-NOT: std +; CHECK: tbegin 0, 65280 +; CHECK: br %r14 + %buf = alloca i8, i64 %n + call i32 @llvm.s390.tbegin.nofloat(i8 *null, i32 64256) + ret void +} + +; TBEGINC. +define void @test_tbeginc() { +; CHECK-LABEL: test_tbeginc: +; CHECK-NOT: stmg +; CHECK-NOT: std +; CHECK: tbeginc 0, 65288 +; CHECK: br %r14 + call void @llvm.s390.tbeginc(i8 *null, i32 65288) + ret void +} + +; TEND with integer CC return value. +define i32 @test_tend1() { +; CHECK-LABEL: test_tend1: +; CHECK: tend +; CHECK: ipm %r2 +; CHECK: srl %r2, 28 +; CHECK: br %r14 + %res = call i32 @llvm.s390.tend() + ret i32 %res +} + +; TEND with implicit CC check. +define void @test_tend3(i32 *%ptr) { +; CHECK-LABEL: test_tend3: +; CHECK: tend +; CHECK: je {{\.L*}} +; CHECK: mvhi 0(%r2), 0 +; CHECK: br %r14 + %res = call i32 @llvm.s390.tend() + %cmp = icmp eq i32 %res, 2 + br i1 %cmp, label %if.then, label %if.end + +if.then: ; preds = %entry + store i32 0, i32* %ptr, align 4 + br label %if.end + +if.end: ; preds = %if.then, %entry + ret void +} + +; TEND with dual CC use. +define i32 @test_tend2(i32 %pad, i32 *%ptr) { +; CHECK-LABEL: test_tend2: +; CHECK: tend +; CHECK: ipm %r2 +; CHECK: srl %r2, 28 +; CHECK: cijlh %r2, 2, {{\.L*}} +; CHECK: mvhi 0(%r3), 0 +; CHECK: br %r14 + %res = call i32 @llvm.s390.tend() + %cmp = icmp eq i32 %res, 2 + br i1 %cmp, label %if.then, label %if.end + +if.then: ; preds = %entry + store i32 0, i32* %ptr, align 4 + br label %if.end + +if.end: ; preds = %if.then, %entry + ret i32 %res +} + +; TABORT with register only. +define void @test_tabort1(i64 %val) { +; CHECK-LABEL: test_tabort1: +; CHECK: tabort 0(%r2) +; CHECK: br %r14 + call void @llvm.s390.tabort(i64 %val) + ret void +} + +; TABORT with immediate only. +define void @test_tabort2(i64 %val) { +; CHECK-LABEL: test_tabort2: +; CHECK: tabort 1234 +; CHECK: br %r14 + call void @llvm.s390.tabort(i64 1234) + ret void +} + +; TABORT with register + immediate. +define void @test_tabort3(i64 %val) { +; CHECK-LABEL: test_tabort3: +; CHECK: tabort 1234(%r2) +; CHECK: br %r14 + %sum = add i64 %val, 1234 + call void @llvm.s390.tabort(i64 %sum) + ret void +} + +; TABORT with out-of-range immediate. +define void @test_tabort4(i64 %val) { +; CHECK-LABEL: test_tabort4: +; CHECK: tabort 0({{%r[1-5]}}) +; CHECK: br %r14 + call void @llvm.s390.tabort(i64 4096) + ret void +} + +; NTSTG with base pointer only. +define void @test_ntstg1(i64 *%ptr, i64 %val) { +; CHECK-LABEL: test_ntstg1: +; CHECK: ntstg %r3, 0(%r2) +; CHECK: br %r14 + call void @llvm.s390.ntstg(i64 %val, i64 *%ptr) + ret void +} + +; NTSTG with base and index. +; Check that VSTL doesn't allow an index. +define void @test_ntstg2(i64 *%base, i64 %index, i64 %val) { +; CHECK-LABEL: test_ntstg2: +; CHECK: sllg [[REG:%r[1-5]]], %r3, 3 +; CHECK: ntstg %r4, 0([[REG]],%r2) +; CHECK: br %r14 + %ptr = getelementptr i64, i64 *%base, i64 %index + call void @llvm.s390.ntstg(i64 %val, i64 *%ptr) + ret void +} + +; NTSTG with the highest in-range displacement. +define void @test_ntstg3(i64 *%base, i64 %val) { +; CHECK-LABEL: test_ntstg3: +; CHECK: ntstg %r3, 524280(%r2) +; CHECK: br %r14 + %ptr = getelementptr i64, i64 *%base, i64 65535 + call void @llvm.s390.ntstg(i64 %val, i64 *%ptr) + ret void +} + +; NTSTG with an out-of-range positive displacement. +define void @test_ntstg4(i64 *%base, i64 %val) { +; CHECK-LABEL: test_ntstg4: +; CHECK: ntstg %r3, 0({{%r[1-5]}}) +; CHECK: br %r14 + %ptr = getelementptr i64, i64 *%base, i64 65536 + call void @llvm.s390.ntstg(i64 %val, i64 *%ptr) + ret void +} + +; NTSTG with the lowest in-range displacement. +define void @test_ntstg5(i64 *%base, i64 %val) { +; CHECK-LABEL: test_ntstg5: +; CHECK: ntstg %r3, -524288(%r2) +; CHECK: br %r14 + %ptr = getelementptr i64, i64 *%base, i64 -65536 + call void @llvm.s390.ntstg(i64 %val, i64 *%ptr) + ret void +} + +; NTSTG with an out-of-range negative displacement. +define void @test_ntstg6(i64 *%base, i64 %val) { +; CHECK-LABEL: test_ntstg6: +; CHECK: ntstg %r3, 0({{%r[1-5]}}) +; CHECK: br %r14 + %ptr = getelementptr i64, i64 *%base, i64 -65537 + call void @llvm.s390.ntstg(i64 %val, i64 *%ptr) + ret void +} + +; ETND. +define i32 @test_etnd() { +; CHECK-LABEL: test_etnd: +; CHECK: etnd %r2 +; CHECK: br %r14 + %res = call i32 @llvm.s390.etnd() + ret i32 %res +} + +; PPA (Transaction-Abort Assist) +define void @test_ppa_txassist(i32 %val) { +; CHECK-LABEL: test_ppa_txassist: +; CHECK: ppa %r2, 0, 1 +; CHECK: br %r14 + call void @llvm.s390.ppa.txassist(i32 %val) + ret void +} + Index: llvm-head/test/MC/SystemZ/insn-bad-zEC12.s =================================================================== --- llvm-head.orig/test/MC/SystemZ/insn-bad-zEC12.s +++ llvm-head/test/MC/SystemZ/insn-bad-zEC12.s @@ -3,6 +3,22 @@ # RUN: FileCheck < %t %s #CHECK: error: invalid operand +#CHECK: ntstg %r0, -524289 +#CHECK: error: invalid operand +#CHECK: ntstg %r0, 524288 + + ntstg %r0, -524289 + ntstg %r0, 524288 + +#CHECK: error: invalid operand +#CHECK: ppa %r0, %r0, -1 +#CHECK: error: invalid operand +#CHECK: ppa %r0, %r0, 16 + + ppa %r0, %r0, -1 + ppa %r0, %r0, 16 + +#CHECK: error: invalid operand #CHECK: risbgn %r0,%r0,0,0,-1 #CHECK: error: invalid operand #CHECK: risbgn %r0,%r0,0,0,64 @@ -22,3 +38,47 @@ risbgn %r0,%r0,-1,0,0 risbgn %r0,%r0,256,0,0 +#CHECK: error: invalid operand +#CHECK: tabort -1 +#CHECK: error: invalid operand +#CHECK: tabort 4096 +#CHECK: error: invalid use of indexed addressing +#CHECK: tabort 0(%r1,%r2) + + tabort -1 + tabort 4096 + tabort 0(%r1,%r2) + +#CHECK: error: invalid operand +#CHECK: tbegin -1, 0 +#CHECK: error: invalid operand +#CHECK: tbegin 4096, 0 +#CHECK: error: invalid use of indexed addressing +#CHECK: tbegin 0(%r1,%r2), 0 +#CHECK: error: invalid operand +#CHECK: tbegin 0, -1 +#CHECK: error: invalid operand +#CHECK: tbegin 0, 65536 + + tbegin -1, 0 + tbegin 4096, 0 + tbegin 0(%r1,%r2), 0 + tbegin 0, -1 + tbegin 0, 65536 + +#CHECK: error: invalid operand +#CHECK: tbeginc -1, 0 +#CHECK: error: invalid operand +#CHECK: tbeginc 4096, 0 +#CHECK: error: invalid use of indexed addressing +#CHECK: tbeginc 0(%r1,%r2), 0 +#CHECK: error: invalid operand +#CHECK: tbeginc 0, -1 +#CHECK: error: invalid operand +#CHECK: tbeginc 0, 65536 + + tbeginc -1, 0 + tbeginc 4096, 0 + tbeginc 0(%r1,%r2), 0 + tbeginc 0, -1 + tbeginc 0, 65536 Index: llvm-head/test/MC/SystemZ/insn-good-zEC12.s =================================================================== --- llvm-head.orig/test/MC/SystemZ/insn-good-zEC12.s +++ llvm-head/test/MC/SystemZ/insn-good-zEC12.s @@ -1,6 +1,48 @@ # For zEC12 and above. # RUN: llvm-mc -triple s390x-linux-gnu -mcpu=zEC12 -show-encoding %s | FileCheck %s +#CHECK: etnd %r0 # encoding: [0xb2,0xec,0x00,0x00] +#CHECK: etnd %r15 # encoding: [0xb2,0xec,0x00,0xf0] +#CHECK: etnd %r7 # encoding: [0xb2,0xec,0x00,0x70] + + etnd %r0 + etnd %r15 + etnd %r7 + +#CHECK: ntstg %r0, -524288 # encoding: [0xe3,0x00,0x00,0x00,0x80,0x25] +#CHECK: ntstg %r0, -1 # encoding: [0xe3,0x00,0x0f,0xff,0xff,0x25] +#CHECK: ntstg %r0, 0 # encoding: [0xe3,0x00,0x00,0x00,0x00,0x25] +#CHECK: ntstg %r0, 1 # encoding: [0xe3,0x00,0x00,0x01,0x00,0x25] +#CHECK: ntstg %r0, 524287 # encoding: [0xe3,0x00,0x0f,0xff,0x7f,0x25] +#CHECK: ntstg %r0, 0(%r1) # encoding: [0xe3,0x00,0x10,0x00,0x00,0x25] +#CHECK: ntstg %r0, 0(%r15) # encoding: [0xe3,0x00,0xf0,0x00,0x00,0x25] +#CHECK: ntstg %r0, 524287(%r1,%r15) # encoding: [0xe3,0x01,0xff,0xff,0x7f,0x25] +#CHECK: ntstg %r0, 524287(%r15,%r1) # encoding: [0xe3,0x0f,0x1f,0xff,0x7f,0x25] +#CHECK: ntstg %r15, 0 # encoding: [0xe3,0xf0,0x00,0x00,0x00,0x25] + + ntstg %r0, -524288 + ntstg %r0, -1 + ntstg %r0, 0 + ntstg %r0, 1 + ntstg %r0, 524287 + ntstg %r0, 0(%r1) + ntstg %r0, 0(%r15) + ntstg %r0, 524287(%r1,%r15) + ntstg %r0, 524287(%r15,%r1) + ntstg %r15, 0 + +#CHECK: ppa %r0, %r0, 0 # encoding: [0xb2,0xe8,0x00,0x00] +#CHECK: ppa %r0, %r0, 15 # encoding: [0xb2,0xe8,0xf0,0x00] +#CHECK: ppa %r0, %r15, 0 # encoding: [0xb2,0xe8,0x00,0x0f] +#CHECK: ppa %r4, %r6, 7 # encoding: [0xb2,0xe8,0x70,0x46] +#CHECK: ppa %r15, %r0, 0 # encoding: [0xb2,0xe8,0x00,0xf0] + + ppa %r0, %r0, 0 + ppa %r0, %r0, 15 + ppa %r0, %r15, 0 + ppa %r4, %r6, 7 + ppa %r15, %r0, 0 + #CHECK: risbgn %r0, %r0, 0, 0, 0 # encoding: [0xec,0x00,0x00,0x00,0x00,0x59] #CHECK: risbgn %r0, %r0, 0, 0, 63 # encoding: [0xec,0x00,0x00,0x00,0x3f,0x59] #CHECK: risbgn %r0, %r0, 0, 255, 0 # encoding: [0xec,0x00,0x00,0xff,0x00,0x59] @@ -17,3 +59,68 @@ risbgn %r15,%r0,0,0,0 risbgn %r4,%r5,6,7,8 +#CHECK: tabort 0 # encoding: [0xb2,0xfc,0x00,0x00] +#CHECK: tabort 0(%r1) # encoding: [0xb2,0xfc,0x10,0x00] +#CHECK: tabort 0(%r15) # encoding: [0xb2,0xfc,0xf0,0x00] +#CHECK: tabort 4095 # encoding: [0xb2,0xfc,0x0f,0xff] +#CHECK: tabort 4095(%r1) # encoding: [0xb2,0xfc,0x1f,0xff] +#CHECK: tabort 4095(%r15) # encoding: [0xb2,0xfc,0xff,0xff] + + tabort 0 + tabort 0(%r1) + tabort 0(%r15) + tabort 4095 + tabort 4095(%r1) + tabort 4095(%r15) + +#CHECK: tbegin 0, 0 # encoding: [0xe5,0x60,0x00,0x00,0x00,0x00] +#CHECK: tbegin 4095, 0 # encoding: [0xe5,0x60,0x0f,0xff,0x00,0x00] +#CHECK: tbegin 0, 0 # encoding: [0xe5,0x60,0x00,0x00,0x00,0x00] +#CHECK: tbegin 0, 1 # encoding: [0xe5,0x60,0x00,0x00,0x00,0x01] +#CHECK: tbegin 0, 32767 # encoding: [0xe5,0x60,0x00,0x00,0x7f,0xff] +#CHECK: tbegin 0, 32768 # encoding: [0xe5,0x60,0x00,0x00,0x80,0x00] +#CHECK: tbegin 0, 65535 # encoding: [0xe5,0x60,0x00,0x00,0xff,0xff] +#CHECK: tbegin 0(%r1), 42 # encoding: [0xe5,0x60,0x10,0x00,0x00,0x2a] +#CHECK: tbegin 0(%r15), 42 # encoding: [0xe5,0x60,0xf0,0x00,0x00,0x2a] +#CHECK: tbegin 4095(%r1), 42 # encoding: [0xe5,0x60,0x1f,0xff,0x00,0x2a] +#CHECK: tbegin 4095(%r15), 42 # encoding: [0xe5,0x60,0xff,0xff,0x00,0x2a] + + tbegin 0, 0 + tbegin 4095, 0 + tbegin 0, 0 + tbegin 0, 1 + tbegin 0, 32767 + tbegin 0, 32768 + tbegin 0, 65535 + tbegin 0(%r1), 42 + tbegin 0(%r15), 42 + tbegin 4095(%r1), 42 + tbegin 4095(%r15), 42 + +#CHECK: tbeginc 0, 0 # encoding: [0xe5,0x61,0x00,0x00,0x00,0x00] +#CHECK: tbeginc 4095, 0 # encoding: [0xe5,0x61,0x0f,0xff,0x00,0x00] +#CHECK: tbeginc 0, 0 # encoding: [0xe5,0x61,0x00,0x00,0x00,0x00] +#CHECK: tbeginc 0, 1 # encoding: [0xe5,0x61,0x00,0x00,0x00,0x01] +#CHECK: tbeginc 0, 32767 # encoding: [0xe5,0x61,0x00,0x00,0x7f,0xff] +#CHECK: tbeginc 0, 32768 # encoding: [0xe5,0x61,0x00,0x00,0x80,0x00] +#CHECK: tbeginc 0, 65535 # encoding: [0xe5,0x61,0x00,0x00,0xff,0xff] +#CHECK: tbeginc 0(%r1), 42 # encoding: [0xe5,0x61,0x10,0x00,0x00,0x2a] +#CHECK: tbeginc 0(%r15), 42 # encoding: [0xe5,0x61,0xf0,0x00,0x00,0x2a] +#CHECK: tbeginc 4095(%r1), 42 # encoding: [0xe5,0x61,0x1f,0xff,0x00,0x2a] +#CHECK: tbeginc 4095(%r15), 42 # encoding: [0xe5,0x61,0xff,0xff,0x00,0x2a] + + tbeginc 0, 0 + tbeginc 4095, 0 + tbeginc 0, 0 + tbeginc 0, 1 + tbeginc 0, 32767 + tbeginc 0, 32768 + tbeginc 0, 65535 + tbeginc 0(%r1), 42 + tbeginc 0(%r15), 42 + tbeginc 4095(%r1), 42 + tbeginc 4095(%r15), 42 + +#CHECK: tend # encoding: [0xb2,0xf8,0x00,0x00] + + tend Index: llvm-head/test/MC/SystemZ/insn-bad-z196.s =================================================================== --- llvm-head.orig/test/MC/SystemZ/insn-bad-z196.s +++ llvm-head/test/MC/SystemZ/insn-bad-z196.s @@ -244,6 +244,11 @@ cxlgbr %f0, 16, %r0, 0 cxlgbr %f2, 0, %r0, 0 +#CHECK: error: {{(instruction requires: transactional-execution)?}} +#CHECK: etnd %r7 + + etnd %r7 + #CHECK: error: invalid operand #CHECK: fidbra %f0, 0, %f0, -1 #CHECK: error: invalid operand @@ -546,6 +551,16 @@ locr %r0,%r0,-1 locr %r0,%r0,16 +#CHECK: error: {{(instruction requires: transactional-execution)?}} +#CHECK: ntstg %r0, 524287(%r1,%r15) + + ntstg %r0, 524287(%r1,%r15) + +#CHECK: error: {{(instruction requires: processor-assist)?}} +#CHECK: ppa %r4, %r6, 7 + + ppa %r4, %r6, 7 + #CHECK: error: {{(instruction requires: miscellaneous-extensions)?}} #CHECK: risbgn %r1, %r2, 0, 0, 0 @@ -690,3 +705,24 @@ stocg %r0,-524289,1 stocg %r0,524288,1 stocg %r0,0(%r1,%r2),1 + +#CHECK: error: {{(instruction requires: transactional-execution)?}} +#CHECK: tabort 4095(%r1) + + tabort 4095(%r1) + +#CHECK: error: {{(instruction requires: transactional-execution)?}} +#CHECK: tbegin 4095(%r1), 42 + + tbegin 4095(%r1), 42 + +#CHECK: error: {{(instruction requires: transactional-execution)?}} +#CHECK: tbeginc 4095(%r1), 42 + + tbeginc 4095(%r1), 42 + +#CHECK: error: {{(instruction requires: transactional-execution)?