llvm-6502/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
Jim Grosbach c2d3164ab4 Thumb2 assembly parsing for MOV in IT block.
Select the right 16 vs. 32 bit encoding in an IT block.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139714 91177308-0d34-0410-b5e6-96231b3b80d8
2011-09-14 19:12:11 +00:00

4136 lines
147 KiB
C++

//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
using namespace llvm;
namespace {
class ARMOperand;
class ARMAsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
MCAsmParser &Parser;
struct {
ARMCC::CondCodes Cond; // Condition for IT block.
unsigned Mask:4; // Condition mask for instructions.
// Starting at first 1 (from lsb).
// '1' condition as indicated in IT.
// '0' inverse of condition (else).
// Count of instructions in IT block is
// 4 - trailingzeroes(mask)
bool FirstCond; // Explicit flag for when we're parsing the
// First instruction in the IT block. It's
// implied in the mask, so needs special
// handling.
unsigned CurPosition; // Current position in parsing of IT
// block. In range [0,3]. Initialized
// according to count of instructions in block.
// ~0U if no active IT block.
} ITState;
bool inITBlock() { return ITState.CurPosition != ~0U;}
void forwardITPosition() {
if (!inITBlock()) return;
// Move to the next instruction in the IT block, if there is one. If not,
// mark the block as done.
unsigned TZ = CountTrailingZeros_32(ITState.Mask);
if (++ITState.CurPosition == 5 - TZ)
ITState.CurPosition = ~0U; // Done with the IT block after this.
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
int tryParseRegister();
bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
const MCExpr *applyPrefixToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant);
bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
unsigned &ShiftAmount);
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool parseDirectiveThumb(SMLoc L);
bool parseDirectiveThumbFunc(SMLoc L);
bool parseDirectiveCode(SMLoc L);
bool parseDirectiveSyntax(SMLoc L);
StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
bool &CarrySetting, unsigned &ProcessorIMod,
StringRef &ITMask);
void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
bool &CanAcceptPredicationCode);
bool isThumb() const {
// FIXME: Can tablegen auto-generate this?
return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
}
bool isThumbOne() const {
return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
}
bool isThumbTwo() const {
return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
}
bool hasV6Ops() const {
return STI.getFeatureBits() & ARM::HasV6Ops;
}
void SwitchMode() {
unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
setAvailableFeatures(FB);
}
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "ARMGenAsmMatcher.inc"
/// }
OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseCoprocNumOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseCoprocRegOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseMemBarrierOptOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseProcIFlagsOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseMSRMaskOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
StringRef Op, int Low, int High);
OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
return parsePKHImm(O, "lsl", 0, 31);
}
OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
return parsePKHImm(O, "asr", 1, 32);
}
OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
// Asm Match Converter Methods
bool cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool validateInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
void processInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
bool shouldOmitCCOutOperand(StringRef Mnemonic,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
public:
enum ARMMatchResultTy {
Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
Match_RequiresNotITBlock,
Match_RequiresV6,
Match_RequiresThumb2
};
ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
: MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
MCAsmParserExtension::Initialize(_Parser);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
// Not in an ITBlock to start with.
ITState.CurPosition = ~0U;
}
// Implementation of the MCTargetAsmParser interface:
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool ParseDirective(AsmToken DirectiveID);
unsigned checkTargetMatchPredicate(MCInst &Inst);
bool MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out);
};
} // end anonymous namespace
namespace {
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
class ARMOperand : public MCParsedAsmOperand {
enum KindTy {
CondCode,
CCOut,
ITCondMask,
CoprocNum,
CoprocReg,
Immediate,
MemBarrierOpt,
Memory,
PostIndexRegister,
MSRMask,
ProcIFlags,
Register,
RegisterList,
DPRRegisterList,
SPRRegisterList,
ShiftedRegister,
ShiftedImmediate,
ShifterImmediate,
RotateImmediate,
BitfieldDescriptor,
Token
} Kind;
SMLoc StartLoc, EndLoc;
SmallVector<unsigned, 8> Registers;
union {
struct {
ARMCC::CondCodes Val;
} CC;
struct {
unsigned Val;
} Cop;
struct {
unsigned Mask:4;
} ITMask;
struct {
ARM_MB::MemBOpt Val;
} MBOpt;
struct {
ARM_PROC::IFlags Val;
} IFlags;
struct {
unsigned Val;
} MMask;
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
} Reg;
struct {
const MCExpr *Val;
} Imm;
/// Combined record for all forms of ARM address expressions.
struct {
unsigned BaseRegNum;
// Offset is in OffsetReg or OffsetImm. If both are zero, no offset
// was specified.
const MCConstantExpr *OffsetImm; // Offset immediate value
unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
unsigned ShiftImm; // shift for OffsetReg.
unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
} Mem;
struct {
unsigned RegNum;
bool isAdd;
ARM_AM::ShiftOpc ShiftTy;
unsigned ShiftImm;
} PostIdxReg;
struct {
bool isASR;
unsigned Imm;
} ShifterImm;
struct {
ARM_AM::ShiftOpc ShiftTy;
unsigned SrcReg;
unsigned ShiftReg;
unsigned ShiftImm;
} RegShiftedReg;
struct {
ARM_AM::ShiftOpc ShiftTy;
unsigned SrcReg;
unsigned ShiftImm;
} RegShiftedImm;
struct {
unsigned Imm;
} RotImm;
struct {
unsigned LSB;
unsigned Width;
} Bitfield;
};
ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case CondCode:
CC = o.CC;
break;
case ITCondMask:
ITMask = o.ITMask;
break;
case Token:
Tok = o.Tok;
break;
case CCOut:
case Register:
Reg = o.Reg;
break;
case RegisterList:
case DPRRegisterList:
case SPRRegisterList:
Registers = o.Registers;
break;
case CoprocNum:
case CoprocReg:
Cop = o.Cop;
break;
case Immediate:
Imm = o.Imm;
break;
case MemBarrierOpt:
MBOpt = o.MBOpt;
break;
case Memory:
Mem = o.Mem;
break;
case PostIndexRegister:
PostIdxReg = o.PostIdxReg;
break;
case MSRMask:
MMask = o.MMask;
break;
case ProcIFlags:
IFlags = o.IFlags;
break;
case ShifterImmediate:
ShifterImm = o.ShifterImm;
break;
case ShiftedRegister:
RegShiftedReg = o.RegShiftedReg;
break;
case ShiftedImmediate:
RegShiftedImm = o.RegShiftedImm;
break;
case RotateImmediate:
RotImm = o.RotImm;
break;
case BitfieldDescriptor:
Bitfield = o.Bitfield;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
ARMCC::CondCodes getCondCode() const {
assert(Kind == CondCode && "Invalid access!");
return CC.Val;
}
unsigned getCoproc() const {
assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!");
return Cop.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == Register || Kind == CCOut) && "Invalid access!");
return Reg.RegNum;
}
const SmallVectorImpl<unsigned> &getRegList() const {
assert((Kind == RegisterList || Kind == DPRRegisterList ||
Kind == SPRRegisterList) && "Invalid access!");
return Registers;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
ARM_MB::MemBOpt getMemBarrierOpt() const {
assert(Kind == MemBarrierOpt && "Invalid access!");
return MBOpt.Val;
}
ARM_PROC::IFlags getProcIFlags() const {
assert(Kind == ProcIFlags && "Invalid access!");
return IFlags.Val;
}
unsigned getMSRMask() const {
assert(Kind == MSRMask && "Invalid access!");
return MMask.Val;
}
bool isCoprocNum() const { return Kind == CoprocNum; }
bool isCoprocReg() const { return Kind == CoprocReg; }
bool isCondCode() const { return Kind == CondCode; }
bool isCCOut() const { return Kind == CCOut; }
bool isITMask() const { return Kind == ITCondMask; }
bool isITCondCode() const { return Kind == CondCode; }
bool isImm() const { return Kind == Immediate; }
bool isImm8s4() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
}
bool isImm0_1020s4() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
}
bool isImm0_508s4() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
}
bool isImm0_255() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 256;
}
bool isImm0_7() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 8;
}
bool isImm0_15() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 16;
}
bool isImm0_31() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 32;
}
bool isImm1_16() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value < 17;
}
bool isImm1_32() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value < 33;
}
bool isImm0_65535() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 65536;
}
bool isImm0_65535Expr() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// If it's not a constant expression, it'll generate a fixup and be
// handled later.
if (!CE) return true;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 65536;
}
bool isImm24bit() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value <= 0xffffff;
}
bool isImmThumbSR() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value < 33;
}
bool isPKHLSLImm() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 32;
}
bool isPKHASRImm() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value <= 32;
}
bool isARMSOImm() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getSOImmVal(Value) != -1;
}
bool isT2SOImm() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getT2SOImmVal(Value) != -1;
}
bool isSetEndImm() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value == 1 || Value == 0;
}
bool isReg() const { return Kind == Register; }
bool isRegList() const { return Kind == RegisterList; }
bool isDPRRegList() const { return Kind == DPRRegisterList; }
bool isSPRRegList() const { return Kind == SPRRegisterList; }
bool isToken() const { return Kind == Token; }
bool isMemBarrierOpt() const { return Kind == MemBarrierOpt; }
bool isMemory() const { return Kind == Memory; }
bool isShifterImm() const { return Kind == ShifterImmediate; }
bool isRegShiftedReg() const { return Kind == ShiftedRegister; }
bool isRegShiftedImm() const { return Kind == ShiftedImmediate; }
bool isRotImm() const { return Kind == RotateImmediate; }
bool isBitfield() const { return Kind == BitfieldDescriptor; }
bool isPostIdxRegShifted() const { return Kind == PostIndexRegister; }
bool isPostIdxReg() const {
return Kind == PostIndexRegister && PostIdxReg.ShiftTy == ARM_AM::no_shift;
}
bool isMemNoOffset() const {
if (Kind != Memory)
return false;
// No offset of any kind.
return Mem.OffsetRegNum == 0 && Mem.OffsetImm == 0;
}
bool isAddrMode2() const {
if (Kind != Memory)
return false;
// Check for register offset.
if (Mem.OffsetRegNum) return true;
// Immediate offset in range [-4095, 4095].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val > -4096 && Val < 4096;
}
bool isAM2OffsetImm() const {
if (Kind != Immediate)
return false;
// Immediate offset in range [-4095, 4095].
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return Val > -4096 && Val < 4096;
}
bool isAddrMode3() const {
if (Kind != Memory)
return false;
// No shifts are legal for AM3.
if (Mem.ShiftType != ARM_AM::no_shift) return false;
// Check for register offset.
if (Mem.OffsetRegNum) return true;
// Immediate offset in range [-255, 255].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val > -256 && Val < 256;
}
bool isAM3Offset() const {
if (Kind != Immediate && Kind != PostIndexRegister)
return false;
if (Kind == PostIndexRegister)
return PostIdxReg.ShiftTy == ARM_AM::no_shift;
// Immediate offset in range [-255, 255].
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
// Special case, #-0 is INT32_MIN.
return (Val > -256 && Val < 256) || Val == INT32_MIN;
}
bool isAddrMode5() const {
if (Kind != Memory)
return false;
// Check for register offset.
if (Mem.OffsetRegNum) return false;
// Immediate offset in range [-1020, 1020] and a multiple of 4.
