llvm-6502/lib/ExecutionEngine/MCJIT/MCJIT.cpp
Mehdi Amini e02fce0ac9 Make ExecutionEngine owning a DataLayout
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.

The ExecutionEngine will act as an exception and will be unsafe to
be reused across context. We don't enforce this rule but undefined
behavior can occurs if the user tries to do it.

Reviewers: lhames

Subscribers: echristo, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11110

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242414 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-16 16:34:23 +00:00

638 lines
21 KiB
C++

//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCJIT.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
void ObjectCache::anchor() {}
namespace {
static struct RegisterJIT {
RegisterJIT() { MCJIT::Register(); }
} JITRegistrator;
}
extern "C" void LLVMLinkInMCJIT() {
}
ExecutionEngine*
MCJIT::createJIT(std::unique_ptr<Module> M,
std::string *ErrorStr,
std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
std::unique_ptr<TargetMachine> TM) {
// Try to register the program as a source of symbols to resolve against.
//
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
if (!MemMgr || !Resolver) {
auto RTDyldMM = std::make_shared<SectionMemoryManager>();
if (!MemMgr)
MemMgr = RTDyldMM;
if (!Resolver)
Resolver = RTDyldMM;
}
return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
std::move(Resolver));
}
MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver)
: ExecutionEngine(*TM->getDataLayout(), std::move(M)), TM(std::move(TM)),
Ctx(nullptr), MemMgr(std::move(MemMgr)),
Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
ObjCache(nullptr) {
// FIXME: We are managing our modules, so we do not want the base class
// ExecutionEngine to manage them as well. To avoid double destruction
// of the first (and only) module added in ExecutionEngine constructor
// we remove it from EE and will destruct it ourselves.
//
// It may make sense to move our module manager (based on SmallStPtr) back
// into EE if the JIT and Interpreter can live with it.
// If so, additional functions: addModule, removeModule, FindFunctionNamed,
// runStaticConstructorsDestructors could be moved back to EE as well.
//
std::unique_ptr<Module> First = std::move(Modules[0]);
Modules.clear();
OwnedModules.addModule(std::move(First));
RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
}
MCJIT::~MCJIT() {
MutexGuard locked(lock);
Dyld.deregisterEHFrames();
for (auto &Obj : LoadedObjects)
if (Obj)
NotifyFreeingObject(*Obj);
Archives.clear();
}
void MCJIT::addModule(std::unique_ptr<Module> M) {
MutexGuard locked(lock);
OwnedModules.addModule(std::move(M));
}
bool MCJIT::removeModule(Module *M) {
MutexGuard locked(lock);
return OwnedModules.removeModule(M);
}
void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
NotifyObjectEmitted(*Obj, *L);
LoadedObjects.push_back(std::move(Obj));
}
void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
std::unique_ptr<object::ObjectFile> ObjFile;
std::unique_ptr<MemoryBuffer> MemBuf;
std::tie(ObjFile, MemBuf) = Obj.takeBinary();
addObjectFile(std::move(ObjFile));
Buffers.push_back(std::move(MemBuf));
}
void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
Archives.push_back(std::move(A));
}
void MCJIT::setObjectCache(ObjectCache* NewCache) {
MutexGuard locked(lock);
ObjCache = NewCache;
}
std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
MutexGuard locked(lock);
// This must be a module which has already been added but not loaded to this
// MCJIT instance, since these conditions are tested by our caller,
// generateCodeForModule.
legacy::PassManager PM;
// The RuntimeDyld will take ownership of this shortly
SmallVector<char, 4096> ObjBufferSV;
raw_svector_ostream ObjStream(ObjBufferSV);
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
report_fatal_error("Target does not support MC emission!");
// Initialize passes.
PM.run(*M);
// Flush the output buffer to get the generated code into memory
ObjStream.flush();
std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
new ObjectMemoryBuffer(std::move(ObjBufferSV)));
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
ObjCache->notifyObjectCompiled(M, MB);
}
return CompiledObjBuffer;
}
void MCJIT::generateCodeForModule(Module *M) {
// Get a thread lock to make sure we aren't trying to load multiple times
MutexGuard locked(lock);
// This must be a module which has already been added to this MCJIT instance.
assert(OwnedModules.ownsModule(M) &&
"MCJIT::generateCodeForModule: Unknown module.");
// Re-compilation is not supported
if (OwnedModules.hasModuleBeenLoaded(M))
return;
std::unique_ptr<MemoryBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
if (ObjCache)
ObjectToLoad = ObjCache->getObject(M);
if (M->getDataLayout().isDefault()) {
M->setDataLayout(getDataLayout());
} else {
assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