}} +#CHECK: tend + + tend + Index: llvm-head/test/MC/Disassembler/SystemZ/insns.txt =================================================================== --- llvm-head.orig/test/MC/Disassembler/SystemZ/insns.txt +++ llvm-head/test/MC/Disassembler/SystemZ/insns.txt @@ -2503,6 +2503,15 @@ # CHECK: ear %r15, %a15 0xb2 0x4f 0x00 0xff +# CHECK: etnd %r0 +0xb2 0xec 0x00 0x00 + +# CHECK: etnd %r15 +0xb2 0xec 0x00 0xf0 + +# CHECK: etnd %r7 +0xb2 0xec 0x00 0x70 + # CHECK: fidbr %f0, 0, %f0 0xb3 0x5f 0x00 0x00 @@ -6034,6 +6043,36 @@ # CHECK: ny %r15, 0 0xe3 0xf0 0x00 0x00 0x00 0x54 +# CHECK: ntstg %r0, -524288 +0xe3 0x00 0x00 0x00 0x80 0x25 + +# CHECK: ntstg %r0, -1 +0xe3 0x00 0x0f 0xff 0xff 0x25 + +# CHECK: ntstg %r0, 0 +0xe3 0x00 0x00 0x00 0x00 0x25 + +# CHECK: ntstg %r0, 1 +0xe3 0x00 0x00 0x01 0x00 0x25 + +# CHECK: ntstg %r0, 524287 +0xe3 0x00 0x0f 0xff 0x7f 0x25 + +# CHECK: ntstg %r0, 0(%r1) +0xe3 0x00 0x10 0x00 0x00 0x25 + +# CHECK: ntstg %r0, 0(%r15) +0xe3 0x00 0xf0 0x00 0x00 0x25 + +# CHECK: ntstg %r0, 524287(%r1,%r15) +0xe3 0x01 0xff 0xff 0x7f 0x25 + +# CHECK: ntstg %r0, 524287(%r15,%r1) +0xe3 0x0f 0x1f 0xff 0x7f 0x25 + +# CHECK: ntstg %r15, 0 +0xe3 0xf0 0x00 0x00 0x00 0x25 + # CHECK: oc 0(1), 0 0xd6 0x00 0x00 0x00 0x00 0x00 @@ -6346,6 +6385,21 @@ # CHECK: popcnt %r7, %r8 0xb9 0xe1 0x00 0x78 +# CHECK: ppa %r0, %r0, 0 +0xb2 0xe8 0x00 0x00 + +# CHECK: ppa %r0, %r0, 15 +0xb2 0xe8 0xf0 0x00 + +# CHECK: ppa %r0, %r15, 0 +0xb2 0xe8 0x00 0x0f + +# CHECK: ppa %r4, %r6, 7 +0xb2 0xe8 0x70 0x46 + +# CHECK: ppa %r15, %r0, 0 +0xb2 0xe8 0x00 0xf0 + # CHECK: risbg %r0, %r0, 0, 0, 0 0xec 0x00 0x00 0x00 0x00 0x55 @@ -8062,6 +8116,93 @@ # CHECK: sy %r15, 0 0xe3 0xf0 0x00 0x00 0x00 0x5b +# CHECK: tabort 0 +0xb2 0xfc 0x00 0x00 + +# CHECK: tabort 0(%r1) +0xb2 0xfc 0x10 0x00 + +# CHECK: tabort 0(%r15) +0xb2 0xfc 0xf0 0x00 + +# CHECK: tabort 4095 +0xb2 0xfc 0x0f 0xff + +# CHECK: tabort 4095(%r1) +0xb2 0xfc 0x1f 0xff + +# CHECK: tabort 4095(%r15) +0xb2 0xfc 0xff 0xff + +# CHECK: tbegin 0, 0 +0xe5 0x60 0x00 0x00 0x00 0x00 + +# CHECK: tbegin 4095, 0 +0xe5 0x60 0x0f 0xff 0x00 0x00 + +# CHECK: tbegin 0, 0 +0xe5 0x60 0x00 0x00 0x00 0x00 + +# CHECK: tbegin 0, 1 +0xe5 0x60 0x00 0x00 0x00 0x01 + +# CHECK: tbegin 0, 32767 +0xe5 0x60 0x00 0x00 0x7f 0xff + +# CHECK: tbegin 0, 32768 +0xe5 0x60 0x00 0x00 0x80 0x00 + +# CHECK: tbegin 0, 65535 +0xe5 0x60 0x00 0x00 0xff 0xff + +# CHECK: tbegin 0(%r1), 42 +0xe5 0x60 0x10 0x00 0x00 0x2a + +# CHECK: tbegin 0(%r15), 42 +0xe5 0x60 0xf0 0x00 0x00 0x2a + +# CHECK: tbegin 4095(%r1), 42 +0xe5 0x60 0x1f 0xff 0x00 0x2a + +# CHECK: tbegin 4095(%r15), 42 +0xe5 0x60 0xff 0xff 0x00 0x2a + +# CHECK: tbeginc 0, 0 +0xe5 0x61 0x00 0x00 0x00 0x00 + +# CHECK: tbeginc 4095, 0 +0xe5 0x61 0x0f 0xff 0x00 0x00 + +# CHECK: tbeginc 0, 0 +0xe5 0x61 0x00 0x00 0x00 0x00 + +# CHECK: tbeginc 0, 1 +0xe5 0x61 0x00 0x00 0x00 0x01 + +# CHECK: tbeginc 0, 32767 +0xe5 0x61 0x00 0x00 0x7f 0xff + +# CHECK: tbeginc 0, 32768 +0xe5 0x61 0x00 0x00 0x80 0x00 + +# CHECK: tbeginc 0, 65535 +0xe5 0x61 0x00 0x00 0xff 0xff + +# CHECK: tbeginc 0(%r1), 42 +0xe5 0x61 0x10 0x00 0x00 0x2a + +# CHECK: tbeginc 0(%r15), 42 +0xe5 0x61 0xf0 0x00 0x00 0x2a + +# CHECK: tbeginc 4095(%r1), 42 +0xe5 0x61 0x1f 0xff 0x00 0x2a + +# CHECK: tbeginc 4095(%r15), 42 +0xe5 0x61 0xff 0xff 0x00 0x2a + +# CHECK: tend +0xb2 0xf8 0x00 0x00 + # CHECK: tm 0, 0 0x91 0x00 0x00 0x00 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233803 91177308-0d34-0410-b5e6-96231b3b80d8
3934 lines
154 KiB
C++
3934 lines
154 KiB
C++
//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SystemZTargetLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZISelLowering.h"
|
|
#include "SystemZCallingConv.h"
|
|
#include "SystemZConstantPoolValue.h"
|
|
#include "SystemZMachineFunctionInfo.h"
|
|
#include "SystemZTargetMachine.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include <cctype>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "systemz-lower"
|
|
|
|
namespace {
|
|
// Represents a sequence for extracting a 0/1 value from an IPM result:
|
|
// (((X ^ XORValue) + AddValue) >> Bit)
|
|
struct IPMConversion {
|
|
IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
|
|
: XORValue(xorValue), AddValue(addValue), Bit(bit) {}
|
|
|
|
int64_t XORValue;
|
|
int64_t AddValue;
|
|
unsigned Bit;
|
|
};
|
|
|
|
// Represents information about a comparison.
|
|
struct Comparison {
|
|
Comparison(SDValue Op0In, SDValue Op1In)
|
|
: Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
|
|
|
|
// The operands to the comparison.
|
|
SDValue Op0, Op1;
|
|
|
|
// The opcode that should be used to compare Op0 and Op1.
|
|
unsigned Opcode;
|
|
|
|
// A SystemZICMP value. Only used for integer comparisons.
|
|
unsigned ICmpType;
|
|
|
|
// The mask of CC values that Opcode can produce.
|
|
unsigned CCValid;
|
|
|
|
// The mask of CC values for which the original condition is true.
|
|
unsigned CCMask;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// Classify VT as either 32 or 64 bit.
|
|
static bool is32Bit(EVT VT) {
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::i32:
|
|
return true;
|
|
case MVT::i64:
|
|
return false;
|
|
default:
|
|
llvm_unreachable("Unsupported type");
|
|
}
|
|
}
|
|
|
|
// Return a version of MachineOperand that can be safely used before the
|
|
// final use.
|
|
static MachineOperand earlyUseOperand(MachineOperand Op) {
|
|
if (Op.isReg())
|
|
Op.setIsKill(false);
|
|
return Op;
|
|
}
|
|
|
|
SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm,
|
|
const SystemZSubtarget &STI)
|
|
: TargetLowering(tm), Subtarget(STI) {
|
|
MVT PtrVT = getPointerTy();
|
|
|
|
// Set up the register classes.
|
|
if (Subtarget.hasHighWord())
|
|
addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
|
|
else
|
|
addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
|
|
addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
|
|
addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
|
|
addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
|
|
addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
|
|
|
|
// Compute derived properties from the register classes
|
|
computeRegisterProperties(Subtarget.getRegisterInfo());
|
|
|
|
// Set up special registers.
|
|
setExceptionPointerRegister(SystemZ::R6D);
|
|
setExceptionSelectorRegister(SystemZ::R7D);
|
|
setStackPointerRegisterToSaveRestore(SystemZ::R15D);
|
|
|
|
// TODO: It may be better to default to latency-oriented scheduling, however
|
|
// LLVM's current latency-oriented scheduler can't handle physreg definitions
|
|
// such as SystemZ has with CC, so set this to the register-pressure
|
|
// scheduler, because it can.
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
|
|
|
|
// Instructions are strings of 2-byte aligned 2-byte values.
|
|
setMinFunctionAlignment(2);
|
|
|
|
// Handle operations that are handled in a similar way for all types.
|
|
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
|
|
I <= MVT::LAST_FP_VALUETYPE;
|
|
++I) {
|
|
MVT VT = MVT::SimpleValueType(I);
|
|
if (isTypeLegal(VT)) {
|
|
// Lower SET_CC into an IPM-based sequence.
|
|
setOperationAction(ISD::SETCC, VT, Custom);
|
|
|
|
// Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
|
|
setOperationAction(ISD::SELECT, VT, Expand);
|
|
|
|
// Lower SELECT_CC and BR_CC into separate comparisons and branches.
|
|
setOperationAction(ISD::SELECT_CC, VT, Custom);
|
|
setOperationAction(ISD::BR_CC, VT, Custom);
|
|
}
|
|
}
|
|
|
|
// Expand jump table branches as address arithmetic followed by an
|
|
// indirect jump.
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
|
|
// Expand BRCOND into a BR_CC (see above).
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
|
|
// Handle integer types.
|
|
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
|
|
I <= MVT::LAST_INTEGER_VALUETYPE;
|
|
++I) {
|
|
MVT VT = MVT::SimpleValueType(I);
|
|
if (isTypeLegal(VT)) {
|
|
// Expand individual DIV and REMs into DIVREMs.
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::SDIVREM, VT, Custom);
|
|
setOperationAction(ISD::UDIVREM, VT, Custom);
|
|
|
|
// Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
|
|
// stores, putting a serialization instruction after the stores.
|
|
setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
|
|
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
|
|
|
|
// Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
|
|
// available, or if the operand is constant.
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
|
|
|
|
// Use POPCNT on z196 and above.
|
|
if (Subtarget.hasPopulationCount())
|
|
setOperationAction(ISD::CTPOP, VT, Custom);
|
|
else
|
|
setOperationAction(ISD::CTPOP, VT, Expand);
|
|
|
|
// No special instructions for these.
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::ROTR, VT, Expand);
|
|
|
|
// Use *MUL_LOHI where possible instead of MULH*.
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Custom);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Custom);
|
|
|
|
// Only z196 and above have native support for conversions to unsigned.
|
|
if (!Subtarget.hasFPExtension())
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
|
|
}
|
|
}
|
|
|
|
// Type legalization will convert 8- and 16-bit atomic operations into
|
|
// forms that operate on i32s (but still keeping the original memory VT).
|
|
// Lower them into full i32 operations.
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
|
|
|
|
// z10 has instructions for signed but not unsigned FP conversion.
|
|
// Handle unsigned 32-bit types as signed 64-bit types.
|
|
if (!Subtarget.hasFPExtension()) {
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
|
|
}
|
|
|
|
// We have native support for a 64-bit CTLZ, via FLOGR.
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Promote);
|
|
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
|
|
|
|
// Give LowerOperation the chance to replace 64-bit ORs with subregs.
|
|
setOperationAction(ISD::OR, MVT::i64, Custom);
|
|
|
|
// FIXME: Can we support these natively?
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
|
|
|
|
// We have native instructions for i8, i16 and i32 extensions, but not i1.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
|
|
}
|
|
|
|
// Handle the various types of symbolic address.
|
|
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
|
|
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
|
|
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
|
|
setOperationAction(ISD::JumpTable, PtrVT, Custom);
|
|
|
|
// We need to handle dynamic allocations specially because of the
|
|
// 160-byte area at the bottom of the stack.
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
|
|
|
|
// Use custom expanders so that we can force the function to use
|
|
// a frame pointer.
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
|
|
|
|
// Handle prefetches with PFD or PFDRL.
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
|
|
|
|
// Handle floating-point types.
|
|
for (unsigned I = MVT::FIRST_FP_VALUETYPE;
|
|
I <= MVT::LAST_FP_VALUETYPE;
|
|
++I) {
|
|
MVT VT = MVT::SimpleValueType(I);
|
|
if (isTypeLegal(VT)) {
|
|
// We can use FI for FRINT.
|
|
setOperationAction(ISD::FRINT, VT, Legal);
|
|
|
|
// We can use the extended form of FI for other rounding operations.
|
|
if (Subtarget.hasFPExtension()) {
|
|
setOperationAction(ISD::FNEARBYINT, VT, Legal);
|
|
setOperationAction(ISD::FFLOOR, VT, Legal);
|
|
setOperationAction(ISD::FCEIL, VT, Legal);
|
|
setOperationAction(ISD::FTRUNC, VT, Legal);
|
|
setOperationAction(ISD::FROUND, VT, Legal);
|
|
}
|
|
|
|
// No special instructions for these.
|
|
setOperationAction(ISD::FSIN, VT, Expand);
|
|
setOperationAction(ISD::FCOS, VT, Expand);
|
|
setOperationAction(ISD::FREM, VT, Expand);
|
|
}
|
|
}
|
|
|
|
// We have fused multiply-addition for f32 and f64 but not f128.
|
|
setOperationAction(ISD::FMA, MVT::f32, Legal);
|
|
setOperationAction(ISD::FMA, MVT::f64, Legal);
|
|
setOperationAction(ISD::FMA, MVT::f128, Expand);
|
|
|
|
// Needed so that we don't try to implement f128 constant loads using
|
|
// a load-and-extend of a f80 constant (in cases where the constant
|
|
// would fit in an f80).
|
|
for (MVT VT : MVT::fp_valuetypes())
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
|
|
|
|
// Floating-point truncation and stores need to be done separately.
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
|
|
|
|
// We have 64-bit FPR<->GPR moves, but need special handling for
|
|
// 32-bit forms.
|
|
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
|
|
|
|
// VASTART and VACOPY need to deal with the SystemZ-specific varargs
|
|
// structure, but VAEND is a no-op.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Codes for which we want to perform some z-specific combinations.
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
|
|
// Handle intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
|
|
// We want to use MVC in preference to even a single load/store pair.
|
|
MaxStoresPerMemcpy = 0;
|
|
MaxStoresPerMemcpyOptSize = 0;
|
|
|
|
// The main memset sequence is a byte store followed by an MVC.
|
|
// Two STC or MV..I stores win over that, but the kind of fused stores
|
|
// generated by target-independent code don't when the byte value is
|
|
// variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
|
|
// than "STC;MVC". Handle the choice in target-specific code instead.
|
|
MaxStoresPerMemset = 0;
|
|
MaxStoresPerMemsetOptSize = 0;
|
|
}
|
|
|
|
EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
if (!VT.isVector())
|
|
return MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
return true;
|
|
case MVT::f128:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
// We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
|
|
return Imm.isZero() || Imm.isNegZero();
|
|
}
|
|
|
|
bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
// We can use CGFI or CLGFI.
|
|
return isInt<32>(Imm) || isUInt<32>(Imm);
|
|
}
|
|
|
|
bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
|
// We can use ALGFI or SLGFI.
|
|
return isUInt<32>(Imm) || isUInt<32>(-Imm);
|
|
}
|
|
|
|
bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned,
|
|
unsigned,
|
|
bool *Fast) const {
|
|
// Unaligned accesses should never be slower than the expanded version.
|
|
// We check specifically for aligned accesses in the few cases where
|
|
// they are required.