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
Val == INT32_MIN;
}
bool isMemRegOffset() const {
if (Kind != Memory || !Mem.OffsetRegNum)
return false;
return true;
}
bool isT2MemRegOffset() const {
if (Kind != Memory || !Mem.OffsetRegNum || Mem.isNegative)
return false;
// Only lsl #{0, 1, 2, 3} allowed.
if (Mem.ShiftType == ARM_AM::no_shift)
return true;
if (Mem.ShiftType != ARM_AM::lsl || Mem.ShiftImm > 3)
return false;
return true;
}
bool isMemThumbRR() const {
// Thumb reg+reg addressing is simple. Just two registers, a base and
// an offset. No shifts, negations or any other complicating factors.
if (Kind != Memory || !Mem.OffsetRegNum || Mem.isNegative ||
Mem.ShiftType != ARM_AM::no_shift)
return false;
return isARMLowRegister(Mem.BaseRegNum) &&
(!Mem.OffsetRegNum || isARMLowRegister(Mem.OffsetRegNum));
}
bool isMemThumbRIs4() const {
if (Kind != Memory || Mem.OffsetRegNum != 0 ||
!isARMLowRegister(Mem.BaseRegNum))
return false;
// Immediate offset, multiple of 4 in range [0, 124].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val >= 0 && Val <= 124 && (Val % 4) == 0;
}
bool isMemThumbRIs2() const {
if (Kind != Memory || Mem.OffsetRegNum != 0 ||
!isARMLowRegister(Mem.BaseRegNum))
return false;
// Immediate offset, multiple of 4 in range [0, 62].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val >= 0 && Val <= 62 && (Val % 2) == 0;
}
bool isMemThumbRIs1() const {
if (Kind != Memory || Mem.OffsetRegNum != 0 ||
!isARMLowRegister(Mem.BaseRegNum))
return false;
// Immediate offset in range [0, 31].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val >= 0 && Val <= 31;
}
bool isMemThumbSPI() const {
if (Kind != Memory || Mem.OffsetRegNum != 0 || Mem.BaseRegNum != ARM::SP)
return false;
// Immediate offset, multiple of 4 in range [0, 1020].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
}
bool isMemImm8s4Offset() const {
if (Kind != Memory || Mem.OffsetRegNum != 0)
return false;
// Immediate offset a multiple of 4 in range [-1020, 1020].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val >= -1020 && Val <= 1020 && (Val & 3) == 0;
}
bool isMemImm0_1020s4Offset() const {
if (Kind != Memory || Mem.OffsetRegNum != 0)
return false;
// Immediate offset a multiple of 4 in range [0, 1020].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
}
bool isMemImm8Offset() const {
if (Kind != Memory || Mem.OffsetRegNum != 0)
return false;
// Immediate offset in range [-255, 255].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val > -256 && Val < 256;
}
bool isMemPosImm8Offset() const {
if (Kind != Memory || Mem.OffsetRegNum != 0)
return false;
// Immediate offset in range [0, 255].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val >= 0 && Val < 256;
}
bool isMemNegImm8Offset() const {
if (Kind != Memory || Mem.OffsetRegNum != 0)
return false;
// Immediate offset in range [-255, -1].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return Val > -256 && Val < 0;
}
bool isMemUImm12Offset() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (Kind == Immediate && !isa<MCConstantExpr>(getImm()))
return true;
if (Kind != Memory || Mem.OffsetRegNum != 0)
return false;
// Immediate offset in range [0, 4095].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return (Val >= 0 && Val < 4096);
}
bool isMemImm12Offset() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (Kind == Immediate && !isa<MCConstantExpr>(getImm()))
return true;
if (Kind != Memory || Mem.OffsetRegNum != 0)
return false;
// Immediate offset in range [-4095, 4095].
if (!Mem.OffsetImm) return true;
int64_t Val = Mem.OffsetImm->getValue();
return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
}
bool isPostIdxImm8() const {
if (Kind != Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return (Val > -256 && Val < 256) || (Val == INT32_MIN);
}
bool isMSRMask() const { return Kind == MSRMask; }
bool isProcIFlags() const { return Kind == ProcIFlags; }
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
Inst.addOperand(MCOperand::CreateReg(RegNum));
}
void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getCoproc()));
}
void addITMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
}
void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
}
void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getCoproc()));
}
void addCCOutOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
assert(isRegShiftedReg() && "addRegShiftedRegOperands() on non RegShiftedReg!");
Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
Inst.addOperand(MCOperand::CreateImm(
ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
}
void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
assert(isRegShiftedImm() && "addRegShiftedImmOperands() on non RegShiftedImm!");
Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
Inst.addOperand(MCOperand::CreateImm(
ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, RegShiftedImm.ShiftImm)));
}
void addShifterImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
ShifterImm.Imm));
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ++I)
Inst.addOperand(MCOperand::CreateReg(*I));
}
void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addRotImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Encoded as val>>3. The printer handles display as 8, 16, 24.
Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
}
void addBitfieldOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Munge the lsb/width into a bitfield mask.
unsigned lsb = Bitfield.LSB;
unsigned width = Bitfield.Width;
// Make a 32-bit mask w/ the referenced bits clear and all other bits set.
uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
(32 - (lsb + width)));
Inst.addOperand(MCOperand::CreateImm(Mask));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm8s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// FIXME: We really want to scale the value here, but the LDRD/STRD
// instruction don't encode operands that way yet.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
}
void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate is scaled by four in the encoding and is stored
// in the MCInst as such. Lop off the low two bits here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
}
void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate is scaled by four in the encoding and is stored
// in the MCInst as such. Lop off the low two bits here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
}
void addImm0_255Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_7Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_15Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_31Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm1_16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate-1, and we store in the instruction
// the bits as encoded, so subtract off one here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
}
void addImm1_32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate-1, and we store in the instruction
// the bits as encoded, so subtract off one here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
}
void addImm0_65535Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_65535ExprOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm24bitOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate, except for 32, which encodes as
// zero.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
unsigned Imm = CE->getValue();
Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
}
void addPKHLSLImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// An ASR value of 32 encodes as 0, so that's how we want to add it to
// the instruction as well.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
int Val = CE->getValue();
Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
}
void addARMSOImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addT2SOImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addSetEndImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
}
void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
}
void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
int32_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0;
if (!Mem.OffsetRegNum) {
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
} else {
// For register offset, we encode the shift type and negation flag
// here.