}
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
ObjectToLoad = emitObject(M);
assert(ObjectToLoad && "Compilation did not produce an object.");
}
// Load the object into the dynamic linker.
// MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
ErrorOr<std::unique_ptr<object::ObjectFile>> LoadedObject =
object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
Dyld.loadObject(*LoadedObject.get());
if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
NotifyObjectEmitted(*LoadedObject.get(), *L);
Buffers.push_back(std::move(ObjectToLoad));
LoadedObjects.push_back(std::move(*LoadedObject));
OwnedModules.markModuleAsLoaded(M);
}
void MCJIT::finalizeLoadedModules() {
MutexGuard locked(lock);
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
OwnedModules.markAllLoadedModulesAsFinalized();
// Register EH frame data for any module we own which has been loaded
Dyld.registerEHFrames();
// Set page permissions.
MemMgr->finalizeMemory();
}
// FIXME: Rename this.
void MCJIT::finalizeObject() {
MutexGuard locked(lock);
// Generate code for module is going to move objects out of the 'added' list,
// so we need to copy that out before using it:
SmallVector<Module*, 16> ModsToAdd;
for (auto M : OwnedModules.added())
ModsToAdd.push_back(M);
for (auto M : ModsToAdd)
generateCodeForModule(M);
finalizeLoadedModules();
}
void MCJIT::finalizeModule(Module *M) {
MutexGuard locked(lock);
// This must be a module which has already been added to this MCJIT instance.
assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
// If the module hasn't been compiled, just do that.
if (!OwnedModules.hasModuleBeenLoaded(M))
generateCodeForModule(M);
finalizeLoadedModules();
}
RuntimeDyld::SymbolInfo MCJIT::findExistingSymbol(const std::string &Name) {
SmallString<128> FullName;
Mangler::getNameWithPrefix(FullName, Name, getDataLayout());
return Dyld.getSymbol(FullName);
}
Module *MCJIT::findModuleForSymbol(const std::string &Name,
bool CheckFunctionsOnly) {
MutexGuard locked(lock);
// If it hasn't already been generated, see if it's in one of our modules.
for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
E = OwnedModules.end_added();
I != E; ++I) {
Module *M = *I;
Function *F = M->getFunction(Name);
if (F && !F->isDeclaration())
return M;
if (!CheckFunctionsOnly) {
GlobalVariable *G = M->getGlobalVariable(Name);
if (G && !G->isDeclaration())
return M;
// FIXME: Do we need to worry about global aliases?
}
}
// We didn't find the symbol in any of our modules.
return nullptr;
}
uint64_t MCJIT::getSymbolAddress(const std::string &Name,
bool CheckFunctionsOnly) {
return findSymbol(Name, CheckFunctionsOnly).getAddress();
}
RuntimeDyld::SymbolInfo MCJIT::findSymbol(const std::string &Name,
bool CheckFunctionsOnly) {
MutexGuard locked(lock);
// First, check to see if we already have this symbol.
if (auto Sym = findExistingSymbol(Name))
return Sym;
for (object::OwningBinary<object::Archive> &OB : Archives) {
object::Archive *A = OB.getBinary();
// Look for our symbols in each Archive
object::Archive::child_iterator ChildIt = A->findSym(Name);
if (ChildIt != A->child_end()) {
// FIXME: Support nested archives?
ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
ChildIt->getAsBinary();
if (ChildBinOrErr.getError())
continue;
std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
if (ChildBin->isObject()) {
std::unique_ptr<object::ObjectFile> OF(
static_cast<object::ObjectFile *>(ChildBin.release()));
// This causes the object file to be loaded.
addObjectFile(std::move(OF));
// The address should be here now.
if (auto Sym = findExistingSymbol(Name))
return Sym;
}
}
}
// If it hasn't already been generated, see if it's in one of our modules.
Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
if (M) {
generateCodeForModule(M);
// Check the RuntimeDyld table again, it should be there now.
return findExistingSymbol(Name);
}
// If a LazyFunctionCreator is installed, use it to get/create the function.
// FIXME: Should we instead have a LazySymbolCreator callback?
if (LazyFunctionCreator) {
auto Addr = static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
return RuntimeDyld::SymbolInfo(Addr, JITSymbolFlags::Exported);
}
return nullptr;
}
uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
MutexGuard locked(lock);
uint64_t Result = getSymbolAddress(Name, false);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
MutexGuard locked(lock);
uint64_t Result = getSymbolAddress(Name, true);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
// Deprecated. Use getFunctionAddress instead.
void *MCJIT::getPointerToFunction(Function *F) {
MutexGuard locked(lock);
Mangler Mang;
SmallString<128> Name;
TM->getNameWithPrefix(Name, F, Mang);
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
updateGlobalMapping(F, Addr);
return Addr;
}
Module *M = F->getParent();
bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