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
|
|
bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// Punt on globals for now, although they can be used in limited
|
|
// RELATIVE LONG cases.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// Require a 20-bit signed offset.
|
|
if (!isInt<20>(AM.BaseOffs))
|
|
return false;
|
|
|
|
// Indexing is OK but no scale factor can be applied.
|
|
return AM.Scale == 0 || AM.Scale == 1;
|
|
}
|
|
|
|
bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
|
|
if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
|
|
return false;
|
|
unsigned FromBits = FromType->getPrimitiveSizeInBits();
|
|
unsigned ToBits = ToType->getPrimitiveSizeInBits();
|
|
return FromBits > ToBits;
|
|
}
|
|
|
|
bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
|
|
if (!FromVT.isInteger() || !ToVT.isInteger())
|
|
return false;
|
|
unsigned FromBits = FromVT.getSizeInBits();
|
|
unsigned ToBits = ToVT.getSizeInBits();
|
|
return FromBits > ToBits;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline asm support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetLowering::ConstraintType
|
|
SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'a': // Address register
|
|
case 'd': // Data register (equivalent to 'r')
|
|
case 'f': // Floating-point register
|
|
case 'h': // High-part register
|
|
case 'r': // General-purpose register
|
|
return C_RegisterClass;
|
|
|
|
case 'Q': // Memory with base and unsigned 12-bit displacement
|
|
case 'R': // Likewise, plus an index
|
|
case 'S': // Memory with base and signed 20-bit displacement
|
|
case 'T': // Likewise, plus an index
|
|
case 'm': // Equivalent to 'T'.
|
|
return C_Memory;
|
|
|
|
case 'I': // Unsigned 8-bit constant
|
|
case 'J': // Unsigned 12-bit constant
|
|
case 'K': // Signed 16-bit constant
|
|
case 'L': // Signed 20-bit displacement (on all targets we support)
|
|
case 'M': // 0x7fffffff
|
|
return C_Other;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
TargetLowering::ConstraintWeight SystemZTargetLowering::
|
|
getSingleConstraintMatchWeight(AsmOperandInfo &info,
|
|
const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
|
|
case 'a': // Address register
|
|
case 'd': // Data register (equivalent to 'r')
|
|
case 'h': // High-part register
|
|
case 'r': // General-purpose register
|
|
if (CallOperandVal->getType()->isIntegerTy())
|
|
weight = CW_Register;
|
|
break;
|
|
|
|
case 'f': // Floating-point register
|
|
if (type->isFloatingPointTy())
|
|
weight = CW_Register;
|
|
break;
|
|
|
|
case 'I': // Unsigned 8-bit constant
|
|
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
|
|
if (isUInt<8>(C->getZExtValue()))
|
|
weight = CW_Constant;
|
|
break;
|
|
|
|
case 'J': // Unsigned 12-bit constant
|
|
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
|
|
if (isUInt<12>(C->getZExtValue()))
|
|
weight = CW_Constant;
|
|
break;
|
|
|
|
case 'K': // Signed 16-bit constant
|
|
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
|
|
if (isInt<16>(C->getSExtValue()))
|
|
weight = CW_Constant;
|
|
break;
|
|
|
|
case 'L': // Signed 20-bit displacement (on all targets we support)
|
|
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
|
|
if (isInt<20>(C->getSExtValue()))
|
|
weight = CW_Constant;
|
|
break;
|
|
|
|
case 'M': // 0x7fffffff
|
|
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
|
|
if (C->getZExtValue() == 0x7fffffff)
|
|
weight = CW_Constant;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
// Parse a "{tNNN}" register constraint for which the register type "t"
|
|
// has already been verified. MC is the class associated with "t" and
|
|
// Map maps 0-based register numbers to LLVM register numbers.
|
|
static std::pair<unsigned, const TargetRegisterClass *>
|
|
parseRegisterNumber(const std::string &Constraint,
|
|
const TargetRegisterClass *RC, const unsigned *Map) {
|
|
assert(*(Constraint.end()-1) == '}' && "Missing '}'");
|
|
if (isdigit(Constraint[2])) {
|
|
std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
|
|
unsigned Index = atoi(Suffix.c_str());
|
|
if (Index < 16 && Map[Index])
|
|
return std::make_pair(Map[Index], RC);
|
|
}
|
|
return std::make_pair(0U, nullptr);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
SystemZTargetLowering::getRegForInlineAsmConstraint(
|
|
const TargetRegisterInfo *TRI, const std::string &Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// GCC Constraint Letters
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'd': // Data register (equivalent to 'r')
|
|
case 'r': // General-purpose register
|
|
if (VT == MVT::i64)
|
|
return std::make_pair(0U, &SystemZ::GR64BitRegClass);
|
|
else if (VT == MVT::i128)
|
|
return std::make_pair(0U, &SystemZ::GR128BitRegClass);
|
|
return std::make_pair(0U, &SystemZ::GR32BitRegClass);
|
|
|
|
case 'a': // Address register
|
|
if (VT == MVT::i64)
|
|
return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
|
|
else if (VT == MVT::i128)
|
|
return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
|
|
return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
|
|
|
|
case 'h': // High-part register (an LLVM extension)
|
|
return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
|
|
|
|
case 'f': // Floating-point register
|
|
if (VT == MVT::f64)
|
|
return std::make_pair(0U, &SystemZ::FP64BitRegClass);
|
|
else if (VT == MVT::f128)
|
|
return std::make_pair(0U, &SystemZ::FP128BitRegClass);
|
|
return std::make_pair(0U, &SystemZ::FP32BitRegClass);
|
|
}
|
|
}
|
|
if (Constraint[0] == '{') {
|
|
// We need to override the default register parsing for GPRs and FPRs
|
|
// because the interpretation depends on VT. The internal names of
|
|
// the registers are also different from the external names
|
|
// (F0D and F0S instead of F0, etc.).
|
|
if (Constraint[1] == 'r') {
|
|
if (VT == MVT::i32)
|
|
return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
|
|
SystemZMC::GR32Regs);
|
|
if (VT == MVT::i128)
|
|
return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
|
|
SystemZMC::GR128Regs);
|
|
return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
|
|
SystemZMC::GR64Regs);
|
|
}
|
|
if (Constraint[1] == 'f') {
|
|
if (VT == MVT::f32)
|
|
return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
|
|
SystemZMC::FP32Regs);
|
|
if (VT == MVT::f128)
|
|
return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
|
|
SystemZMC::FP128Regs);
|
|
return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
|
|
SystemZMC::FP64Regs);
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
}
|
|
|
|
void SystemZTargetLowering::
|
|
LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
// Only support length 1 constraints for now.
|
|
if (Constraint.length() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'I': // Unsigned 8-bit constant
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op))
|
|
if (isUInt<8>(C->getZExtValue()))
|
|
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
|
|
Op.getValueType()));
|
|
return;
|
|
|
|
case 'J': // Unsigned 12-bit constant
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op))
|
|
if (isUInt<12>(C->getZExtValue()))
|
|
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
|
|
Op.getValueType()));
|
|
return;
|
|
|
|
case 'K': // Signed 16-bit constant
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op))
|
|
if (isInt<16>(C->getSExtValue()))
|
|
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
|
|
Op.getValueType()));
|
|
return;
|
|
|
|
case 'L': // Signed 20-bit displacement (on all targets we support)
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op))
|
|
if (isInt<20>(C->getSExtValue()))
|
|
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
|
|
Op.getValueType()));
|
|
return;
|
|
|
|
case 'M': // 0x7fffffff
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op))
|
|
if (C->getZExtValue() == 0x7fffffff)
|
|
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
|
|
Op.getValueType()));
|
|
return;
|
|
}
|
|
}
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZGenCallingConv.inc"
|
|
|
|
bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
|
|
Type *ToType) const {
|
|
return isTruncateFree(FromType, ToType);
|
|
}
|
|
|
|
bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
|
|
if (!CI->isTailCall())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Value is a value that has been passed to us in the location described by VA
|
|
// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
|
|
// any loads onto Chain.
|
|
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
|
|
CCValAssign &VA, SDValue Chain,
|
|
SDValue Value) {
|
|
// If the argument has been promoted from a smaller type, insert an
|
|
// assertion to capture this.
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
|
|
DAG.getValueType(VA.getValVT()));
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
|
|
DAG.getValueType(VA.getValVT()));
|
|
|
|
if (VA.isExtInLoc())
|
|
Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
|
|
else if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
else
|
|
assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
|
|
return Value;
|
|
}
|
|
|
|
// Value is a value of type VA.getValVT() that we need to copy into
|
|
// the location described by VA. Return a copy of Value converted to
|
|
// VA.getValVT(). The caller is responsible for handling indirect values.
|
|
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
|
|
CCValAssign &VA, SDValue Value) {
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::SExt:
|
|
return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
|
|
case CCValAssign::ZExt:
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
|
|
case CCValAssign::AExt:
|
|
return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
|
|
case CCValAssign::Full:
|
|
return Value;
|
|
default:
|
|
llvm_unreachable("Unhandled getLocInfo()");
|
|
}
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::
|
|
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc DL, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SystemZMachineFunctionInfo *FuncInfo =
|
|
MF.getInfo<SystemZMachineFunctionInfo>();
|
|
auto *TFL =
|
|
static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
|
|
|
|
unsigned NumFixedGPRs = 0;
|
|
unsigned NumFixedFPRs = 0;
|
|
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
|
|
SDValue ArgValue;
|
|
CCValAssign &VA = ArgLocs[I];
|
|
EVT LocVT = VA.getLocVT();
|
|
if (VA.isRegLoc()) {
|
|
// Arguments passed in registers
|
|
const TargetRegisterClass *RC;
|
|
switch (LocVT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
// Integers smaller than i64 should be promoted to i64.
|
|
llvm_unreachable("Unexpected argument type");
|
|
case MVT::i32:
|
|
NumFixedGPRs += 1;
|
|
RC = &SystemZ::GR32BitRegClass;
|
|
break;
|
|
case MVT::i64:
|
|
NumFixedGPRs += 1;
|
|
RC = &SystemZ::GR64BitRegClass;
|
|
break;
|
|
case MVT::f32:
|
|
NumFixedFPRs += 1;
|
|
RC = &SystemZ::FP32BitRegClass;
|
|
break;
|
|
case MVT::f64:
|
|
NumFixedFPRs += 1;
|
|
RC = &SystemZ::FP64BitRegClass;
|
|
break;
|
|
}
|
|
|
|
unsigned VReg = MRI.createVirtualRegister(RC);
|
|
MRI.addLiveIn(VA.getLocReg(), VReg);
|
|
ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
|
|
} else {
|
|
assert(VA.isMemLoc() && "Argument not register or memory");
|
|
|
|
// Create the frame index object for this incoming parameter.
|
|
int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
|
|
VA.getLocMemOffset(), true);
|
|
|
|
// Create the SelectionDAG nodes corresponding to a load
|
|
// from this parameter. Unpromoted ints and floats are
|
|
// passed as right-justified 8-byte values.
|
|
EVT PtrVT = getPointerTy();
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
|
|
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
|
|
ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
// Convert the value of the argument register into the value that's
|
|
// being passed.
|
|
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
|
|
}
|
|
|
|
if (IsVarArg) {
|
|
// Save the number of non-varargs registers for later use by va_start, etc.
|
|
FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
|
|
FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
|
|
|
|
// Likewise the address (in the form of a frame index) of where the
|
|
// first stack vararg would be. The 1-byte size here is arbitrary.
|
|
int64_t StackSize = CCInfo.getNextStackOffset();
|
|
FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
|
|
|
|
// ...and a similar frame index for the caller-allocated save area
|
|
// that will be used to store the incoming registers.
|
|
int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
|
|
unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
|
|
FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
|
|
|
|
// Store the FPR varargs in the reserved frame slots. (We store the
|
|
// GPRs as part of the prologue.)
|
|
if (NumFixedFPRs < SystemZ::NumArgFPRs) {
|
|
SDValue MemOps[SystemZ::NumArgFPRs];
|
|
for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
|
|
unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
|
|
int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
|
|
&SystemZ::FP64BitRegClass);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
|
|
MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0);
|
|
|
|
}
|
|
// Join the stores, which are independent of one another.
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
|
|
makeArrayRef(&MemOps[NumFixedFPRs],
|
|
SystemZ::NumArgFPRs-NumFixedFPRs));
|
|
}
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
static bool canUseSiblingCall(const CCState &ArgCCInfo,
|
|
SmallVectorImpl<CCValAssign> &ArgLocs) {
|
|
// Punt if there are any indirect or stack arguments, or if the call
|
|
// needs the call-saved argument register R6.
|
|
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
|
|
CCValAssign &VA = ArgLocs[I];
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
if (!VA.isRegLoc())
|
|
return false;
|
|
unsigned Reg = VA.getLocReg();
|
|
if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SDValue
|
|
SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &DL = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
// Analyze the operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
|
|
|
|
// We don't support GuaranteedTailCallOpt, only automatically-detected
|
|
// sibling calls.
|
|
if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
|
|
IsTailCall = false;
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
|
|
|
|
// Mark the start of the call.
|
|
if (!IsTailCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
|
|
DL);
|
|
|
|
// Copy argument values to their designated locations.
|
|
SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
SDValue StackPtr;
|
|
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
|
|
CCValAssign &VA = ArgLocs[I];
|
|
SDValue ArgValue = OutVals[I];
|
|
|
|
if (VA.getLocInfo() == CCValAssign::Indirect) {
|
|
// Store the argument in a stack slot and pass its address.
|
|
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
|
|
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0));
|
|
ArgValue = SpillSlot;
|
|
} else
|
|
ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
|
|
|
|
if (VA.isRegLoc())
|
|
// Queue up the argument copies and emit them at the end.
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
|
|
else {
|
|
assert(VA.isMemLoc() && "Argument not register or memory");
|
|
|
|
// Work out the address of the stack slot. Unpromoted ints and
|
|
// floats are passed as right-justified 8-byte values.
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
|
|
unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
|
|
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
|
|
Offset += 4;
|
|
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
|
|
DAG.getIntPtrConstant(Offset));
|
|
|
|
// Emit the store.
|
|
MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
|
|
MachinePointerInfo(),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
|
|
// Join the stores, which are independent of one another.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
// Accept direct calls by converting symbolic call addresses to the
|
|
// associated Target* opcodes. Force %r1 to be used for indirect
|
|
// tail calls.
|
|
SDValue Glue;
|
|
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
|
|
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
|
|
} else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
|
|
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
|
|
} else if (IsTailCall) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
|
|
Glue = Chain.getValue(1);
|
|
Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes, chained and glued together.
|
|
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
|
|
RegsToPass[I].second, Glue);
|
|
Glue = Chain.getValue(1);
|
|
}
|
|
|
|
// The first call operand is the chain and the second is the target address.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[I].first,
|
|
RegsToPass[I].second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
// Glue the call to the argument copies, if any.
|
|
if (Glue.getNode())
|
|
Ops.push_back(Glue);
|
|
|
|
// Emit the call.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
if (IsTailCall)
|
|
return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
|
|
Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Mark the end of the call, which is glued to the call itself.
|
|
Chain = DAG.getCALLSEQ_END(Chain,
|
|
DAG.getConstant(NumBytes, PtrVT, true),
|
|
DAG.getConstant(0, PtrVT, true),
|
|
Glue, DL);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RetLocs;
|
|
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
|
|
RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
|
|
CCValAssign &VA = RetLocs[I];
|
|
|
|
// Copy the value out, gluing the copy to the end of the call sequence.
|
|
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
|
|
VA.getLocVT(), Glue);
|
|
Chain = RetValue.getValue(1);
|
|
Glue = RetValue.getValue(2);
|
|
|
|
// Convert the value of the return register into the value that's
|
|
// being returned.
|
|
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
SystemZTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc DL, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Assign locations to each returned value.
|
|
SmallVector<CCValAssign, 16> RetLocs;
|
|
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
|
|
RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
|
|
|
|
// Quick exit for void returns
|
|
if (RetLocs.empty())
|
|
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
|
|
|
|
// Copy the result values into the output registers.
|
|
SDValue Glue;
|
|
SmallVector<SDValue, 4> RetOps;
|
|
RetOps.push_back(Chain);
|
|
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
|
|
CCValAssign &VA = RetLocs[I];
|
|
SDValue RetValue = OutVals[I];
|
|
|
|
// Make the return register live on exit.
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
// Promote the value as required.
|
|
RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
|
|
|
|
// Chain and glue the copies together.
|
|
unsigned Reg = VA.getLocReg();
|
|
Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
|
|
Glue = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
|
|
}
|
|
|
|
// Update chain and glue.
|
|
RetOps[0] = Chain;
|
|
if (Glue.getNode())
|
|
RetOps.push_back(Glue);
|
|
|
|
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::
|
|
prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
|
|
return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
|
|
}
|
|
|
|
// Return true if Op is an intrinsic node with chain that returns the CC value
|
|
// as its only (other) argument. Provide the associated SystemZISD opcode and
|
|
// the mask of valid CC values if so.
|
|
static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
|
|
unsigned &CCValid) {
|
|
unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
switch (Id) {
|
|
case Intrinsic::s390_tbegin:
|
|
Opcode = SystemZISD::TBEGIN;
|
|
CCValid = SystemZ::CCMASK_TBEGIN;
|
|
return true;
|
|
|
|
case Intrinsic::s390_tbegin_nofloat:
|
|
Opcode = SystemZISD::TBEGIN_NOFLOAT;
|
|
CCValid = SystemZ::CCMASK_TBEGIN;
|
|
return true;
|
|
|
|
case Intrinsic::s390_tend:
|
|
Opcode = SystemZISD::TEND;
|
|
CCValid = SystemZ::CCMASK_TEND;
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Emit an intrinsic with chain with a glued value instead of its CC result.
|
|
static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
|
|
unsigned Opcode) {
|
|
// Copy all operands except the intrinsic ID.
|
|
unsigned NumOps = Op.getNumOperands();
|
|
SmallVector<SDValue, 6> Ops;
|
|
Ops.reserve(NumOps - 1);
|
|
Ops.push_back(Op.getOperand(0));
|
|
for (unsigned I = 2; I < NumOps; ++I)
|
|
Ops.push_back(Op.getOperand(I));
|
|
|
|
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
|
|
SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
|
|
SDValue OldChain = SDValue(Op.getNode(), 1);
|
|
SDValue NewChain = SDValue(Intr.getNode(), 0);
|
|
DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
|
|
return Intr;
|
|
}
|
|
|
|
// CC is a comparison that will be implemented using an integer or
|
|
// floating-point comparison. Return the condition code mask for
|
|
// a branch on true. In the integer case, CCMASK_CMP_UO is set for
|
|
// unsigned comparisons and clear for signed ones. In the floating-point
|
|
// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
|
|
static unsigned CCMaskForCondCode(ISD::CondCode CC) {
|
|
#define CONV(X) \
|
|
case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
|
|
case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
|
|
case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
|
|
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Invalid integer condition!");
|
|
|
|
CONV(EQ);
|
|
CONV(NE);
|
|
CONV(GT);
|
|
CONV(GE);
|
|
CONV(LT);
|
|
CONV(LE);
|
|
|
|
case ISD::SETO: return SystemZ::CCMASK_CMP_O;
|
|
case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
|
|
}
|
|
#undef CONV
|
|
}
|
|
|
|
// Return a sequence for getting a 1 from an IPM result when CC has a
|
|
// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
|
|
// The handling of CC values outside CCValid doesn't matter.
|
|
static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
|
|
// Deal with cases where the result can be taken directly from a bit
|
|
// of the IPM result.