Val = ARM_AM::getAM2Opc(Mem.isNegative ? ARM_AM::sub : ARM_AM::add,
Mem.ShiftImm, Mem.ShiftType);
}
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant AM2OffsetImm operand!");
int32_t Val = CE->getValue();
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
Inst.addOperand(MCOperand::CreateReg(0));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
int32_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0;
if (!Mem.OffsetRegNum) {
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM3Opc(AddSub, Val);
} else {
// For register offset, we encode the shift type and negation flag
// here.
Val = ARM_AM::getAM3Opc(Mem.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
}
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
if (Kind == PostIndexRegister) {
int32_t Val =
ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
return;
}
// Constant offset.
const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
int32_t Val = CE->getValue();
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM3Opc(AddSub, Val);
Inst.addOperand(MCOperand::CreateReg(0));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// The lower two bits are always zero and as such are not encoded.
int32_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() / 4 : 0;
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM5Opc(AddSub, Val);
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// The lower two bits are always zero and as such are not encoded.
int32_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() / 4 : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
addMemImm8OffsetOperands(Inst, N);
}
void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
addMemImm8OffsetOperands(Inst, N);
}
void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If this is an immediate, it's a label reference.
if (Kind == Immediate) {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::CreateImm(0));
return;
}
// Otherwise, it's a normal memory reg+offset.
int64_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If this is an immediate, it's a label reference.
if (Kind == Immediate) {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::CreateImm(0));
return;
}
// Otherwise, it's a normal memory reg+offset.
int64_t Val = Mem.OffsetImm ? Mem.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
unsigned Val = ARM_AM::getAM2Opc(Mem.isNegative ? ARM_AM::sub : ARM_AM::add,
Mem.ShiftImm, Mem.ShiftType);
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Mem.ShiftImm));
}
void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum));
}
void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Mem.OffsetImm ? (Mem.OffsetImm->getValue() / 4) : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Mem.OffsetImm ? (Mem.OffsetImm->getValue() / 2) : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Mem.OffsetImm ? (Mem.OffsetImm->getValue()) : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Mem.OffsetImm ? (Mem.OffsetImm->getValue() / 4) : 0;
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant post-idx-imm8 operand!");
int Imm = CE->getValue();
bool isAdd = Imm >= 0;
if (Imm == INT32_MIN) Imm = 0;
Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
Inst.addOperand(MCOperand::CreateImm(Imm));
}
void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
}
void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
// The sign, shift type, and shift amount are encoded in a single operand
// using the AM2 encoding helpers.
ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
PostIdxReg.ShiftTy);
Inst.addOperand(MCOperand::CreateImm(Imm));
}
void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
}
void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
}
virtual void print(raw_ostream &OS) const;
static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
ARMOperand *Op = new ARMOperand(ITCondMask);
Op->ITMask.Mask = Mask;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
ARMOperand *Op = new ARMOperand(CondCode);
Op->CC.Val = CC;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
ARMOperand *Op = new ARMOperand(CoprocNum);
Op->Cop.Val = CopVal;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
ARMOperand *Op = new ARMOperand(CoprocReg);
Op->Cop.Val = CopVal;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
ARMOperand *Op = new ARMOperand(CCOut);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
ARMOperand *Op = new ARMOperand(Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
unsigned SrcReg,
unsigned ShiftReg,
unsigned ShiftImm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(ShiftedRegister);
Op->RegShiftedReg.ShiftTy = ShTy;
Op->RegShiftedReg.SrcReg = SrcReg;
Op->RegShiftedReg.ShiftReg = ShiftReg;
Op->RegShiftedReg.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
unsigned SrcReg,
unsigned ShiftImm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(ShiftedImmediate);
Op->RegShiftedImm.ShiftTy = ShTy;
Op->RegShiftedImm.SrcReg = SrcReg;
Op->RegShiftedImm.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(ShifterImmediate);
Op->ShifterImm.isASR = isASR;
Op->ShifterImm.Imm = Imm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(RotateImmediate);
Op->RotImm.Imm = Imm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(BitfieldDescriptor);
Op->Bitfield.LSB = LSB;
Op->Bitfield.Width = Width;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *
CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
SMLoc StartLoc, SMLoc EndLoc) {
KindTy Kind = RegisterList;
if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
Kind = DPRRegisterList;
else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
contains(Regs.front().first))
Kind = SPRRegisterList;
ARMOperand *Op = new ARMOperand(Kind);
for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
I = Regs.begin(), E = Regs.end(); I != E; ++I)
Op->Registers.push_back(I->first);
array_pod_sort(Op->Registers.begin(), Op->Registers.end());
Op->StartLoc = StartLoc;
Op->EndLoc = EndLoc;
return Op;
}
static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateMem(unsigned BaseRegNum,
const MCConstantExpr *OffsetImm,
unsigned OffsetRegNum,
ARM_AM::ShiftOpc ShiftType,
unsigned ShiftImm,
bool isNegative,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Memory);
Op->Mem.BaseRegNum = BaseRegNum;
Op->Mem.OffsetImm = OffsetImm;
Op->Mem.OffsetRegNum = OffsetRegNum;
Op->Mem.ShiftType = ShiftType;
Op->Mem.ShiftImm = ShiftImm;
Op->Mem.isNegative = isNegative;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
ARM_AM::ShiftOpc ShiftTy,
unsigned ShiftImm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(PostIndexRegister);
Op->PostIdxReg.RegNum = RegNum;
Op->PostIdxReg.isAdd = isAdd;
Op->PostIdxReg.ShiftTy = ShiftTy;
Op->PostIdxReg.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
ARMOperand *Op = new ARMOperand(MemBarrierOpt);
Op->MBOpt.Val = Opt;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
ARMOperand *Op = new ARMOperand(ProcIFlags);
Op->IFlags.Val = IFlags;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
ARMOperand *Op = new ARMOperand(MSRMask);
Op->MMask.Val = MMask;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
};
} // end anonymous namespace.