// Make sure the relevant module has been compiled and loaded.
if (HasBeenAddedButNotLoaded)
generateCodeForModule(M);
else if (!OwnedModules.hasModuleBeenLoaded(M)) {
// If this function doesn't belong to one of our modules, we're done.
// FIXME: Asking for the pointer to a function that hasn't been registered,
// and isn't a declaration (which is handled above) should probably
// be an assertion.
return nullptr;
}
// FIXME: Should the Dyld be retaining module information? Probably not.
//
// This is the accessor for the target address, so make sure to check the
// load address of the symbol, not the local address.
return (void*)Dyld.getSymbol(Name).getAddress();
}
void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
for (; I != E; ++I) {
ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
}
}
void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
// Execute global ctors/dtors for each module in the program.
runStaticConstructorsDestructorsInModulePtrSet(
isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
runStaticConstructorsDestructorsInModulePtrSet(
isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
runStaticConstructorsDestructorsInModulePtrSet(
isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
}
Function *MCJIT::FindFunctionNamedInModulePtrSet(const char *FnName,
ModulePtrSet::iterator I,
ModulePtrSet::iterator E) {
for (; I != E; ++I) {
Function *F = (*I)->getFunction(FnName);
if (F && !F->isDeclaration())
return F;
}
return nullptr;
}
GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(const char *Name,
bool AllowInternal,
ModulePtrSet::iterator I,
ModulePtrSet::iterator E) {
for (; I != E; ++I) {
GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
if (GV && !GV->isDeclaration())
return GV;
}
return nullptr;
}
Function *MCJIT::FindFunctionNamed(const char *FnName) {
Function *F = FindFunctionNamedInModulePtrSet(
FnName, OwnedModules.begin_added(), OwnedModules.end_added());
if (!F)
F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
OwnedModules.end_loaded());
if (!F)
F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
OwnedModules.end_finalized());
return F;
}
GlobalVariable *MCJIT::FindGlobalVariableNamed(const char *Name, bool AllowInternal) {
GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
if (!GV)
GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
OwnedModules.end_loaded());
if (!GV)
GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
OwnedModules.end_finalized());
return GV;
}
GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
FunctionType *FTy = F->getFunctionType();
Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() == ArgValues.size() ||
(FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
"Wrong number of arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy() &&
FTy->getParamType(2)->isPointerTy()) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy()) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0)->isIntegerTy(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
llvm_unreachable("long double not supported yet");
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
llvm_unreachable("Full-featured argument passing not supported yet!");
}
void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
if (!isSymbolSearchingDisabled()) {
void *ptr =
reinterpret_cast<void*>(
static_cast<uintptr_t>(Resolver.findSymbol(Name).getAddress()));
if (ptr)
return ptr;
}
/// If a LazyFunctionCreator is installed, use it to get/create the function.
if (LazyFunctionCreator)
if (void *RP = LazyFunctionCreator(Name))
return RP;
if (AbortOnFailure) {
report_fatal_error("Program used external function '"+Name+
"' which could not be resolved!");
}
return nullptr;
}
void MCJIT::RegisterJITEventListener(JITEventListener *L) {
if (!L)
return;
MutexGuard locked(lock);
EventListeners.push_back(L);
}
void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (!L)
return;
MutexGuard locked(lock);
auto I = std::find(EventListeners.rbegin(), EventListeners.rend(), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
}
}
void MCJIT::NotifyObjectEmitted(const object::ObjectFile& Obj,
const RuntimeDyld::LoadedObjectInfo &L) {
MutexGuard locked(lock);
MemMgr->notifyObjectLoaded(this, Obj);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyObjectEmitted(Obj, L);
}
}
void MCJIT::NotifyFreeingObject(const object::ObjectFile& Obj) {
MutexGuard locked(lock);
for (JITEventListener *L : EventListeners)
L->NotifyFreeingObject(Obj);
}
RuntimeDyld::SymbolInfo
LinkingSymbolResolver::findSymbol(const std::string &Name) {
auto Result = ParentEngine.findSymbol(Name, false);
// If the symbols wasn't found and it begins with an underscore, try again
// without the underscore.
if (!Result && Name[0] == '_')
Result = ParentEngine.findSymbol(Name.substr(1), false);
if (Result)
return Result;
if (ParentEngine.isSymbolSearchingDisabled())
return nullptr;
return ClientResolver->findSymbol(Name);
}