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
|
|
return IPMConversion(0, 0, SystemZ::IPM_CC);
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
|
|
return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
|
|
|
|
// Deal with cases where we can add a value to force the sign bit
|
|
// to contain the right value. Putting the bit in 31 means we can
|
|
// use SRL rather than RISBG(L), and also makes it easier to get a
|
|
// 0/-1 value, so it has priority over the other tests below.
|
|
//
|
|
// These sequences rely on the fact that the upper two bits of the
|
|
// IPM result are zero.
|
|
uint64_t TopBit = uint64_t(1) << 31;
|
|
if (CCMask == (CCValid & SystemZ::CCMASK_0))
|
|
return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
|
|
return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_0
|
|
| SystemZ::CCMASK_1
|
|
| SystemZ::CCMASK_2)))
|
|
return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
|
|
if (CCMask == (CCValid & SystemZ::CCMASK_3))
|
|
return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_1
|
|
| SystemZ::CCMASK_2
|
|
| SystemZ::CCMASK_3)))
|
|
return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
|
|
|
|
// Next try inverting the value and testing a bit. 0/1 could be
|
|
// handled this way too, but we dealt with that case above.
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
|
|
return IPMConversion(-1, 0, SystemZ::IPM_CC);
|
|
|
|
// Handle cases where adding a value forces a non-sign bit to contain
|
|
// the right value.
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
|
|
return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
|
|
return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
|
|
|
|
// The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
|
|
// can be done by inverting the low CC bit and applying one of the
|
|
// sign-based extractions above.
|
|
if (CCMask == (CCValid & SystemZ::CCMASK_1))
|
|
return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
|
|
if (CCMask == (CCValid & SystemZ::CCMASK_2))
|
|
return IPMConversion(1 << SystemZ::IPM_CC,
|
|
TopBit - (3 << SystemZ::IPM_CC), 31);
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_0
|
|
| SystemZ::CCMASK_1
|
|
| SystemZ::CCMASK_3)))
|
|
return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
|
|
if (CCMask == (CCValid & (SystemZ::CCMASK_0
|
|
| SystemZ::CCMASK_2
|
|
| SystemZ::CCMASK_3)))
|
|
return IPMConversion(1 << SystemZ::IPM_CC,
|
|
TopBit - (1 << SystemZ::IPM_CC), 31);
|
|
|
|
llvm_unreachable("Unexpected CC combination");
|
|
}
|
|
|
|
// If C can be converted to a comparison against zero, adjust the operands
|
|
// as necessary.
|
|
static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
|
|
if (C.ICmpType == SystemZICMP::UnsignedOnly)
|
|
return;
|
|
|
|
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
|
|
if (!ConstOp1)
|
|
return;
|
|
|
|
int64_t Value = ConstOp1->getSExtValue();
|
|
if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
|
|
(Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
|
|
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
|
|
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
|
|
C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
|
|
C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
|
|
}
|
|
}
|
|
|
|
// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
|
|
// adjust the operands as necessary.
|
|
static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
|
|
// For us to make any changes, it must a comparison between a single-use
|
|
// load and a constant.
|
|
if (!C.Op0.hasOneUse() ||
|
|
C.Op0.getOpcode() != ISD::LOAD ||
|
|
C.Op1.getOpcode() != ISD::Constant)
|
|
return;
|
|
|
|
// We must have an 8- or 16-bit load.
|
|
auto *Load = cast<LoadSDNode>(C.Op0);
|
|
unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
|
|
if (NumBits != 8 && NumBits != 16)
|
|
return;
|
|
|
|
// The load must be an extending one and the constant must be within the
|
|
// range of the unextended value.
|
|
auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
|
|
uint64_t Value = ConstOp1->getZExtValue();
|
|
uint64_t Mask = (1 << NumBits) - 1;
|
|
if (Load->getExtensionType() == ISD::SEXTLOAD) {
|
|
// Make sure that ConstOp1 is in range of C.Op0.
|
|
int64_t SignedValue = ConstOp1->getSExtValue();
|
|
if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
|
|
return;
|
|
if (C.ICmpType != SystemZICMP::SignedOnly) {
|
|
// Unsigned comparison between two sign-extended values is equivalent
|
|
// to unsigned comparison between two zero-extended values.
|
|
Value &= Mask;
|
|
} else if (NumBits == 8) {
|
|
// Try to treat the comparison as unsigned, so that we can use CLI.
|
|
// Adjust CCMask and Value as necessary.
|
|
if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
|
|
// Test whether the high bit of the byte is set.
|
|
Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
|
|
else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
|
|
// Test whether the high bit of the byte is clear.
|
|
Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
|
|
else
|
|
// No instruction exists for this combination.
|
|
return;
|
|
C.ICmpType = SystemZICMP::UnsignedOnly;
|
|
}
|
|
} else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
|
|
if (Value > Mask)
|
|
return;
|
|
assert(C.ICmpType == SystemZICMP::Any &&
|
|
"Signedness shouldn't matter here.");
|
|
} else
|
|
return;
|
|
|
|
// Make sure that the first operand is an i32 of the right extension type.
|
|
ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
|
|
ISD::SEXTLOAD :
|
|
ISD::ZEXTLOAD);
|
|
if (C.Op0.getValueType() != MVT::i32 ||
|
|
Load->getExtensionType() != ExtType)
|
|
C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
|
|
Load->getChain(), Load->getBasePtr(),
|
|
Load->getPointerInfo(), Load->getMemoryVT(),
|
|
Load->isVolatile(), Load->isNonTemporal(),
|
|
Load->isInvariant(), Load->getAlignment());
|
|
|
|
// Make sure that the second operand is an i32 with the right value.
|
|
if (C.Op1.getValueType() != MVT::i32 ||
|
|
Value != ConstOp1->getZExtValue())
|
|
C.Op1 = DAG.getConstant(Value, MVT::i32);
|
|
}
|
|
|
|
// Return true if Op is either an unextended load, or a load suitable
|
|
// for integer register-memory comparisons of type ICmpType.
|
|
static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
|
|
auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
|
|
if (Load) {
|
|
// There are no instructions to compare a register with a memory byte.
|
|
if (Load->getMemoryVT() == MVT::i8)
|
|
return false;
|
|
// Otherwise decide on extension type.
|
|
switch (Load->getExtensionType()) {
|
|
case ISD::NON_EXTLOAD:
|
|
return true;
|
|
case ISD::SEXTLOAD:
|
|
return ICmpType != SystemZICMP::UnsignedOnly;
|
|
case ISD::ZEXTLOAD:
|
|
return ICmpType != SystemZICMP::SignedOnly;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if it is better to swap the operands of C.
|
|
static bool shouldSwapCmpOperands(const Comparison &C) {
|
|
// Leave f128 comparisons alone, since they have no memory forms.
|
|
if (C.Op0.getValueType() == MVT::f128)
|
|
return false;
|
|
|
|
// Always keep a floating-point constant second, since comparisons with
|
|
// zero can use LOAD TEST and comparisons with other constants make a
|
|
// natural memory operand.
|
|
if (isa<ConstantFPSDNode>(C.Op1))
|
|
return false;
|
|
|
|
// Never swap comparisons with zero since there are many ways to optimize
|
|
// those later.
|
|
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
|
|
if (ConstOp1 && ConstOp1->getZExtValue() == 0)
|
|
return false;
|
|
|
|
// Also keep natural memory operands second if the loaded value is
|
|
// only used here. Several comparisons have memory forms.
|
|
if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
|
|
return false;
|
|
|
|
// Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
|
|
// In that case we generally prefer the memory to be second.
|
|
if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
|
|
// The only exceptions are when the second operand is a constant and
|
|
// we can use things like CHHSI.
|
|
if (!ConstOp1)
|
|
return true;
|
|
// The unsigned memory-immediate instructions can handle 16-bit
|
|
// unsigned integers.
|
|
if (C.ICmpType != SystemZICMP::SignedOnly &&
|
|
isUInt<16>(ConstOp1->getZExtValue()))
|
|
return false;
|
|
// The signed memory-immediate instructions can handle 16-bit
|
|
// signed integers.
|
|
if (C.ICmpType != SystemZICMP::UnsignedOnly &&
|
|
isInt<16>(ConstOp1->getSExtValue()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Try to promote the use of CGFR and CLGFR.
|
|
unsigned Opcode0 = C.Op0.getOpcode();
|
|
if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
|
|
return true;
|
|
if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
|
|
return true;
|
|
if (C.ICmpType != SystemZICMP::SignedOnly &&
|
|
Opcode0 == ISD::AND &&
|
|
C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return a version of comparison CC mask CCMask in which the LT and GT
|
|
// actions are swapped.
|
|
static unsigned reverseCCMask(unsigned CCMask) {
|
|
return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
|
|
(CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
|
|
(CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
|
|
(CCMask & SystemZ::CCMASK_CMP_UO));
|
|
}
|
|
|
|
// Check whether C tests for equality between X and Y and whether X - Y
|
|
// or Y - X is also computed. In that case it's better to compare the
|
|
// result of the subtraction against zero.
|
|
static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
|
|
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
|
|
C.CCMask == SystemZ::CCMASK_CMP_NE) {
|
|
for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
|
|
SDNode *N = *I;
|
|
if (N->getOpcode() == ISD::SUB &&
|
|
((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
|
|
(N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
|
|
C.Op0 = SDValue(N, 0);
|
|
C.Op1 = DAG.getConstant(0, N->getValueType(0));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check whether C compares a floating-point value with zero and if that
|
|
// floating-point value is also negated. In this case we can use the
|
|
// negation to set CC, so avoiding separate LOAD AND TEST and
|
|
// LOAD (NEGATIVE/COMPLEMENT) instructions.
|
|
static void adjustForFNeg(Comparison &C) {
|
|
auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
|
|
if (C1 && C1->isZero()) {
|
|
for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
|
|
SDNode *N = *I;
|
|
if (N->getOpcode() == ISD::FNEG) {
|
|
C.Op0 = SDValue(N, 0);
|
|
C.CCMask = reverseCCMask(C.CCMask);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check whether C compares (shl X, 32) with 0 and whether X is
|
|
// also sign-extended. In that case it is better to test the result
|
|
// of the sign extension using LTGFR.
|
|
//
|
|
// This case is important because InstCombine transforms a comparison
|
|
// with (sext (trunc X)) into a comparison with (shl X, 32).
|
|
static void adjustForLTGFR(Comparison &C) {
|
|
// Check for a comparison between (shl X, 32) and 0.
|
|
if (C.Op0.getOpcode() == ISD::SHL &&
|
|
C.Op0.getValueType() == MVT::i64 &&
|
|
C.Op1.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
|
|
auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
|
|
if (C1 && C1->getZExtValue() == 32) {
|
|
SDValue ShlOp0 = C.Op0.getOperand(0);
|
|
// See whether X has any SIGN_EXTEND_INREG uses.
|
|
for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
|
|
SDNode *N = *I;
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
|
|
cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
|
|
C.Op0 = SDValue(N, 0);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If C compares the truncation of an extending load, try to compare
|
|
// the untruncated value instead. This exposes more opportunities to
|
|
// reuse CC.
|
|
static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
|
|
if (C.Op0.getOpcode() == ISD::TRUNCATE &&
|
|
C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
|
|
C.Op1.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
|
|
auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
|
|
if (L->getMemoryVT().getStoreSizeInBits()
|
|
<= C.Op0.getValueType().getSizeInBits()) {
|
|
unsigned Type = L->getExtensionType();
|
|
if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
|
|
(Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
|
|
C.Op0 = C.Op0.getOperand(0);
|
|
C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return true if shift operation N has an in-range constant shift value.
|
|
// Store it in ShiftVal if so.
|
|
static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
|
|
auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!Shift)
|
|
return false;
|
|
|
|
uint64_t Amount = Shift->getZExtValue();
|
|
if (Amount >= N.getValueType().getSizeInBits())
|
|
return false;
|
|
|
|
ShiftVal = Amount;
|
|
return true;
|
|
}
|
|
|
|
// Check whether an AND with Mask is suitable for a TEST UNDER MASK
|
|
// instruction and whether the CC value is descriptive enough to handle
|
|
// a comparison of type Opcode between the AND result and CmpVal.
|
|
// CCMask says which comparison result is being tested and BitSize is
|
|
// the number of bits in the operands. If TEST UNDER MASK can be used,
|
|
// return the corresponding CC mask, otherwise return 0.
|
|
static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
|
|
uint64_t Mask, uint64_t CmpVal,
|
|
unsigned ICmpType) {
|
|
assert(Mask != 0 && "ANDs with zero should have been removed by now");
|
|
|
|
// Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
|
|
if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
|
|
!SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
|
|
return 0;
|
|
|
|
// Work out the masks for the lowest and highest bits.
|
|
unsigned HighShift = 63 - countLeadingZeros(Mask);
|
|
uint64_t High = uint64_t(1) << HighShift;
|
|
uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
|
|
|
|
// Signed ordered comparisons are effectively unsigned if the sign
|
|
// bit is dropped.
|
|
bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
|
|
|
|
// Check for equality comparisons with 0, or the equivalent.
|
|
if (CmpVal == 0) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_EQ)
|
|
return SystemZ::CCMASK_TM_ALL_0;
|
|
if (CCMask == SystemZ::CCMASK_CMP_NE)
|
|
return SystemZ::CCMASK_TM_SOME_1;
|
|
}
|
|
if (EffectivelyUnsigned && CmpVal <= Low) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_LT)
|
|
return SystemZ::CCMASK_TM_ALL_0;
|
|
if (CCMask == SystemZ::CCMASK_CMP_GE)
|
|
return SystemZ::CCMASK_TM_SOME_1;
|
|
}
|
|
if (EffectivelyUnsigned && CmpVal < Low) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_LE)
|
|
return SystemZ::CCMASK_TM_ALL_0;
|
|
if (CCMask == SystemZ::CCMASK_CMP_GT)
|
|
return SystemZ::CCMASK_TM_SOME_1;
|
|
}
|
|
|
|
// Check for equality comparisons with the mask, or the equivalent.
|
|
if (CmpVal == Mask) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_EQ)
|
|
return SystemZ::CCMASK_TM_ALL_1;
|
|
if (CCMask == SystemZ::CCMASK_CMP_NE)
|
|
return SystemZ::CCMASK_TM_SOME_0;
|
|
}
|
|
if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_GT)
|
|
return SystemZ::CCMASK_TM_ALL_1;
|
|
if (CCMask == SystemZ::CCMASK_CMP_LE)
|
|
return SystemZ::CCMASK_TM_SOME_0;
|
|
}
|
|
if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_GE)
|
|
return SystemZ::CCMASK_TM_ALL_1;
|
|
if (CCMask == SystemZ::CCMASK_CMP_LT)
|
|
return SystemZ::CCMASK_TM_SOME_0;
|
|
}
|
|
|
|
// Check for ordered comparisons with the top bit.
|
|
if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_LE)
|
|
return SystemZ::CCMASK_TM_MSB_0;
|
|
if (CCMask == SystemZ::CCMASK_CMP_GT)
|
|
return SystemZ::CCMASK_TM_MSB_1;
|
|
}
|
|
if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_LT)
|
|
return SystemZ::CCMASK_TM_MSB_0;
|
|
if (CCMask == SystemZ::CCMASK_CMP_GE)
|
|
return SystemZ::CCMASK_TM_MSB_1;
|
|
}
|
|
|
|
// If there are just two bits, we can do equality checks for Low and High
|
|
// as well.
|
|
if (Mask == Low + High) {
|
|
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
|
|
return SystemZ::CCMASK_TM_MIXED_MSB_0;
|
|
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
|
|
return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
|
|
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
|
|
return SystemZ::CCMASK_TM_MIXED_MSB_1;
|
|
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
|
|
return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
|
|
}
|
|
|
|
// Looks like we've exhausted our options.
|
|
return 0;
|
|
}
|
|
|
|
// See whether C can be implemented as a TEST UNDER MASK instruction.
|
|
// Update the arguments with the TM version if so.
|
|
static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
|
|
// Check that we have a comparison with a constant.
|
|
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
|
|
if (!ConstOp1)
|
|
return;
|
|
uint64_t CmpVal = ConstOp1->getZExtValue();
|
|
|
|
// Check whether the nonconstant input is an AND with a constant mask.
|
|
Comparison NewC(C);
|
|
uint64_t MaskVal;
|
|
ConstantSDNode *Mask = nullptr;
|
|
if (C.Op0.getOpcode() == ISD::AND) {
|
|
NewC.Op0 = C.Op0.getOperand(0);
|
|
NewC.Op1 = C.Op0.getOperand(1);
|
|
Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
|
|
if (!Mask)
|
|
return;
|
|
MaskVal = Mask->getZExtValue();
|
|
} else {
|
|
// There is no instruction to compare with a 64-bit immediate
|
|
// so use TMHH instead if possible. We need an unsigned ordered
|
|
// comparison with an i64 immediate.
|
|
if (NewC.Op0.getValueType() != MVT::i64 ||
|
|
NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
|
|
NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
|
|
NewC.ICmpType == SystemZICMP::SignedOnly)
|
|
return;
|
|
// Convert LE and GT comparisons into LT and GE.
|
|
if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
|
|
NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
|
|
if (CmpVal == uint64_t(-1))
|
|
return;
|
|
CmpVal += 1;
|
|
NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
|
|
}
|
|
// If the low N bits of Op1 are zero than the low N bits of Op0 can
|
|
// be masked off without changing the result.
|
|
MaskVal = -(CmpVal & -CmpVal);
|
|
NewC.ICmpType = SystemZICMP::UnsignedOnly;
|
|
}
|
|
if (!MaskVal)
|
|
return;
|
|
|
|
// Check whether the combination of mask, comparison value and comparison
|
|
// type are suitable.