void ARMOperand::print(raw_ostream &OS) const {
switch (Kind) {
case CondCode:
OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
break;
case CCOut:
OS << "<ccout " << getReg() << ">";
break;
case ITCondMask: {
static char MaskStr[][6] = { "()", "(t)", "(e)", "(tt)", "(et)", "(te)",
"(ee)", "(ttt)", "(ett)", "(tet)", "(eet)", "(tte)", "(ete)",
"(tee)", "(eee)" };
assert((ITMask.Mask & 0xf) == ITMask.Mask);
OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
break;
}
case CoprocNum:
OS << "<coprocessor number: " << getCoproc() << ">";
break;
case CoprocReg:
OS << "<coprocessor register: " << getCoproc() << ">";
break;
case MSRMask:
OS << "<mask: " << getMSRMask() << ">";
break;
case Immediate:
getImm()->print(OS);
break;
case MemBarrierOpt:
OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
break;
case Memory:
OS << "<memory "
<< " base:" << Mem.BaseRegNum;
OS << ">";
break;
case PostIndexRegister:
OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
<< PostIdxReg.RegNum;
if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
<< PostIdxReg.ShiftImm;
OS << ">";
break;
case ProcIFlags: {
OS << "<ARM_PROC::";
unsigned IFlags = getProcIFlags();
for (int i=2; i >= 0; --i)
if (IFlags & (1 << i))
OS << ARM_PROC::IFlagsToString(1 << i);
OS << ">";
break;
}
case Register:
OS << "<register " << getReg() << ">";
break;
case ShifterImmediate:
OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
<< " #" << ShifterImm.Imm << ">";
break;
case ShiftedRegister:
OS << "<so_reg_reg "
<< RegShiftedReg.SrcReg
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(RegShiftedReg.ShiftImm))
<< ", " << RegShiftedReg.ShiftReg << ", "
<< ARM_AM::getSORegOffset(RegShiftedReg.ShiftImm)
<< ">";
break;
case ShiftedImmediate:
OS << "<so_reg_imm "
<< RegShiftedImm.SrcReg
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(RegShiftedImm.ShiftImm))
<< ", " << ARM_AM::getSORegOffset(RegShiftedImm.ShiftImm)
<< ">";
break;
case RotateImmediate:
OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
break;
case BitfieldDescriptor:
OS << "<bitfield " << "lsb: " << Bitfield.LSB
<< ", width: " << Bitfield.Width << ">";
break;
case RegisterList:
case DPRRegisterList:
case SPRRegisterList: {
OS << "<register_list ";
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ) {
OS << *I;
if (++I < E) OS << ", ";
}
OS << ">";
break;
}
case Token:
OS << "'" << getToken() << "'";
break;
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
bool ARMAsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
RegNo = tryParseRegister();
return (RegNo == (unsigned)-1);
}
/// Try to parse a register name. The token must be an Identifier when called,
/// and if it is a register name the token is eaten and the register number is
/// returned. Otherwise return -1.
///
int ARMAsmParser::tryParseRegister() {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) return -1;
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
std::string upperCase = Tok.getString().str();
std::string lowerCase = LowercaseString(upperCase);
unsigned RegNum = MatchRegisterName(lowerCase);
if (!RegNum) {
RegNum = StringSwitch<unsigned>(lowerCase)
.Case("r13", ARM::SP)
.Case("r14", ARM::LR)
.Case("r15", ARM::PC)
.Case("ip", ARM::R12)
.Default(0);
}
if (!RegNum) return -1;
Parser.Lex(); // Eat identifier token.
return RegNum;
}
// Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
// If a recoverable error occurs, return 1. If an irrecoverable error
// occurs, return -1. An irrecoverable error is one where tokens have been
// consumed in the process of trying to parse the shifter (i.e., when it is
// indeed a shifter operand, but malformed).
int ARMAsmParser::tryParseShiftRegister(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
std::string upperCase = Tok.getString().str();
std::string lowerCase = LowercaseString(upperCase);
ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
.Case("lsl", ARM_AM::lsl)
.Case("lsr", ARM_AM::lsr)
.Case("asr", ARM_AM::asr)
.Case("ror", ARM_AM::ror)
.Case("rrx", ARM_AM::rrx)
.Default(ARM_AM::no_shift);
if (ShiftTy == ARM_AM::no_shift)
return 1;
Parser.Lex(); // Eat the operator.
// The source register for the shift has already been added to the
// operand list, so we need to pop it off and combine it into the shifted
// register operand instead.
OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
if (!PrevOp->isReg())
return Error(PrevOp->getStartLoc(), "shift must be of a register");
int SrcReg = PrevOp->getReg();
int64_t Imm = 0;
int ShiftReg = 0;
if (ShiftTy == ARM_AM::rrx) {
// RRX Doesn't have an explicit shift amount. The encoder expects
// the shift register to be the same as the source register. Seems odd,
// but OK.
ShiftReg = SrcReg;
} else {
// Figure out if this is shifted by a constant or a register (for non-RRX).
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat hash.
SMLoc ImmLoc = Parser.getTok().getLoc();
const MCExpr *ShiftExpr = 0;
if (getParser().ParseExpression(ShiftExpr)) {
Error(ImmLoc, "invalid immediate shift value");
return -1;
}
// The expression must be evaluatable as an immediate.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
if (!CE) {
Error(ImmLoc, "invalid immediate shift value");
return -1;
}
// Range check the immediate.