|
|
unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
|
|
unsigned NewCCMask, ShiftVal;
|
|
if (NewC.ICmpType != SystemZICMP::SignedOnly &&
|
|
NewC.Op0.getOpcode() == ISD::SHL &&
|
|
isSimpleShift(NewC.Op0, ShiftVal) &&
|
|
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
|
|
MaskVal >> ShiftVal,
|
|
CmpVal >> ShiftVal,
|
|
SystemZICMP::Any))) {
|
|
NewC.Op0 = NewC.Op0.getOperand(0);
|
|
MaskVal >>= ShiftVal;
|
|
} else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
|
|
NewC.Op0.getOpcode() == ISD::SRL &&
|
|
isSimpleShift(NewC.Op0, ShiftVal) &&
|
|
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
|
|
MaskVal << ShiftVal,
|
|
CmpVal << ShiftVal,
|
|
SystemZICMP::UnsignedOnly))) {
|
|
NewC.Op0 = NewC.Op0.getOperand(0);
|
|
MaskVal <<= ShiftVal;
|
|
} else {
|
|
NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
|
|
NewC.ICmpType);
|
|
if (!NewCCMask)
|
|
return;
|
|
}
|
|
|
|
// Go ahead and make the change.
|
|
C.Opcode = SystemZISD::TM;
|
|
C.Op0 = NewC.Op0;
|
|
if (Mask && Mask->getZExtValue() == MaskVal)
|
|
C.Op1 = SDValue(Mask, 0);
|
|
else
|
|
C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
|
|
C.CCValid = SystemZ::CCMASK_TM;
|
|
C.CCMask = NewCCMask;
|
|
}
|
|
|
|
// Return a Comparison that tests the condition-code result of intrinsic
|
|
// node Call against constant integer CC using comparison code Cond.
|
|
// Opcode is the opcode of the SystemZISD operation for the intrinsic
|
|
// and CCValid is the set of possible condition-code results.
|
|
static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
|
|
SDValue Call, unsigned CCValid, uint64_t CC,
|
|
ISD::CondCode Cond) {
|
|
Comparison C(Call, SDValue());
|
|
C.Opcode = Opcode;
|
|
C.CCValid = CCValid;
|
|
if (Cond == ISD::SETEQ)
|
|
// bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
|
|
C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
|
|
else if (Cond == ISD::SETNE)
|
|
// ...and the inverse of that.
|
|
C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
|
|
else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
|
|
// bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
|
|
// always true for CC>3.
|
|
C.CCMask = CC < 4 ? -1 << (4 - CC) : -1;
|
|
else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
|
|
// ...and the inverse of that.
|
|
C.CCMask = CC < 4 ? ~(-1 << (4 - CC)) : 0;
|
|
else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
|
|
// bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
|
|
// always true for CC>3.
|
|
C.CCMask = CC < 4 ? -1 << (3 - CC) : -1;
|
|
else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
|
|
// ...and the inverse of that.
|
|
C.CCMask = CC < 4 ? ~(-1 << (3 - CC)) : 0;
|
|
else
|
|
llvm_unreachable("Unexpected integer comparison type");
|
|
C.CCMask &= CCValid;
|
|
return C;
|
|
}
|
|
|
|
// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
|
|
static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
|
|
ISD::CondCode Cond) {
|
|
if (CmpOp1.getOpcode() == ISD::Constant) {
|
|
uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
|
|
unsigned Opcode, CCValid;
|
|
if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
|
|
CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
|
|
isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
|
|
return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
|
|
}
|
|
Comparison C(CmpOp0, CmpOp1);
|
|
C.CCMask = CCMaskForCondCode(Cond);
|
|
if (C.Op0.getValueType().isFloatingPoint()) {
|
|
C.CCValid = SystemZ::CCMASK_FCMP;
|
|
C.Opcode = SystemZISD::FCMP;
|
|
adjustForFNeg(C);
|
|
} else {
|
|
C.CCValid = SystemZ::CCMASK_ICMP;
|
|
C.Opcode = SystemZISD::ICMP;
|
|
// Choose the type of comparison. Equality and inequality tests can
|
|
// use either signed or unsigned comparisons. The choice also doesn't
|
|
// matter if both sign bits are known to be clear. In those cases we
|
|
// want to give the main isel code the freedom to choose whichever
|
|
// form fits best.
|
|
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
|
|
C.CCMask == SystemZ::CCMASK_CMP_NE ||
|
|
(DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
|
|
C.ICmpType = SystemZICMP::Any;
|
|
else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
|
|
C.ICmpType = SystemZICMP::UnsignedOnly;
|
|
else
|
|
C.ICmpType = SystemZICMP::SignedOnly;
|
|
C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
|
|
adjustZeroCmp(DAG, C);
|
|
adjustSubwordCmp(DAG, C);
|
|
adjustForSubtraction(DAG, C);
|
|
adjustForLTGFR(C);
|
|
adjustICmpTruncate(DAG, C);
|
|
}
|
|
|
|
if (shouldSwapCmpOperands(C)) {
|
|
std::swap(C.Op0, C.Op1);
|
|
C.CCMask = reverseCCMask(C.CCMask);
|
|
}
|
|
|
|
adjustForTestUnderMask(DAG, C);
|
|
return C;
|
|
}
|
|
|
|
// Emit the comparison instruction described by C.
|
|
static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
|
|
if (!C.Op1.getNode()) {
|
|
SDValue Op;
|
|
switch (C.Op0.getOpcode()) {
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid comparison operands");
|
|
}
|
|
return SDValue(Op.getNode(), Op->getNumValues() - 1);
|
|
}
|
|
if (C.Opcode == SystemZISD::ICMP)
|
|
return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
|
|
DAG.getConstant(C.ICmpType, MVT::i32));
|
|
if (C.Opcode == SystemZISD::TM) {
|
|
bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
|
|
bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
|
|
return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
|
|
DAG.getConstant(RegisterOnly, MVT::i32));
|
|
}
|
|
return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
|
|
}
|
|
|
|
// Implement a 32-bit *MUL_LOHI operation by extending both operands to
|
|
// 64 bits. Extend is the extension type to use. Store the high part
|
|
// in Hi and the low part in Lo.
|
|
static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
|
|
unsigned Extend, SDValue Op0, SDValue Op1,
|
|
SDValue &Hi, SDValue &Lo) {
|
|
Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
|
|
Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
|
|
Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
|
|
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
|
|
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
|
|
}
|
|
|
|
// Lower a binary operation that produces two VT results, one in each
|
|
// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
|
|
// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
|
|
// on the extended Op0 and (unextended) Op1. Store the even register result
|
|
// in Even and the odd register result in Odd.
|
|
static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
|
|
unsigned Extend, unsigned Opcode,
|
|
SDValue Op0, SDValue Op1,
|
|
SDValue &Even, SDValue &Odd) {
|
|
SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
|
|
SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
|
|
SDValue(In128, 0), Op1);
|
|
bool Is32Bit = is32Bit(VT);
|
|
Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
|
|
Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
|
|
}
|
|
|
|
// Return an i32 value that is 1 if the CC value produced by Glue is
|
|
// in the mask CCMask and 0 otherwise. CC is known to have a value
|
|
// in CCValid, so other values can be ignored.
|
|
static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
|
|
unsigned CCValid, unsigned CCMask) {
|
|
IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
|
|
SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
|
|
|
|
if (Conversion.XORValue)
|
|
Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
|
|
DAG.getConstant(Conversion.XORValue, MVT::i32));
|
|
|
|
if (Conversion.AddValue)
|
|
Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
|
|
DAG.getConstant(Conversion.AddValue, MVT::i32));
|
|
|
|
// The SHR/AND sequence should get optimized to an RISBG.
|
|
Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
|
|
DAG.getConstant(Conversion.Bit, MVT::i32));
|
|
if (Conversion.Bit != 31)
|
|
Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
|
|
DAG.getConstant(1, MVT::i32));
|
|
return Result;
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue CmpOp0 = Op.getOperand(0);
|
|
SDValue CmpOp1 = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDLoc DL(Op);
|
|
|
|
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
|
|
SDValue Glue = emitCmp(DAG, DL, C);
|
|
return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue CmpOp0 = Op.getOperand(2);
|
|
SDValue CmpOp1 = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc DL(Op);
|
|
|
|
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
|
|
SDValue Glue = emitCmp(DAG, DL, C);
|
|
return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
|
|
Op.getOperand(0), DAG.getConstant(C.CCValid, MVT::i32),
|
|
DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
|
|
}
|
|
|
|
// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
|
|
// allowing Pos and Neg to be wider than CmpOp.
|
|
static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
|
|
return (Neg.getOpcode() == ISD::SUB &&
|
|
Neg.getOperand(0).getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
|
|
Neg.getOperand(1) == Pos &&
|
|
(Pos == CmpOp ||
|
|
(Pos.getOpcode() == ISD::SIGN_EXTEND &&
|
|
Pos.getOperand(0) == CmpOp)));
|
|
}
|
|
|
|
// Return the absolute or negative absolute of Op; IsNegative decides which.
|
|
static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
|
|
bool IsNegative) {
|
|
Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
|
|
if (IsNegative)
|
|
Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
|
|
DAG.getConstant(0, Op.getValueType()), Op);
|
|
return Op;
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue CmpOp0 = Op.getOperand(0);
|
|
SDValue CmpOp1 = Op.getOperand(1);
|
|
SDValue TrueOp = Op.getOperand(2);
|
|
SDValue FalseOp = Op.getOperand(3);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDLoc DL(Op);
|
|
|
|
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
|
|
|
|
// Check for absolute and negative-absolute selections, including those
|
|
// where the comparison value is sign-extended (for LPGFR and LNGFR).
|
|
// This check supplements the one in DAGCombiner.
|
|
if (C.Opcode == SystemZISD::ICMP &&
|
|
C.CCMask != SystemZ::CCMASK_CMP_EQ &&
|
|
C.CCMask != SystemZ::CCMASK_CMP_NE &&
|
|
C.Op1.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
|
|
if (isAbsolute(C.Op0, TrueOp, FalseOp))
|
|
return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
|
|
if (isAbsolute(C.Op0, FalseOp, TrueOp))
|
|
return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
|
|
}
|
|
|
|
SDValue Glue = emitCmp(DAG, DL, C);
|
|
|
|
// Special case for handling -1/0 results. The shifts we use here
|
|
// should get optimized with the IPM conversion sequence.
|
|
auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
|
|
auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
|
|
if (TrueC && FalseC) {
|
|
int64_t TrueVal = TrueC->getSExtValue();
|
|
int64_t FalseVal = FalseC->getSExtValue();
|
|
if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
|
|
// Invert the condition if we want -1 on false.
|
|
if (TrueVal == 0)
|
|
C.CCMask ^= C.CCValid;
|
|
SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
|
|
EVT VT = Op.getValueType();
|
|
// Extend the result to VT. Upper bits are ignored.
|
|
if (!is32Bit(VT))
|
|
Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
|
|
// Sign-extend from the low bit.
|
|
SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
|
|
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
|
|
return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
|
|
}
|
|
}
|
|
|
|
SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, MVT::i32),
|
|
DAG.getConstant(C.CCMask, MVT::i32), Glue};
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
|
|
return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Node);
|
|
const GlobalValue *GV = Node->getGlobal();
|
|
int64_t Offset = Node->getOffset();
|
|
EVT PtrVT = getPointerTy();
|
|
Reloc::Model RM = DAG.getTarget().getRelocationModel();
|
|
CodeModel::Model CM = DAG.getTarget().getCodeModel();
|
|
|
|
SDValue Result;
|
|
if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
|
|
// Assign anchors at 1<<12 byte boundaries.
|
|
uint64_t Anchor = Offset & ~uint64_t(0xfff);
|
|
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
|
|
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
|
|
|
|
// The offset can be folded into the address if it is aligned to a halfword.
|
|
Offset -= Anchor;
|
|
if (Offset != 0 && (Offset & 1) == 0) {
|
|
SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
|
|
Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
|
|
Offset = 0;
|
|
}
|
|
} else {
|
|
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
|
|
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
|
|
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(), false, false, false, 0);
|
|
}
|
|
|
|
// If there was a non-zero offset that we didn't fold, create an explicit
|
|
// addition for it.
|
|
if (Offset != 0)
|
|
Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
|
|
DAG.getConstant(Offset, PtrVT));
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
|
|
SelectionDAG &DAG,
|
|
unsigned Opcode,
|
|
SDValue GOTOffset) const {
|
|
SDLoc DL(Node);
|
|
EVT PtrVT = getPointerTy();
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDValue Glue;
|
|
|
|
// __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
|
|
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
|
|
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
|
|
Glue = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// The first call operand is the chain and the second is the TLS symbol.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
|
|
Node->getValueType(0),
|
|
0, 0));
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
|
|
Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *Mask =
|
|
TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
// Glue the call to the argument copies.
|
|
Ops.push_back(Glue);
|
|
|
|
// Emit the call.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Copy the return value from %r2.
|
|
return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Node);
|
|
const GlobalValue *GV = Node->getGlobal();
|
|
EVT PtrVT = getPointerTy();
|
|
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
|
|
|
|
// The high part of the thread pointer is in access register 0.
|
|
SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
|
|
DAG.getConstant(0, MVT::i32));
|
|
TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
|
|
|
|
// The low part of the thread pointer is in access register 1.
|
|
SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
|
|
DAG.getConstant(1, MVT::i32));
|
|
TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
|
|
|
|
// Merge them into a single 64-bit address.
|
|
SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
|
|
DAG.getConstant(32, PtrVT));
|
|
SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
|
|
|
|
// Get the offset of GA from the thread pointer, based on the TLS model.
|
|
SDValue Offset;
|
|
switch (model) {
|
|
case TLSModel::GeneralDynamic: {
|
|
// Load the GOT offset of the tls_index (module ID / per-symbol offset).
|
|
SystemZConstantPoolValue *CPV =
|
|
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
|
|
|
|
Offset = DAG.getConstantPool(CPV, PtrVT, 8);
|
|
Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
|
|
Offset, MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
|
|
// Call __tls_get_offset to retrieve the offset.
|
|
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
|
|
break;
|
|
}
|
|
|
|
case TLSModel::LocalDynamic: {
|
|
// Load the GOT offset of the module ID.
|
|
SystemZConstantPoolValue *CPV =
|
|
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
|
|
|
|
Offset = DAG.getConstantPool(CPV, PtrVT, 8);
|
|
Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
|
|
Offset, MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
|
|
// Call __tls_get_offset to retrieve the module base offset.
|
|
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
|
|
|
|
// Note: The SystemZLDCleanupPass will remove redundant computations
|
|
// of the module base offset. Count total number of local-dynamic
|
|
// accesses to trigger execution of that pass.
|
|
SystemZMachineFunctionInfo* MFI =
|
|
DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
|
|
MFI->incNumLocalDynamicTLSAccesses();
|
|
|
|
// Add the per-symbol offset.
|
|
CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
|
|
|
|
SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
|
|
DTPOffset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
|
|
DTPOffset, MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
|
|
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
|
|
break;
|
|
}
|
|
|
|
case TLSModel::InitialExec: {
|
|
// Load the offset from the GOT.
|
|
Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
SystemZII::MO_INDNTPOFF);
|
|
Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
|
|
Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
|
|
Offset, MachinePointerInfo::getGOT(),
|
|
false, false, false, 0);
|
|
break;
|
|
}
|
|
|
|
case TLSModel::LocalExec: {
|
|
// Force the offset into the constant pool and load it from there.
|
|
SystemZConstantPoolValue *CPV =
|
|
SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
|
|
|
|
Offset = DAG.getConstantPool(CPV, PtrVT, 8);
|
|
Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
|
|
Offset, MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add the base and offset together.
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Node);
|
|
const BlockAddress *BA = Node->getBlockAddress();
|
|
int64_t Offset = Node->getOffset();
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
|
|
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
|
|
return Result;
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(JT);
|
|
EVT PtrVT = getPointerTy();
|
|
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
|
|
|
|
// Use LARL to load the address of the table.
|
|
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(CP);
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
SDValue Result;
|
|
if (CP->isMachineConstantPoolEntry())
|
|
Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
|
|
CP->getAlignment());
|
|
else
|
|
Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
|
|
CP->getAlignment(), CP->getOffset());
|
|
|
|
// Use LARL to load the address of the constant pool entry.
|
|
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue In = Op.getOperand(0);
|
|
EVT InVT = In.getValueType();
|
|
EVT ResVT = Op.getValueType();
|
|
|
|
if (InVT == MVT::i32 && ResVT == MVT::f32) {
|
|
SDValue In64;
|
|
if (Subtarget.hasHighWord()) {
|
|
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
|
|
MVT::i64);
|
|
In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
|
|
MVT::i64, SDValue(U64, 0), In);
|
|
} else {
|
|
In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
|
|
In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
|
|
DAG.getConstant(32, MVT::i64));
|
|
}
|
|
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
|
|
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
|
|
DL, MVT::f32, Out64);
|
|
}
|
|
if (InVT == MVT::f32 && ResVT == MVT::i32) {
|
|
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
|
|
SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
|
|
MVT::f64, SDValue(U64, 0), In);
|
|
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
|
|
if (Subtarget.hasHighWord())
|
|
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
|
|
MVT::i32, Out64);
|
|
SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
|
|
DAG.getConstant(32, MVT::i64));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
|
|
}
|
|
llvm_unreachable("Unexpected bitcast combination");
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SystemZMachineFunctionInfo *FuncInfo =
|
|
MF.getInfo<SystemZMachineFunctionInfo>();
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Addr = Op.getOperand(1);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
SDLoc DL(Op);
|
|
|
|
// The initial values of each field.
|
|
const unsigned NumFields = 4;
|
|
SDValue Fields[NumFields] = {
|
|
DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
|
|
DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
|
|
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
|
|
DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
|
|
};
|
|
|
|
// Store each field into its respective slot.
|
|
SDValue MemOps[NumFields];
|
|
unsigned Offset = 0;
|
|
for (unsigned I = 0; I < NumFields; ++I) {
|
|
SDValue FieldAddr = Addr;
|
|
if (Offset != 0)
|
|
FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
|
|
DAG.getIntPtrConstant(Offset));
|
|
MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
|
|
MachinePointerInfo(SV, Offset),
|
|
false, false, 0);
|
|
Offset += 8;
|
|
}
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue DstPtr = Op.getOperand(1);
|
|
SDValue SrcPtr = Op.getOperand(2);
|
|
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
|
|
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
SDLoc DL(Op);
|
|
|
|
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
|
|
/*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
|
|
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::
|
|
lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
|
|
unsigned SPReg = getStackPointerRegisterToSaveRestore();
|
|
|
|
// Get a reference to the stack pointer.
|
|
SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
|
|
|
|
// Get the new stack pointer value.
|
|
SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
|
|
|
|
// Copy the new stack pointer back.
|
|
Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
|
|
|
|
// The allocated data lives above the 160 bytes allocated for the standard
|
|
// frame, plus any outgoing stack arguments. We don't know how much that
|
|
// amounts to yet, so emit a special ADJDYNALLOC placeholder.
|
|
SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
|
|
SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
|
|
|
|
SDValue Ops[2] = { Result, Chain };
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Ops[2];
|
|
if (is32Bit(VT))
|
|
// Just do a normal 64-bit multiplication and extract the results.
|
|
// We define this so that it can be used for constant division.
|
|
lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
|
|
Op.getOperand(1), Ops[1], Ops[0]);
|
|
else {
|
|
// Do a full 128-bit multiplication based on UMUL_LOHI64:
|
|
//
|
|
// (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
|
|
//
|
|
// but using the fact that the upper halves are either all zeros
|
|
// or all ones:
|
|
//
|
|
// (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
|
|
//
|
|
// and grouping the right terms together since they are quicker than the
|
|
// multiplication:
|
|
//
|
|
// (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
|
|
SDValue C63 = DAG.getConstant(63, MVT::i64);
|
|
SDValue LL = Op.getOperand(0);
|
|
SDValue RL = Op.getOperand(1);
|
|
SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
|
|
SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
|
|
// UMUL_LOHI64 returns the low result in the odd register and the high
|
|
// result in the even register. SMUL_LOHI is defined to return the
|
|
// low half first, so the results are in reverse order.
|
|
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
|
|
LL, RL, Ops[1], Ops[0]);
|
|
SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
|
|
SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
|
|
SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
|
|
Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
|
|
}
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Ops[2];
|
|
if (is32Bit(VT))
|
|
// Just do a normal 64-bit multiplication and extract the results.
|
|
// We define this so that it can be used for constant division.
|
|
lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
|
|
Op.getOperand(1), Ops[1], Ops[0]);
|
|
else
|
|
// UMUL_LOHI64 returns the low result in the odd register and the high
|
|
// result in the even register. UMUL_LOHI is defined to return the
|
|
// low half first, so the results are in reverse order.
|
|
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
|
|
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Opcode;
|
|
|
|
// We use DSGF for 32-bit division.
|
|
if (is32Bit(VT)) {
|
|
Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
|
|
Opcode = SystemZISD::SDIVREM32;
|
|
} else if (DAG.ComputeNumSignBits(Op1) > 32) {
|
|
Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
|
|
Opcode = SystemZISD::SDIVREM32;
|
|
} else
|
|
Opcode = SystemZISD::SDIVREM64;
|
|
|
|
// DSG(F) takes a 64-bit dividend, so the even register in the GR128
|
|
// input is "don't care". The instruction returns the remainder in
|
|
// the even register and the quotient in the odd register.
|
|
SDValue Ops[2];
|
|
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
|
|
Op0, Op1, Ops[1], Ops[0]);
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
|
|
// DL(G) uses a double-width dividend, so we need to clear the even
|
|
// register in the GR128 input. The instruction returns the remainder
|
|
// in the even register and the quotient in the odd register.
|
|
SDValue Ops[2];
|
|
if (is32Bit(VT))
|
|
lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
|
|
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
|
|
else
|
|
lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
|
|
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
|
|
|
|
// Get the known-zero masks for each operand.
|
|
SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
|
|
APInt KnownZero[2], KnownOne[2];
|
|
DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
|
|
DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
|
|
|
|
// See if the upper 32 bits of one operand and the lower 32 bits of the
|
|
// other are known zero. They are the low and high operands respectively.
|
|
uint64_t Masks[] = { KnownZero[0].getZExtValue(),
|
|
KnownZero[1].getZExtValue() };
|
|
unsigned High, Low;
|
|
if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
|
|
High = 1, Low = 0;
|
|
else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
|
|
High = 0, Low = 1;
|
|
else
|
|
return Op;
|
|
|
|
SDValue LowOp = Ops[Low];
|
|
SDValue HighOp = Ops[High];
|
|
|
|
// If the high part is a constant, we're better off using IILH.
|
|
if (HighOp.getOpcode() == ISD::Constant)
|
|
return Op;
|
|
|
|
// If the low part is a constant that is outside the range of LHI,
|
|
// then we're better off using IILF.
|
|
if (LowOp.getOpcode() == ISD::Constant) {
|
|
int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
|
|
if (!isInt<16>(Value))
|
|
return Op;
|
|
}
|
|
|
|
// Check whether the high part is an AND that doesn't change the
|
|
// high 32 bits and just masks out low bits. We can skip it if so.
|
|
if (HighOp.getOpcode() == ISD::AND &&
|
|
HighOp.getOperand(1).getOpcode() == ISD::Constant) {
|
|
SDValue HighOp0 = HighOp.getOperand(0);
|
|
uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
|
|
if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
|
|
HighOp = HighOp0;
|
|
}
|
|
|
|
// Take advantage of the fact that all GR32 operations only change the
|
|
// low 32 bits by truncating Low to an i32 and inserting it directly
|
|
// using a subreg. The interesting cases are those where the truncation
|
|
// can be folded.
|
|
SDLoc DL(Op);
|
|
SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
|
|
return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
|
|
MVT::i64, HighOp, Low32);
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
int64_t OrigBitSize = VT.getSizeInBits();
|
|
SDLoc DL(Op);
|
|
|
|
// Get the known-zero mask for the operand.
|
|
Op = Op.getOperand(0);
|
|
APInt KnownZero, KnownOne;
|
|
DAG.computeKnownBits(Op, KnownZero, KnownOne);
|
|
unsigned NumSignificantBits = (~KnownZero).getActiveBits();
|
|
if (NumSignificantBits == 0)
|
|
return DAG.getConstant(0, VT);
|
|
|
|
// Skip known-zero high parts of the operand.
|
|
int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
|
|
BitSize = std::min(BitSize, OrigBitSize);
|
|
|
|
// The POPCNT instruction counts the number of bits in each byte.
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
|
|
Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
|
|
Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
|
|
|
|
// Add up per-byte counts in a binary tree. All bits of Op at
|
|
// position larger than BitSize remain zero throughout.
|
|
for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
|
|
SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, VT));
|
|
if (BitSize != OrigBitSize)
|
|
Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
|
|
DAG.getConstant(((uint64_t)1 << BitSize) - 1, VT));
|
|
Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
|
|
}
|
|
|
|
// Extract overall result from high byte.
|
|
if (BitSize > 8)
|
|
Op = DAG.getNode(ISD::SRL, DL, VT, Op, DAG.getConstant(BitSize - 8, VT));
|
|
|
|
return Op;
|
|
}
|
|
|
|
// Op is an atomic load. Lower it into a normal volatile load.
|
|
SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Node = cast<AtomicSDNode>(Op.getNode());
|
|
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
|
|
Node->getChain(), Node->getBasePtr(),
|
|
Node->getMemoryVT(), Node->getMemOperand());
|
|
}
|
|
|
|
// Op is an atomic store. Lower it into a normal volatile store followed
|
|
// by a serialization.
|
|
SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Node = cast<AtomicSDNode>(Op.getNode());
|
|
SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
|
|
Node->getBasePtr(), Node->getMemoryVT(),
|
|
Node->getMemOperand());
|
|
return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
|
|
Chain), 0);
|
|
}
|
|
|
|
// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
|
|
// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
|
|
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
|
|
SelectionDAG &DAG,
|
|
unsigned Opcode) const {
|
|
auto *Node = cast<AtomicSDNode>(Op.getNode());
|
|
|
|
// 32-bit operations need no code outside the main loop.
|
|
EVT NarrowVT = Node->getMemoryVT();
|
|
EVT WideVT = MVT::i32;
|
|
if (NarrowVT == WideVT)
|
|
return Op;
|
|
|
|
int64_t BitSize = NarrowVT.getSizeInBits();
|
|
SDValue ChainIn = Node->getChain();
|
|
SDValue Addr = Node->getBasePtr();
|
|
SDValue Src2 = Node->getVal();
|
|
MachineMemOperand *MMO = Node->getMemOperand();
|
|
SDLoc DL(Node);
|
|
EVT PtrVT = Addr.getValueType();
|
|
|
|
// Convert atomic subtracts of constants into additions.
|
|
if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
|
|
if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
|
|
Opcode = SystemZISD::ATOMIC_LOADW_ADD;
|
|
Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
|
|
}
|
|
|
|
// Get the address of the containing word.
|
|
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
|
|
DAG.getConstant(-4, PtrVT));
|
|
|
|
// Get the number of bits that the word must be rotated left in order
|
|
// to bring the field to the top bits of a GR32.
|
|
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
|
|
DAG.getConstant(3, PtrVT));
|
|
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
|
|
|
|
// Get the complementing shift amount, for rotating a field in the top
|
|
// bits back to its proper position.
|
|
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
|
|
DAG.getConstant(0, WideVT), BitShift);
|
|
|
|
// Extend the source operand to 32 bits and prepare it for the inner loop.
|
|
// ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
|
|
// operations require the source to be shifted in advance. (This shift
|
|
// can be folded if the source is constant.) For AND and NAND, the lower
|
|
// bits must be set, while for other opcodes they should be left clear.
|
|
if (Opcode != SystemZISD::ATOMIC_SWAPW)
|
|
Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
|
|
DAG.getConstant(32 - BitSize, WideVT));
|
|
if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
|
|
Opcode == SystemZISD::ATOMIC_LOADW_NAND)
|
|
Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
|
|
DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
|
|
|
|
// Construct the ATOMIC_LOADW_* node.
|
|
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
|
|
SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
|
|
DAG.getConstant(BitSize, WideVT) };
|
|
SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
|
|
NarrowVT, MMO);
|
|
|
|
// Rotate the result of the final CS so that the field is in the lower
|
|
// bits of a GR32, then truncate it.
|
|
SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
|
|
DAG.getConstant(BitSize, WideVT));
|
|
SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
|
|
|
|
SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
|
|
return DAG.getMergeValues(RetOps, DL);
|
|
}
|
|
|
|
// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
|
|
// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
|
|
// operations into additions.
|
|
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Node = cast<AtomicSDNode>(Op.getNode());
|
|
EVT MemVT = Node->getMemoryVT();
|
|
if (MemVT == MVT::i32 || MemVT == MVT::i64) {
|
|
// A full-width operation.
|
|
assert(Op.getValueType() == MemVT && "Mismatched VTs");
|
|
SDValue Src2 = Node->getVal();
|
|
SDValue NegSrc2;
|
|
SDLoc DL(Src2);
|
|
|
|
if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
|
|
// Use an addition if the operand is constant and either LAA(G) is
|
|
// available or the negative value is in the range of A(G)FHI.
|
|
int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
|
|
if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
|
|
NegSrc2 = DAG.getConstant(Value, MemVT);
|
|
} else if (Subtarget.hasInterlockedAccess1())
|
|
// Use LAA(G) if available.
|
|
NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
|
|
Src2);
|
|
|
|
if (NegSrc2.getNode())
|
|
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
|
|
Node->getChain(), Node->getBasePtr(), NegSrc2,
|
|
Node->getMemOperand(), Node->getOrdering(),
|
|
Node->getSynchScope());
|
|
|
|
// Use the node as-is.
|
|
return Op;
|
|
}
|
|
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
|
|
}
|
|
|
|
// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
|
|
// into a fullword ATOMIC_CMP_SWAPW operation.
|
|
SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Node = cast<AtomicSDNode>(Op.getNode());
|
|
|
|
// We have native support for 32-bit compare and swap.
|
|
EVT NarrowVT = Node->getMemoryVT();
|
|
EVT WideVT = MVT::i32;
|
|
if (NarrowVT == WideVT)
|
|
return Op;
|
|
|
|
int64_t BitSize = NarrowVT.getSizeInBits();
|
|
SDValue ChainIn = Node->getOperand(0);
|
|
SDValue Addr = Node->getOperand(1);
|
|
SDValue CmpVal = Node->getOperand(2);
|
|
SDValue SwapVal = Node->getOperand(3);
|
|
MachineMemOperand *MMO = Node->getMemOperand();
|
|
SDLoc DL(Node);
|
|
EVT PtrVT = Addr.getValueType();
|
|
|
|
// Get the address of the containing word.
|
|
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
|
|
DAG.getConstant(-4, PtrVT));
|
|
|
|
// Get the number of bits that the word must be rotated left in order
|
|
// to bring the field to the top bits of a GR32.
|
|
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
|
|
DAG.getConstant(3, PtrVT));
|
|
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
|
|
|
|
// Get the complementing shift amount, for rotating a field in the top
|
|
// bits back to its proper position.
|
|
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
|
|
DAG.getConstant(0, WideVT), BitShift);
|
|
|
|
// Construct the ATOMIC_CMP_SWAPW node.
|
|
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
|
|
SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
|
|
NegBitShift, DAG.getConstant(BitSize, WideVT) };
|
|
SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
|
|
VTList, Ops, NarrowVT, MMO);
|
|
return AtomicOp;
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
|
|
return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
|
|
SystemZ::R15D, Op.getValueType());
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
|
|
return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
|
|
SystemZ::R15D, Op.getOperand(1));
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
|
|
if (!IsData)
|
|
// Just preserve the chain.
|
|
return Op.getOperand(0);
|
|
|
|
bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
|
|
auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
|
|
SDValue Ops[] = {
|
|
Op.getOperand(0),
|
|
DAG.getConstant(Code, MVT::i32),
|
|
Op.getOperand(1)
|
|
};
|
|
return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
|
|
Node->getVTList(), Ops,
|
|
Node->getMemoryVT(), Node->getMemOperand());
|
|
}
|
|
|
|
// Return an i32 that contains the value of CC immediately after After,
|
|
// whose final operand must be MVT::Glue.
|
|
static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
|
|
SDValue Glue = SDValue(After, After->getNumValues() - 1);
|
|
SDValue IPM = DAG.getNode(SystemZISD::IPM, SDLoc(After), MVT::i32, Glue);
|
|
return DAG.getNode(ISD::SRL, SDLoc(After), MVT::i32, IPM,
|
|
DAG.getConstant(SystemZ::IPM_CC, MVT::i32));
|
|
}
|
|
|
|
SDValue
|
|
SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Opcode, CCValid;
|
|
if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
|
|
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
|
|
SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
|
|
SDValue CC = getCCResult(DAG, Glued.getNode());
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
|
|
return SDValue();
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
case ISD::BR_CC:
|
|
return lowerBR_CC(Op, DAG);
|
|
case ISD::SELECT_CC:
|
|
return lowerSELECT_CC(Op, DAG);
|
|
case ISD::SETCC:
|
|
return lowerSETCC(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
|
|
case ISD::GlobalTLSAddress:
|
|
return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
|
|
case ISD::BlockAddress:
|
|
return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
|
|
case ISD::JumpTable:
|
|
return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
|
|
case ISD::ConstantPool:
|
|
return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
|
|
case ISD::BITCAST:
|
|
return lowerBITCAST(Op, DAG);
|
|
case ISD::VASTART:
|
|
return lowerVASTART(Op, DAG);
|
|
case ISD::VACOPY:
|
|
return lowerVACOPY(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
return lowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::SMUL_LOHI:
|
|
return lowerSMUL_LOHI(Op, DAG);
|
|
case ISD::UMUL_LOHI:
|
|
return lowerUMUL_LOHI(Op, DAG);
|
|
case ISD::SDIVREM:
|
|
return lowerSDIVREM(Op, DAG);
|
|
case ISD::UDIVREM:
|
|
return lowerUDIVREM(Op, DAG);
|
|
case ISD::OR:
|
|
return lowerOR(Op, DAG);
|
|
case ISD::CTPOP:
|
|
return lowerCTPOP(Op, DAG);
|
|
case ISD::ATOMIC_SWAP:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
|
|
case ISD::ATOMIC_STORE:
|
|
return lowerATOMIC_STORE(Op, DAG);
|
|
case ISD::ATOMIC_LOAD:
|
|
return lowerATOMIC_LOAD(Op, DAG);
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
return lowerATOMIC_LOAD_SUB(Op, DAG);
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
return lowerATOMIC_CMP_SWAP(Op, DAG);
|
|
case ISD::STACKSAVE:
|
|
return lowerSTACKSAVE(Op, DAG);
|
|
case ISD::STACKRESTORE:
|
|
return lowerSTACKRESTORE(Op, DAG);
|
|
case ISD::PREFETCH:
|
|
return lowerPREFETCH(Op, DAG);
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
return lowerINTRINSIC_W_CHAIN(Op, DAG);
|
|
default:
|
|
llvm_unreachable("Unexpected node to lower");
|
|
}
|
|
}
|
|
|
|
const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
|
|
switch (Opcode) {
|
|
OPCODE(RET_FLAG);
|
|
OPCODE(CALL);
|
|
OPCODE(SIBCALL);
|
|
OPCODE(PCREL_WRAPPER);
|
|
OPCODE(PCREL_OFFSET);
|
|
OPCODE(IABS);
|
|
OPCODE(ICMP);
|
|
OPCODE(FCMP);
|
|
OPCODE(TM);
|
|
OPCODE(BR_CCMASK);
|
|
OPCODE(SELECT_CCMASK);
|
|
OPCODE(ADJDYNALLOC);
|
|
OPCODE(EXTRACT_ACCESS);
|
|
OPCODE(UMUL_LOHI64);
|
|
OPCODE(SDIVREM64);
|
|
OPCODE(UDIVREM32);
|
|
OPCODE(UDIVREM64);
|
|
OPCODE(MVC);
|
|
OPCODE(MVC_LOOP);
|
|
OPCODE(NC);
|
|
OPCODE(NC_LOOP);
|
|
OPCODE(OC);
|
|
OPCODE(OC_LOOP);
|
|
OPCODE(XC);
|
|
OPCODE(XC_LOOP);
|
|
OPCODE(CLC);
|
|
OPCODE(CLC_LOOP);
|
|
OPCODE(STRCMP);
|
|
OPCODE(STPCPY);
|
|
OPCODE(SEARCH_STRING);
|
|
OPCODE(IPM);
|
|
OPCODE(SERIALIZE);
|
|
OPCODE(TBEGIN);
|
|
OPCODE(TBEGIN_NOFLOAT);
|
|
OPCODE(TEND);
|
|
OPCODE(ATOMIC_SWAPW);
|
|
OPCODE(ATOMIC_LOADW_ADD);
|
|
OPCODE(ATOMIC_LOADW_SUB);
|
|
OPCODE(ATOMIC_LOADW_AND);
|
|
OPCODE(ATOMIC_LOADW_OR);
|
|
OPCODE(ATOMIC_LOADW_XOR);
|
|
OPCODE(ATOMIC_LOADW_NAND);
|
|
OPCODE(ATOMIC_LOADW_MIN);
|
|
OPCODE(ATOMIC_LOADW_MAX);
|
|
OPCODE(ATOMIC_LOADW_UMIN);
|
|
OPCODE(ATOMIC_LOADW_UMAX);
|
|
OPCODE(ATOMIC_CMP_SWAPW);
|
|
OPCODE(PREFETCH);
|
|
}
|
|
return nullptr;
|
|
#undef OPCODE
|
|
}
|
|
|
|
SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::SIGN_EXTEND) {
|
|
// Convert (sext (ashr (shl X, C1), C2)) to
|
|
// (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
|
|
// cheap as narrower ones.