// lsl, ror: 0 <= imm <= 31
// lsr, asr: 0 <= imm <= 32
Imm = CE->getValue();
if (Imm < 0 ||
((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
Error(ImmLoc, "immediate shift value out of range");
return -1;
}
} else if (Parser.getTok().is(AsmToken::Identifier)) {
ShiftReg = tryParseRegister();
SMLoc L = Parser.getTok().getLoc();
if (ShiftReg == -1) {
Error (L, "expected immediate or register in shift operand");
return -1;
}
} else {
Error (Parser.getTok().getLoc(),
"expected immediate or register in shift operand");
return -1;
}
}
if (ShiftReg && ShiftTy != ARM_AM::rrx)
Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
ShiftReg, Imm,
S, Parser.getTok().getLoc()));
else
Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
S, Parser.getTok().getLoc()));
return 0;
}
/// Try to parse a register name. The token must be an Identifier when called.
/// If it's a register, an AsmOperand is created. Another AsmOperand is created
/// if there is a "writeback". 'true' if it's not a register.
///
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::
tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
int RegNo = tryParseRegister();
if (RegNo == -1)
return true;
Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
ExclaimTok.getLoc()));
Parser.Lex(); // Eat exclaim token
}
return false;
}
/// MatchCoprocessorOperandName - Try to parse an coprocessor related
/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
/// "c5", ...
static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
// Use the same layout as the tablegen'erated register name matcher. Ugly,
// but efficient.
switch (Name.size()) {
default: break;
case 2:
if (Name[0] != CoprocOp)
return -1;
switch (Name[1]) {
default: return -1;
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
}
break;
case 3:
if (Name[0] != CoprocOp || Name[1] != '1')
return -1;
switch (Name[2]) {
default: return -1;
case '0': return 10;
case '1': return 11;
case '2': return 12;
case '3': return 13;
case '4': return 14;
case '5': return 15;
}
break;
}
return -1;
}
/// parseITCondCode - Try to parse a condition code for an IT instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
unsigned CC = StringSwitch<unsigned>(Tok.getString())
.Case("eq", ARMCC::EQ)
.Case("ne", ARMCC::NE)
.Case("hs", ARMCC::HS)
.Case("cs", ARMCC::HS)
.Case("lo", ARMCC::LO)
.Case("cc", ARMCC::LO)
.Case("mi", ARMCC::MI)
.Case("pl", ARMCC::PL)
.Case("vs", ARMCC::VS)
.Case("vc", ARMCC::VC)
.Case("hi", ARMCC::HI)
.Case("ls", ARMCC::LS)
.Case("ge", ARMCC::GE)
.Case("lt", ARMCC::LT)
.Case("gt", ARMCC::GT)
.Case("le", ARMCC::LE)
.Case("al", ARMCC::AL)
.Default(~0U);
if (CC == ~0U)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the token.
Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
return MatchOperand_Success;
}
/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
if (Num == -1)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
return MatchOperand_Success;
}
/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
if (Reg == -1)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
return MatchOperand_Success;
}
// For register list parsing, we need to map from raw GPR register numbering
// to the enumeration values. The enumeration values aren't sorted by
// register number due to our using "sp", "lr" and "pc" as canonical names.
static unsigned getNextRegister(unsigned Reg) {
// If this is a GPR, we need to do it manually, otherwise we can rely
// on the sort ordering of the enumeration since the other reg-classes
// are sane.
if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
return Reg + 1;
switch(Reg) {
default: assert(0 && "Invalid GPR number!");
case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
}
}
/// Parse a register list.
bool ARMAsmParser::
parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
assert(Parser.getTok().is(AsmToken::LCurly) &&
"Token is not a Left Curly Brace");
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat '{' token.
SMLoc RegLoc = Parser.getTok().getLoc();
// Check the first register in the list to see what register class
// this is a list of.
int Reg = tryParseRegister();
if (Reg == -1)
return Error(RegLoc, "register expected");
MCRegisterClass *RC;
if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
else
return Error(RegLoc, "invalid register in register list");
// The reglist instructions have at most 16 registers, so reserve
// space for that many.
SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
// Store the first register.
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
// This starts immediately after the first register token in the list,
// so we can see either a comma or a minus (range separator) as a legal
// next token.
while (Parser.getTok().is(AsmToken::Comma) ||
Parser.getTok().is(AsmToken::Minus)) {
if (Parser.getTok().is(AsmToken::Minus)) {
Parser.Lex(); // Eat the comma.
SMLoc EndLoc = Parser.getTok().getLoc();
int EndReg = tryParseRegister();
if (EndReg == -1)
return Error(EndLoc, "register expected");
// If the register is the same as the start reg, there's nothing
// more to do.
if (Reg == EndReg)
continue;
// The register must be in the same register class as the first.
if (!RC->contains(EndReg))
return Error(EndLoc, "invalid register in register list");
// Ranges must go from low to high.
if (getARMRegisterNumbering(Reg) > getARMRegisterNumbering(EndReg))
return Error(EndLoc, "bad range in register list");
// Add all the registers in the range to the register list.
while (Reg != EndReg) {
Reg = getNextRegister(Reg);
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
}
continue;
}
Parser.Lex(); // Eat the comma.
RegLoc = Parser.getTok().getLoc();
int OldReg = Reg;
Reg = tryParseRegister();
if (Reg == -1)
return Error(RegLoc, "register expected");
// The register must be in the same register class as the first.
if (!RC->contains(Reg))
return Error(RegLoc, "invalid register in register list");
// List must be monotonically increasing.
if (getARMRegisterNumbering(Reg) <= getARMRegisterNumbering(OldReg))
return Error(RegLoc, "register list not in ascending order");
// VFP register lists must also be contiguous.