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
|
|
auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
SDValue Inner = N0.getOperand(0);
|
|
if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
|
|
if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
|
|
unsigned Extra = (VT.getSizeInBits() -
|
|
N0.getValueType().getSizeInBits());
|
|
unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
|
|
unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
|
|
EVT ShiftVT = N0.getOperand(1).getValueType();
|
|
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
|
|
Inner.getOperand(0));
|
|
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
|
|
DAG.getConstant(NewShlAmt, ShiftVT));
|
|
return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
|
|
DAG.getConstant(NewSraAmt, ShiftVT));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom insertion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Create a new basic block after MBB.
|
|
static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
|
|
MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
|
|
return NewMBB;
|
|
}
|
|
|
|
// Split MBB after MI and return the new block (the one that contains
|
|
// instructions after MI).
|
|
static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
|
|
NewMBB->splice(NewMBB->begin(), MBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
|
NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
return NewMBB;
|
|
}
|
|
|
|
// Split MBB before MI and return the new block (the one that contains MI).
|
|
static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
|
|
NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
|
|
NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
return NewMBB;
|
|
}
|
|
|
|
// Force base value Base into a register before MI. Return the register.
|
|
static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
|
|
const SystemZInstrInfo *TII) {
|
|
if (Base.isReg())
|
|
return Base.getReg();
|
|
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineFunction &MF = *MBB->getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
|
|
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
|
|
.addOperand(Base).addImm(0).addReg(0);
|
|
return Reg;
|
|
}
|
|
|
|
// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitSelect(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
unsigned TrueReg = MI->getOperand(1).getReg();
|
|
unsigned FalseReg = MI->getOperand(2).getReg();
|
|
unsigned CCValid = MI->getOperand(3).getImm();
|
|
unsigned CCMask = MI->getOperand(4).getImm();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *StartMBB = MBB;
|
|
MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
|
|
MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
|
|
|
|
// StartMBB:
|
|
// BRC CCMask, JoinMBB
|
|
// # fallthrough to FalseMBB
|
|
MBB = StartMBB;
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
|
|
MBB->addSuccessor(JoinMBB);
|
|
MBB->addSuccessor(FalseMBB);
|
|
|
|
// FalseMBB:
|
|
// # fallthrough to JoinMBB
|
|
MBB = FalseMBB;
|
|
MBB->addSuccessor(JoinMBB);
|
|
|
|
// JoinMBB:
|
|
// %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
|
|
// ...
|
|
MBB = JoinMBB;
|
|
BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
|
|
.addReg(TrueReg).addMBB(StartMBB)
|
|
.addReg(FalseReg).addMBB(FalseMBB);
|
|
|
|
MI->eraseFromParent();
|
|
return JoinMBB;
|
|
}
|
|
|
|
// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
|
|
// StoreOpcode is the store to use and Invert says whether the store should
|
|
// happen when the condition is false rather than true. If a STORE ON
|
|
// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitCondStore(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned StoreOpcode, unsigned STOCOpcode,
|
|
bool Invert) const {
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
MachineOperand Base = MI->getOperand(1);
|
|
int64_t Disp = MI->getOperand(2).getImm();
|
|
unsigned IndexReg = MI->getOperand(3).getReg();
|
|
unsigned CCValid = MI->getOperand(4).getImm();
|
|
unsigned CCMask = MI->getOperand(5).getImm();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
|
|
|
|
// Use STOCOpcode if possible. We could use different store patterns in
|
|
// order to avoid matching the index register, but the performance trade-offs
|
|
// might be more complicated in that case.
|
|
if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
|
|
if (Invert)
|
|
CCMask ^= CCValid;
|
|
BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
|
|
.addReg(SrcReg).addOperand(Base).addImm(Disp)
|
|
.addImm(CCValid).addImm(CCMask);
|
|
MI->eraseFromParent();
|
|
return MBB;
|
|
}
|
|
|
|
// Get the condition needed to branch around the store.
|
|
if (!Invert)
|
|
CCMask ^= CCValid;
|
|
|
|
MachineBasicBlock *StartMBB = MBB;
|
|
MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
|
|
MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
|
|
|
|
// StartMBB:
|
|
// BRC CCMask, JoinMBB
|
|
// # fallthrough to FalseMBB
|
|
MBB = StartMBB;
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
|
|
MBB->addSuccessor(JoinMBB);
|
|
MBB->addSuccessor(FalseMBB);
|
|
|
|
// FalseMBB:
|
|
// store %SrcReg, %Disp(%Index,%Base)
|
|
// # fallthrough to JoinMBB
|
|
MBB = FalseMBB;
|
|
BuildMI(MBB, DL, TII->get(StoreOpcode))
|
|
.addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
|
|
MBB->addSuccessor(JoinMBB);
|
|
|
|
MI->eraseFromParent();
|
|
return JoinMBB;
|
|
}
|
|
|
|
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
|
|
// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
|
|
// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
|
|
// BitSize is the width of the field in bits, or 0 if this is a partword
|
|
// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
|
|
// is one of the operands. Invert says whether the field should be
|
|
// inverted after performing BinOpcode (e.g. for NAND).
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned BinOpcode,
|
|
unsigned BitSize,
|
|
bool Invert) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool IsSubWord = (BitSize < 32);
|
|
|
|
// Extract the operands. Base can be a register or a frame index.
|
|
// Src2 can be a register or immediate.
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
|
|
int64_t Disp = MI->getOperand(2).getImm();
|
|
MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
|
|
unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
|
|
unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (IsSubWord)
|
|
BitSize = MI->getOperand(6).getImm();
|
|
|
|
// Subword operations use 32-bit registers.
|
|
const TargetRegisterClass *RC = (BitSize <= 32 ?
|
|
&SystemZ::GR32BitRegClass :
|
|
&SystemZ::GR64BitRegClass);
|
|
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
|
|
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
|
|
|
|
// Get the right opcodes for the displacement.
|
|
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
|
|
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
|
|
assert(LOpcode && CSOpcode && "Displacement out of range");
|
|
|
|
// Create virtual registers for temporary results.
|
|
unsigned OrigVal = MRI.createVirtualRegister(RC);
|
|
unsigned OldVal = MRI.createVirtualRegister(RC);
|
|
unsigned NewVal = (BinOpcode || IsSubWord ?
|
|
MRI.createVirtualRegister(RC) : Src2.getReg());
|
|
unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
|
|
unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
|
|
|
|
// Insert a basic block for the main loop.
|
|
MachineBasicBlock *StartMBB = MBB;
|
|
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
|
|
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
|
|
|
|
// StartMBB:
|
|
// ...
|
|
// %OrigVal = L Disp(%Base)
|
|
// # fall through to LoopMMB
|
|
MBB = StartMBB;
|
|
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
|
|
.addOperand(Base).addImm(Disp).addReg(0);
|
|
MBB->addSuccessor(LoopMBB);
|
|
|
|
// LoopMBB:
|
|
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
|
|
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
|
|
// %RotatedNewVal = OP %RotatedOldVal, %Src2
|
|
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
|
|
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
|
|
// JNE LoopMBB
|
|
// # fall through to DoneMMB
|
|
MBB = LoopMBB;
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
|
|
.addReg(OrigVal).addMBB(StartMBB)
|
|
.addReg(Dest).addMBB(LoopMBB);
|
|
if (IsSubWord)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
|
|
.addReg(OldVal).addReg(BitShift).addImm(0);
|
|
if (Invert) {
|
|
// Perform the operation normally and then invert every bit of the field.
|
|
unsigned Tmp = MRI.createVirtualRegister(RC);
|
|
BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
|
|
.addReg(RotatedOldVal).addOperand(Src2);
|
|
if (BitSize <= 32)
|
|
// XILF with the upper BitSize bits set.
|
|
BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
|
|
.addReg(Tmp).addImm(-1U << (32 - BitSize));
|
|
else {
|
|
// Use LCGR and add -1 to the result, which is more compact than
|
|
// an XILF, XILH pair.
|
|
unsigned Tmp2 = MRI.createVirtualRegister(RC);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
|
|
.addReg(Tmp2).addImm(-1);
|
|
}
|
|
} else if (BinOpcode)
|
|
// A simply binary operation.
|
|
BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
|
|
.addReg(RotatedOldVal).addOperand(Src2);
|
|
else if (IsSubWord)
|
|
// Use RISBG to rotate Src2 into position and use it to replace the
|
|
// field in RotatedOldVal.
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
|
|
.addReg(RotatedOldVal).addReg(Src2.getReg())
|
|
.addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
|
|
if (IsSubWord)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
|
|
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
|
|
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
|
|
.addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
|
|
MBB->addSuccessor(LoopMBB);
|
|
MBB->addSuccessor(DoneMBB);
|
|
|
|
MI->eraseFromParent();
|
|
return DoneMBB;
|
|
}
|
|
|
|
// Implement EmitInstrWithCustomInserter for pseudo
|
|
// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
|
|
// instruction that should be used to compare the current field with the
|
|
// minimum or maximum value. KeepOldMask is the BRC condition-code mask
|
|
// for when the current field should be kept. BitSize is the width of
|
|
// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned CompareOpcode,
|
|
unsigned KeepOldMask,
|
|
unsigned BitSize) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool IsSubWord = (BitSize < 32);
|
|
|
|
// Extract the operands. Base can be a register or a frame index.
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
|
|
int64_t Disp = MI->getOperand(2).getImm();
|
|
unsigned Src2 = MI->getOperand(3).getReg();
|
|
unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
|
|
unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (IsSubWord)
|
|
BitSize = MI->getOperand(6).getImm();
|
|
|
|
// Subword operations use 32-bit registers.
|
|
const TargetRegisterClass *RC = (BitSize <= 32 ?
|
|
&SystemZ::GR32BitRegClass :
|
|
&SystemZ::GR64BitRegClass);
|
|
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
|
|
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
|
|
|
|
// Get the right opcodes for the displacement.
|
|
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
|
|
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
|
|
assert(LOpcode && CSOpcode && "Displacement out of range");
|
|
|
|
// Create virtual registers for temporary results.
|
|
unsigned OrigVal = MRI.createVirtualRegister(RC);
|
|
unsigned OldVal = MRI.createVirtualRegister(RC);
|
|
unsigned NewVal = MRI.createVirtualRegister(RC);
|
|
unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
|
|
unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
|
|
unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
|
|
|
|
// Insert 3 basic blocks for the loop.
|
|
MachineBasicBlock *StartMBB = MBB;
|
|
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
|
|
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
|
|
MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
|
|
MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
|
|
|
|
// StartMBB:
|
|
// ...
|
|
// %OrigVal = L Disp(%Base)
|
|
// # fall through to LoopMMB
|
|
MBB = StartMBB;
|
|
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
|
|
.addOperand(Base).addImm(Disp).addReg(0);
|
|
MBB->addSuccessor(LoopMBB);
|
|
|
|
// LoopMBB:
|
|
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
|
|
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
|
|
// CompareOpcode %RotatedOldVal, %Src2
|
|
// BRC KeepOldMask, UpdateMBB
|
|
MBB = LoopMBB;
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
|
|
.addReg(OrigVal).addMBB(StartMBB)
|
|
.addReg(Dest).addMBB(UpdateMBB);
|
|
if (IsSubWord)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
|
|
.addReg(OldVal).addReg(BitShift).addImm(0);
|
|
BuildMI(MBB, DL, TII->get(CompareOpcode))
|
|
.addReg(RotatedOldVal).addReg(Src2);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
|
|
MBB->addSuccessor(UpdateMBB);
|
|
MBB->addSuccessor(UseAltMBB);
|
|
|
|
// UseAltMBB:
|
|
// %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
|
|
// # fall through to UpdateMMB
|
|
MBB = UseAltMBB;
|
|
if (IsSubWord)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
|
|
.addReg(RotatedOldVal).addReg(Src2)
|
|
.addImm(32).addImm(31 + BitSize).addImm(0);
|
|
MBB->addSuccessor(UpdateMBB);
|
|
|
|
// UpdateMBB:
|
|
// %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
|
|
// [ %RotatedAltVal, UseAltMBB ]
|
|
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
|
|
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
|
|
// JNE LoopMBB
|
|
// # fall through to DoneMMB
|
|
MBB = UpdateMBB;
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
|
|
.addReg(RotatedOldVal).addMBB(LoopMBB)
|
|
.addReg(RotatedAltVal).addMBB(UseAltMBB);
|
|
if (IsSubWord)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
|
|
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
|
|
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
|
|
.addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
|
|
MBB->addSuccessor(LoopMBB);
|
|
MBB->addSuccessor(DoneMBB);
|
|
|
|
MI->eraseFromParent();
|
|
return DoneMBB;
|
|
}
|
|
|
|
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
|
|
// instruction MI.
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
// Extract the operands. Base can be a register or a frame index.
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
|
|
int64_t Disp = MI->getOperand(2).getImm();
|
|
unsigned OrigCmpVal = MI->getOperand(3).getReg();
|
|
unsigned OrigSwapVal = MI->getOperand(4).getReg();
|
|
unsigned BitShift = MI->getOperand(5).getReg();
|
|
unsigned NegBitShift = MI->getOperand(6).getReg();
|
|
int64_t BitSize = MI->getOperand(7).getImm();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
|
|
|
|
// Get the right opcodes for the displacement.
|
|
unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
|
|
unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
|
|
assert(LOpcode && CSOpcode && "Displacement out of range");
|
|
|
|
// Create virtual registers for temporary results.
|
|
unsigned OrigOldVal = MRI.createVirtualRegister(RC);
|
|
unsigned OldVal = MRI.createVirtualRegister(RC);
|
|
unsigned CmpVal = MRI.createVirtualRegister(RC);
|
|
unsigned SwapVal = MRI.createVirtualRegister(RC);
|
|
unsigned StoreVal = MRI.createVirtualRegister(RC);
|
|
unsigned RetryOldVal = MRI.createVirtualRegister(RC);
|
|
unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
|
|
unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
|
|
|
|
// Insert 2 basic blocks for the loop.
|
|
MachineBasicBlock *StartMBB = MBB;
|
|
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
|
|
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
|
|
MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
|
|
|
|
// StartMBB:
|
|
// ...
|
|
// %OrigOldVal = L Disp(%Base)
|
|
// # fall through to LoopMMB
|
|
MBB = StartMBB;
|
|
BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
|
|
.addOperand(Base).addImm(Disp).addReg(0);
|
|
MBB->addSuccessor(LoopMBB);
|
|
|
|
// LoopMBB:
|
|
// %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
|
|
// %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
|
|
// %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
|
|
// %Dest = RLL %OldVal, BitSize(%BitShift)
|
|
// ^^ The low BitSize bits contain the field
|
|
// of interest.
|
|
// %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
|
|
// ^^ Replace the upper 32-BitSize bits of the
|
|
// comparison value with those that we loaded,
|
|
// so that we can use a full word comparison.
|
|
// CR %Dest, %RetryCmpVal
|
|
// JNE DoneMBB
|
|
// # Fall through to SetMBB
|
|
MBB = LoopMBB;
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
|
|
.addReg(OrigOldVal).addMBB(StartMBB)
|
|
.addReg(RetryOldVal).addMBB(SetMBB);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
|
|
.addReg(OrigCmpVal).addMBB(StartMBB)
|
|
.addReg(RetryCmpVal).addMBB(SetMBB);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
|
|
.addReg(OrigSwapVal).addMBB(StartMBB)
|
|
.addReg(RetrySwapVal).addMBB(SetMBB);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
|
|
.addReg(OldVal).addReg(BitShift).addImm(BitSize);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
|
|
.addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::CR))
|
|
.addReg(Dest).addReg(RetryCmpVal);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_ICMP)
|
|
.addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
|
|
MBB->addSuccessor(DoneMBB);
|
|
MBB->addSuccessor(SetMBB);
|
|
|
|
// SetMBB:
|
|
// %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
|
|
// ^^ Replace the upper 32-BitSize bits of the new
|
|
// value with those that we loaded.
|
|
// %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
|
|
// ^^ Rotate the new field to its proper position.
|
|
// %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
|
|
// JNE LoopMBB
|
|
// # fall through to ExitMMB
|
|
MBB = SetMBB;
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
|
|
.addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
|
|
.addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
|
|
BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
|
|
.addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
|
|
MBB->addSuccessor(LoopMBB);
|
|
MBB->addSuccessor(DoneMBB);
|
|
|
|
MI->eraseFromParent();
|
|
return DoneMBB;
|
|
}
|
|
|
|
// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
|
|
// if the high register of the GR128 value must be cleared or false if
|
|
// it's "don't care". SubReg is subreg_l32 when extending a GR32
|
|
// and subreg_l64 when extending a GR64.
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitExt128(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
bool ClearEven, unsigned SubReg) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Src = MI->getOperand(1).getReg();
|
|
unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
|
|
|
|
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
|
|
if (ClearEven) {
|
|
unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
|
|
unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
|
|
|
|
BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
|
|
.addImm(0);
|
|
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
|
|
.addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
|
|
In128 = NewIn128;
|
|
}
|
|
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
|
|
.addReg(In128).addReg(Src).addImm(SubReg);
|
|
|
|
MI->eraseFromParent();
|
|
return MBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned Opcode) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
|
|
uint64_t DestDisp = MI->getOperand(1).getImm();
|
|
MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
|
|
uint64_t SrcDisp = MI->getOperand(3).getImm();
|
|
uint64_t Length = MI->getOperand(4).getImm();
|
|
|
|
// When generating more than one CLC, all but the last will need to
|
|
// branch to the end when a difference is found.
|
|
MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
|
|
splitBlockAfter(MI, MBB) : nullptr);
|
|
|
|
// Check for the loop form, in which operand 5 is the trip count.
|
|
if (MI->getNumExplicitOperands() > 5) {
|
|
bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
|
|
|
|
uint64_t StartCountReg = MI->getOperand(5).getReg();
|
|
uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
|
|
uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
|
|
forceReg(MI, DestBase, TII));
|
|
|
|
const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
|
|
uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
|
|
uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
|
|
MRI.createVirtualRegister(RC));
|
|
uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
|
|
uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
|
|
MRI.createVirtualRegister(RC));
|
|
|
|
RC = &SystemZ::GR64BitRegClass;
|
|
uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
|
|
uint64_t NextCountReg = MRI.createVirtualRegister(RC);
|
|
|
|
MachineBasicBlock *StartMBB = MBB;
|
|
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
|
|
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
|
|
MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
|
|
|
|
// StartMBB:
|
|
// # fall through to LoopMMB
|
|
MBB->addSuccessor(LoopMBB);
|
|
|
|
// LoopMBB:
|
|
// %ThisDestReg = phi [ %StartDestReg, StartMBB ],
|
|
// [ %NextDestReg, NextMBB ]
|
|
// %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
|
|
// [ %NextSrcReg, NextMBB ]
|
|
// %ThisCountReg = phi [ %StartCountReg, StartMBB ],
|
|
// [ %NextCountReg, NextMBB ]
|
|
// ( PFD 2, 768+DestDisp(%ThisDestReg) )
|
|
// Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
|
|
// ( JLH EndMBB )
|
|
//
|
|
// The prefetch is used only for MVC. The JLH is used only for CLC.
|
|
MBB = LoopMBB;
|
|
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
|
|
.addReg(StartDestReg).addMBB(StartMBB)
|
|
.addReg(NextDestReg).addMBB(NextMBB);
|
|
if (!HaveSingleBase)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
|
|
.addReg(StartSrcReg).addMBB(StartMBB)
|
|
.addReg(NextSrcReg).addMBB(NextMBB);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
|
|
.addReg(StartCountReg).addMBB(StartMBB)
|
|
.addReg(NextCountReg).addMBB(NextMBB);
|
|
if (Opcode == SystemZ::MVC)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PFD))
|
|
.addImm(SystemZ::PFD_WRITE)
|
|
.addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
|
|
BuildMI(MBB, DL, TII->get(Opcode))
|
|
.addReg(ThisDestReg).addImm(DestDisp).addImm(256)
|
|
.addReg(ThisSrcReg).addImm(SrcDisp);
|
|
if (EndMBB) {
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
|
|
.addMBB(EndMBB);
|
|
MBB->addSuccessor(EndMBB);
|
|
MBB->addSuccessor(NextMBB);
|
|
}
|
|
|
|
// NextMBB:
|
|
// %NextDestReg = LA 256(%ThisDestReg)
|
|
// %NextSrcReg = LA 256(%ThisSrcReg)
|
|
// %NextCountReg = AGHI %ThisCountReg, -1
|
|
// CGHI %NextCountReg, 0
|
|
// JLH LoopMBB
|
|
// # fall through to DoneMMB
|
|
//
|
|
// The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
|
|
MBB = NextMBB;
|
|
|
|
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
|
|
.addReg(ThisDestReg).addImm(256).addReg(0);
|
|
if (!HaveSingleBase)
|
|
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
|
|
.addReg(ThisSrcReg).addImm(256).addReg(0);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
|
|
.addReg(ThisCountReg).addImm(-1);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
|
|
.addReg(NextCountReg).addImm(0);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
|
|
.addMBB(LoopMBB);
|
|
MBB->addSuccessor(LoopMBB);
|
|
MBB->addSuccessor(DoneMBB);
|
|
|
|
DestBase = MachineOperand::CreateReg(NextDestReg, false);
|
|
SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
|
|
Length &= 255;
|
|
MBB = DoneMBB;
|
|
}
|
|
// Handle any remaining bytes with straight-line code.
|
|
while (Length > 0) {
|
|
uint64_t ThisLength = std::min(Length, uint64_t(256));
|
|
// The previous iteration might have created out-of-range displacements.
|
|
// Apply them using LAY if so.
|
|
if (!isUInt<12>(DestDisp)) {
|
|
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
|
|
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
|
|
.addOperand(DestBase).addImm(DestDisp).addReg(0);
|
|
DestBase = MachineOperand::CreateReg(Reg, false);
|
|
DestDisp = 0;
|
|
}
|
|
if (!isUInt<12>(SrcDisp)) {
|
|
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
|
|
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
|
|
.addOperand(SrcBase).addImm(SrcDisp).addReg(0);
|
|
SrcBase = MachineOperand::CreateReg(Reg, false);
|
|
SrcDisp = 0;
|
|
}
|
|
BuildMI(*MBB, MI, DL, TII->get(Opcode))
|
|
.addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
|
|
.addOperand(SrcBase).addImm(SrcDisp);
|
|
DestDisp += ThisLength;
|
|
SrcDisp += ThisLength;
|
|
Length -= ThisLength;
|
|
// If there's another CLC to go, branch to the end if a difference
|
|
// was found.
|
|
if (EndMBB && Length > 0) {
|
|
MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
|
|
.addMBB(EndMBB);
|
|
MBB->addSuccessor(EndMBB);
|
|
MBB->addSuccessor(NextMBB);
|
|
MBB = NextMBB;
|
|
}
|
|
}
|
|
if (EndMBB) {
|
|
MBB->addSuccessor(EndMBB);
|
|
MBB = EndMBB;
|
|
MBB->addLiveIn(SystemZ::CC);
|
|
}
|
|
|
|
MI->eraseFromParent();
|
|
return MBB;
|
|
}
|
|
|
|
// Decompose string pseudo-instruction MI into a loop that continually performs
|
|
// Opcode until CC != 3.
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned Opcode) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const SystemZInstrInfo *TII =
|
|
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
uint64_t End1Reg = MI->getOperand(0).getReg();
|
|
uint64_t Start1Reg = MI->getOperand(1).getReg();
|
|
uint64_t Start2Reg = MI->getOperand(2).getReg();
|
|
uint64_t CharReg = MI->getOperand(3).getReg();
|
|
|
|
const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
|
|
uint64_t This1Reg = MRI.createVirtualRegister(RC);
|
|
uint64_t This2Reg = MRI.createVirtualRegister(RC);
|
|
uint64_t End2Reg = MRI.createVirtualRegister(RC);
|
|
|
|
MachineBasicBlock *StartMBB = MBB;
|
|
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
|
|
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
|
|
|
|
// StartMBB:
|
|
// # fall through to LoopMMB
|
|
MBB->addSuccessor(LoopMBB);
|
|
|
|
// LoopMBB:
|
|
// %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
|
|
// %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
|
|
// R0L = %CharReg
|
|
// %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
|
|
// JO LoopMBB
|
|
// # fall through to DoneMMB
|
|
//
|
|
// The load of R0L can be hoisted by post-RA LICM.
|
|
MBB = LoopMBB;
|
|
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
|
|
.addReg(Start1Reg).addMBB(StartMBB)
|
|
.addReg(End1Reg).addMBB(LoopMBB);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
|
|
.addReg(Start2Reg).addMBB(StartMBB)
|
|
.addReg(End2Reg).addMBB(LoopMBB);
|
|
BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
|
|
BuildMI(MBB, DL, TII->get(Opcode))
|
|
.addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
|
|
.addReg(This1Reg).addReg(This2Reg);
|
|
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
|
|
.addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
|
|
MBB->addSuccessor(LoopMBB);
|
|
MBB->addSuccessor(DoneMBB);
|
|
|
|
DoneMBB->addLiveIn(SystemZ::CC);
|
|
|
|
MI->eraseFromParent();
|
|
return DoneMBB;
|
|
}
|
|
|
|
// Update TBEGIN instruction with final opcode and register clobbers.
|
|
MachineBasicBlock *
|
|
SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned Opcode,
|
|
bool NoFloat) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
|
|
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
|
|
|
|
// Update opcode.
|
|
MI->setDesc(TII->get(Opcode));
|
|
|
|
// We cannot handle a TBEGIN that clobbers the stack or frame pointer.
|
|
// Make sure to add the corresponding GRSM bits if they are missing.
|
|
uint64_t Control = MI->getOperand(2).getImm();
|
|
static const unsigned GPRControlBit[16] = {
|
|
0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
|
|
0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
|
|
};
|
|
Control |= GPRControlBit[15];
|
|
if (TFI->hasFP(MF))
|
|
Control |= GPRControlBit[11];
|
|
MI->getOperand(2).setImm(Control);
|
|
|
|
// Add GPR clobbers.
|
|
for (int I = 0; I < 16; I++) {
|
|
if ((Control & GPRControlBit[I]) == 0) {
|
|
unsigned Reg = SystemZMC::GR64Regs[I];
|
|
MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
|
|
}
|
|
}
|
|
|
|
// Add FPR clobbers.
|
|
if (!NoFloat && (Control & 4) != 0) {
|
|
for (int I = 0; I < 16; I++) {
|
|
unsigned Reg = SystemZMC::FP64Regs[I];
|
|
MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
|
|
}
|
|
}
|
|
|
|
return MBB;
|
|
}
|
|
|
|
MachineBasicBlock *SystemZTargetLowering::
|
|
EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
|
|
switch (MI->getOpcode()) {
|
|
case SystemZ::Select32Mux:
|
|
case SystemZ::Select32:
|
|
case SystemZ::SelectF32:
|
|
case SystemZ::Select64:
|
|
case SystemZ::SelectF64:
|
|
case SystemZ::SelectF128:
|
|
return emitSelect(MI, MBB);
|
|
|
|
case SystemZ::CondStore8Mux:
|
|
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
|
|
case SystemZ::CondStore8MuxInv:
|
|
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
|
|
case SystemZ::CondStore16Mux:
|
|
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
|
|
case SystemZ::CondStore16MuxInv:
|
|
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
|
|
case SystemZ::CondStore8:
|
|
return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
|
|
case SystemZ::CondStore8Inv:
|
|
return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
|
|
case SystemZ::CondStore16:
|
|
return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
|
|
case SystemZ::CondStore16Inv:
|
|
return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
|
|
case SystemZ::CondStore32:
|
|
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
|
|
case SystemZ::CondStore32Inv:
|
|
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
|
|
case SystemZ::CondStore64:
|
|
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
|
|
case SystemZ::CondStore64Inv:
|
|
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
|
|
case SystemZ::CondStoreF32:
|
|
return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
|
|
case SystemZ::CondStoreF32Inv:
|
|
return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
|
|
case SystemZ::CondStoreF64:
|
|
return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
|
|
case SystemZ::CondStoreF64Inv:
|
|
return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
|
|
|
|
case SystemZ::AEXT128_64:
|
|
return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
|
|
case SystemZ::ZEXT128_32:
|
|
return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
|
|
case SystemZ::ZEXT128_64:
|
|
return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
|
|
|
|
case SystemZ::ATOMIC_SWAPW:
|
|
return emitAtomicLoadBinary(MI, MBB, 0, 0);
|
|
case SystemZ::ATOMIC_SWAP_32:
|
|
return emitAtomicLoadBinary(MI, MBB, 0, 32);
|
|
case SystemZ::ATOMIC_SWAP_64:
|
|
return emitAtomicLoadBinary(MI, MBB, 0, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_AR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
|
|
case SystemZ::ATOMIC_LOADW_AFI:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
|
|
case SystemZ::ATOMIC_LOAD_AR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
|
|
case SystemZ::ATOMIC_LOAD_AHI:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
|
|
case SystemZ::ATOMIC_LOAD_AFI:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
|
|
case SystemZ::ATOMIC_LOAD_AGR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
|
|
case SystemZ::ATOMIC_LOAD_AGHI:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
|
|
case SystemZ::ATOMIC_LOAD_AGFI:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_SR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
|
|
case SystemZ::ATOMIC_LOAD_SR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
|
|
case SystemZ::ATOMIC_LOAD_SGR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_NR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
|
|
case SystemZ::ATOMIC_LOADW_NILH:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
|
|
case SystemZ::ATOMIC_LOAD_NR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
|
|
case SystemZ::ATOMIC_LOAD_NILL:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
|
|
case SystemZ::ATOMIC_LOAD_NILH:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
|
|
case SystemZ::ATOMIC_LOAD_NILF:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
|
|
case SystemZ::ATOMIC_LOAD_NGR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
|
|
case SystemZ::ATOMIC_LOAD_NILL64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
|
|
case SystemZ::ATOMIC_LOAD_NILH64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
|
|
case SystemZ::ATOMIC_LOAD_NIHL64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
|
|
case SystemZ::ATOMIC_LOAD_NIHH64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
|
|
case SystemZ::ATOMIC_LOAD_NILF64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
|
|
case SystemZ::ATOMIC_LOAD_NIHF64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_OR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
|
|
case SystemZ::ATOMIC_LOADW_OILH:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
|
|
case SystemZ::ATOMIC_LOAD_OR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
|
|
case SystemZ::ATOMIC_LOAD_OILL:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
|
|
case SystemZ::ATOMIC_LOAD_OILH:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
|
|
case SystemZ::ATOMIC_LOAD_OILF:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
|
|
case SystemZ::ATOMIC_LOAD_OGR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
|
|
case SystemZ::ATOMIC_LOAD_OILL64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
|
|
case SystemZ::ATOMIC_LOAD_OILH64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
|
|
case SystemZ::ATOMIC_LOAD_OIHL64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
|
|
case SystemZ::ATOMIC_LOAD_OIHH64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
|
|
case SystemZ::ATOMIC_LOAD_OILF64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
|
|
case SystemZ::ATOMIC_LOAD_OIHF64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_XR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
|
|
case SystemZ::ATOMIC_LOADW_XILF:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
|
|
case SystemZ::ATOMIC_LOAD_XR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
|
|
case SystemZ::ATOMIC_LOAD_XILF:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
|
|
case SystemZ::ATOMIC_LOAD_XGR:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
|
|
case SystemZ::ATOMIC_LOAD_XILF64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
|
|
case SystemZ::ATOMIC_LOAD_XIHF64:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_NRi:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
|
|
case SystemZ::ATOMIC_LOADW_NILHi:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
|
|
case SystemZ::ATOMIC_LOAD_NRi:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
|
|
case SystemZ::ATOMIC_LOAD_NILLi:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
|
|
case SystemZ::ATOMIC_LOAD_NILHi:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
|
|
case SystemZ::ATOMIC_LOAD_NILFi:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
|
|
case SystemZ::ATOMIC_LOAD_NGRi:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
|
|
case SystemZ::ATOMIC_LOAD_NILL64i:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
|
|
case SystemZ::ATOMIC_LOAD_NILH64i:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
|
|
case SystemZ::ATOMIC_LOAD_NIHL64i:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
|
|
case SystemZ::ATOMIC_LOAD_NIHH64i:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
|
|
case SystemZ::ATOMIC_LOAD_NILF64i:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
|
|
case SystemZ::ATOMIC_LOAD_NIHF64i:
|
|
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
|
|
|
|
case SystemZ::ATOMIC_LOADW_MIN:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
|
|
SystemZ::CCMASK_CMP_LE, 0);
|
|
case SystemZ::ATOMIC_LOAD_MIN_32:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
|
|
SystemZ::CCMASK_CMP_LE, 32);
|
|
case SystemZ::ATOMIC_LOAD_MIN_64:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
|
|
SystemZ::CCMASK_CMP_LE, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_MAX:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
|
|
SystemZ::CCMASK_CMP_GE, 0);
|
|
case SystemZ::ATOMIC_LOAD_MAX_32:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
|
|
SystemZ::CCMASK_CMP_GE, 32);
|
|
case SystemZ::ATOMIC_LOAD_MAX_64:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
|
|
SystemZ::CCMASK_CMP_GE, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_UMIN:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
|
|
SystemZ::CCMASK_CMP_LE, 0);
|
|
case SystemZ::ATOMIC_LOAD_UMIN_32:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
|
|
SystemZ::CCMASK_CMP_LE, 32);
|
|
case SystemZ::ATOMIC_LOAD_UMIN_64:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
|
|
SystemZ::CCMASK_CMP_LE, 64);
|
|
|
|
case SystemZ::ATOMIC_LOADW_UMAX:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
|
|
SystemZ::CCMASK_CMP_GE, 0);
|
|
case SystemZ::ATOMIC_LOAD_UMAX_32:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
|
|
SystemZ::CCMASK_CMP_GE, 32);
|
|
case SystemZ::ATOMIC_LOAD_UMAX_64:
|
|
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
|
|
SystemZ::CCMASK_CMP_GE, 64);
|
|
|
|
case SystemZ::ATOMIC_CMP_SWAPW:
|
|
return emitAtomicCmpSwapW(MI, MBB);
|
|
case SystemZ::MVCSequence:
|
|
case SystemZ::MVCLoop:
|
|
return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
|
|
case SystemZ::NCSequence:
|
|
case SystemZ::NCLoop:
|
|
return emitMemMemWrapper(MI, MBB, SystemZ::NC);
|
|
case SystemZ::OCSequence:
|
|
case SystemZ::OCLoop:
|
|
return emitMemMemWrapper(MI, MBB, SystemZ::OC);
|
|
case SystemZ::XCSequence:
|
|
case SystemZ::XCLoop:
|
|
return emitMemMemWrapper(MI, MBB, SystemZ::XC);
|
|
case SystemZ::CLCSequence:
|
|
case SystemZ::CLCLoop:
|
|
return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
|
|
case SystemZ::CLSTLoop:
|
|
return emitStringWrapper(MI, MBB, SystemZ::CLST);
|
|
case SystemZ::MVSTLoop:
|
|
return emitStringWrapper(MI, MBB, SystemZ::MVST);
|
|
case SystemZ::SRSTLoop:
|
|
return emitStringWrapper(MI, MBB, SystemZ::SRST);
|
|
case SystemZ::TBEGIN:
|
|
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
|
|
case SystemZ::TBEGIN_nofloat:
|
|
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
|
|
case SystemZ::TBEGINC:
|
|
return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
|
|
default:
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
}
|
|
}
|