// It's OK to use the enumeration values directly here rather, as the
// VFP register classes have the enum sorted properly.
if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
Reg != OldReg + 1)
return Error(RegLoc, "non-contiguous register range");
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
}
SMLoc E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RCurly))
return Error(E, "'}' expected");
Parser.Lex(); // Eat '}' token.
Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
return false;
}
/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef OptStr = Tok.getString();
unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()))
.Case("sy", ARM_MB::SY)
.Case("st", ARM_MB::ST)
.Case("sh", ARM_MB::ISH)
.Case("ish", ARM_MB::ISH)
.Case("shst", ARM_MB::ISHST)
.Case("ishst", ARM_MB::ISHST)
.Case("nsh", ARM_MB::NSH)
.Case("un", ARM_MB::NSH)
.Case("nshst", ARM_MB::NSHST)
.Case("unst", ARM_MB::NSHST)
.Case("osh", ARM_MB::OSH)
.Case("oshst", ARM_MB::OSHST)
.Default(~0U);
if (Opt == ~0U)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
return MatchOperand_Success;
}
/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef IFlagsStr = Tok.getString();
unsigned IFlags = 0;
for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
.Case("a", ARM_PROC::A)
.Case("i", ARM_PROC::I)
.Case("f", ARM_PROC::F)
.Default(~0U);
// If some specific iflag is already set, it means that some letter is
// present more than once, this is not acceptable.
if (Flag == ~0U || (IFlags & Flag))
return MatchOperand_NoMatch;
IFlags |= Flag;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
return MatchOperand_Success;
}
/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef Mask = Tok.getString();
// Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
size_t Start = 0, Next = Mask.find('_');
StringRef Flags = "";
std::string SpecReg = LowercaseString(Mask.slice(Start, Next));
if (Next != StringRef::npos)
Flags = Mask.slice(Next+1, Mask.size());
// FlagsVal contains the complete mask:
// 3-0: Mask
// 4: Special Reg (cpsr, apsr => 0; spsr => 1)
unsigned FlagsVal = 0;
if (SpecReg == "apsr") {
FlagsVal = StringSwitch<unsigned>(Flags)
.Case("nzcvq", 0x8) // same as CPSR_f
.Case("g", 0x4) // same as CPSR_s
.Case("nzcvqg", 0xc) // same as CPSR_fs
.Default(~0U);
if (FlagsVal == ~0U) {
if (!Flags.empty())
return MatchOperand_NoMatch;
else
FlagsVal = 0; // No flag
}
} else if (SpecReg == "cpsr" || SpecReg == "spsr") {
if (Flags == "all") // cpsr_all is an alias for cpsr_fc
Flags = "fc";
for (int i = 0, e = Flags.size(); i != e; ++i) {
unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
.Case("c", 1)
.Case("x", 2)
.Case("s", 4)
.Case("f", 8)
.Default(~0U);
// If some specific flag is already set, it means that some letter is
// present more than once, this is not acceptable.
if (FlagsVal == ~0U || (FlagsVal & Flag))
return MatchOperand_NoMatch;
FlagsVal |= Flag;
}
} else // No match for special register.
return MatchOperand_NoMatch;
// Special register without flags are equivalent to "fc" flags.
if (!FlagsVal)
FlagsVal = 0x9;
// Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
if (SpecReg == "spsr")
FlagsVal |= 16;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
int Low, int High) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), Op + " operand expected.");
return MatchOperand_ParseFail;
}
StringRef ShiftName = Tok.getString();
std::string LowerOp = LowercaseString(Op);
std::string UpperOp = UppercaseString(Op);
if (ShiftName != LowerOp && ShiftName != UpperOp) {
Error(Parser.getTok().getLoc(), Op + " operand expected.");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat shift type token.
// There must be a '#' and a shift amount.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *ShiftAmount;
SMLoc Loc = Parser.getTok().getLoc();
if (getParser().ParseExpression(ShiftAmount)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(Loc, "constant expression expected");
return MatchOperand_ParseFail;
}
int Val = CE->getValue();
if (Val < Low || Val > High) {
Error(Loc, "immediate value out of range");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc()));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
Error(Tok.getLoc(), "'be' or 'le' operand expected");
return MatchOperand_ParseFail;
}
int Val = StringSwitch<int>(Tok.getString())
.Case("be", 1)
.Case("le", 0)
.Default(-1);
Parser.Lex(); // Eat the token.
if (Val == -1) {
Error(Tok.getLoc(), "'be' or 'le' operand expected");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
getContext()),
S, Parser.getTok().getLoc()));
return MatchOperand_Success;
}
/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
/// instructions. Legal values are:
/// lsl #n 'n' in [0,31]
/// asr #n 'n' in [1,32]
/// n == 32 encoded as n == 0.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
Error(S, "shift operator 'asr' or 'lsl' expected");
return MatchOperand_ParseFail;
}
StringRef ShiftName = Tok.getString();
bool isASR;
if (ShiftName == "lsl" || ShiftName == "LSL")
isASR = false;
else if (ShiftName == "asr" || ShiftName == "ASR")
isASR = true;
else {
Error(S, "shift operator 'asr' or 'lsl' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the operator.
// A '#' and a shift amount.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *ShiftAmount;
SMLoc E = Parser.getTok().getLoc();
if (getParser().ParseExpression(ShiftAmount)) {
Error(E, "malformed shift expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(E, "shift amount must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Val = CE->getValue();
if (isASR) {
// Shift amount must be in [1,32]
if (Val < 1 || Val > 32) {
Error(E, "'asr' shift amount must be in range [1,32]");
return MatchOperand_ParseFail;
}
// asr #32 encoded as asr #0.
if (Val == 32) Val = 0;
} else {
// Shift amount must be in [1,32]
if (Val < 0 || Val > 31) {
Error(E, "'lsr' shift amount must be in range [0,31]");
return MatchOperand_ParseFail;
}
}
E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E));
return MatchOperand_Success;
}
/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
/// of instructions. Legal values are:
/// ror #n 'n' in {0, 8, 16, 24}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
Error(S, "rotate operator 'ror' expected");
return MatchOperand_ParseFail;
}
StringRef ShiftName = Tok.getString();
if (ShiftName != "ror" && ShiftName != "ROR") {
Error(S, "rotate operator 'ror' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the operator.
// A '#' and a rotate amount.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *ShiftAmount;
SMLoc E = Parser.getTok().getLoc();
if (getParser().ParseExpression(ShiftAmount)) {
Error(E, "malformed rotate expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(E, "rotate amount must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Val = CE->getValue();
// Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
// normally, zero is represented in asm by omitting the rotate operand
// entirely.
if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
Error(E, "'ror' rotate amount must be 8, 16, or 24");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreateRotImm(Val, S, E));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
// The bitfield descriptor is really two operands, the LSB and the width.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *LSBExpr;
SMLoc E = Parser.getTok().getLoc();
if (getParser().ParseExpression(LSBExpr)) {
Error(E, "malformed immediate expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
if (!CE) {
Error(E, "'lsb' operand must be an immediate");
return MatchOperand_ParseFail;
}
int64_t LSB = CE->getValue();
// The LSB must be in the range [0,31]
if (LSB < 0 || LSB > 31) {
Error(E, "'lsb' operand must be in the range [0,31]");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getLoc();
// Expect another immediate operand.
if (Parser.getTok().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(), "too few operands");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *WidthExpr;
if (getParser().ParseExpression(WidthExpr)) {
Error(E, "malformed immediate expression");
return MatchOperand_ParseFail;
}
CE = dyn_cast<MCConstantExpr>(WidthExpr);
if (!CE) {
Error(E, "'width' operand must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Width = CE->getValue();
// The LSB must be in the range [1,32-lsb]
if (Width < 1 || Width > 32 - LSB) {
Error(E, "'width' operand must be in the range [1,32-lsb]");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Check for a post-index addressing register operand. Specifically:
// postidx_reg := '+' register {, shift}
// | '-' register {, shift}
// | register {, shift}
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
bool haveEaten = false;
bool isAdd = true;
int Reg = -1;
if (Tok.is(AsmToken::Plus)) {
Parser.Lex(); // Eat the '+' token.
haveEaten = true;
} else if (Tok.is(AsmToken::Minus)) {
Parser.Lex(); // Eat the '-' token.
isAdd = false;
haveEaten = true;
}
if (Parser.getTok().is(AsmToken::Identifier))
Reg = tryParseRegister();
if (Reg == -1) {
if (!haveEaten)
return MatchOperand_NoMatch;
Error(Parser.getTok().getLoc(), "register expected");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getLoc();
ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
unsigned ShiftImm = 0;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the ','.
if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
ShiftImm, S, E));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Check for a post-index addressing register operand. Specifically:
// am3offset := '+' register
// | '-' register
// | register
// | # imm
// | # + imm
// | # - imm
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
// Do immediates first, as we always parse those if we have a '#'.
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat the '#'.
// Explicitly look for a '-', as we need to encode negative zero
// differently.
bool isNegative = Parser.getTok().is(AsmToken::Minus);
const MCExpr *Offset;
if (getParser().ParseExpression(Offset))
return MatchOperand_ParseFail;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
if (!CE) {
Error(S, "constant expression expected");
return MatchOperand_ParseFail;
}
SMLoc E = Tok.getLoc();
// Negative zero is encoded as the flag value INT32_MIN.
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
Val = INT32_MIN;
Operands.push_back(
ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
return MatchOperand_Success;
}
bool haveEaten = false;
bool isAdd = true;
int Reg = -1;
if (Tok.is(AsmToken::Plus)) {
Parser.Lex(); // Eat the '+' token.
haveEaten = true;
} else if (Tok.is(AsmToken::Minus)) {
Parser.Lex(); // Eat the '-' token.
isAdd = false;
haveEaten = true;
}
if (Parser.getTok().is(AsmToken::Identifier))
Reg = tryParseRegister();
if (Reg == -1) {
if (!haveEaten)
return MatchOperand_NoMatch;
Error(Parser.getTok().getLoc(), "register expected");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
0, S, E));
return MatchOperand_Success;
}
/// cvtT2LdrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateReg(0));
// addr
((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtT2StrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateReg(0));
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// addr
((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtThumbMultiple- Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// The second source operand must be the same register as the destination
// operand.
if (Operands.size() == 6 &&
(((ARMOperand*)Operands[3])->getReg() !=
((ARMOperand*)Operands[5])->getReg()) &&
(((ARMOperand*)Operands[3])->getReg() !=
((ARMOperand*)Operands[4])->getReg())) {
Error(Operands[3]->getStartLoc(),
"destination register must match source register");
return false;
}
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
((ARMOperand*)Operands[4])->addRegOperands(Inst, 1);
// If we have a three-operand form, use that, else the second source operand
// is just the destination operand again.
if (Operands.size() == 6)
((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
else
Inst.addOperand(Inst.getOperand(0));
((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
return true;
}
/// Parse an ARM memory expression, return false if successful else return true
/// or an error. The first token must be a '[' when called.
bool ARMAsmParser::
parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LBrac) &&
"Token is not a Left Bracket");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
int BaseRegNum = tryParseRegister();
if (BaseRegNum == -1)
return Error(BaseRegTok.getLoc(), "register expected");
// The next token must either be a comma or a closing bracket.
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
return Error(Tok.getLoc(), "malformed memory operand");
if (Tok.is(AsmToken::RBrac)) {
E = Tok.getLoc();
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
0, false, S, E));
return false;
}
assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!");
Parser.Lex(); // Eat the comma.
// If we have a '#' it's an immediate offset, else assume it's a register
// offset.
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat the '#'.
E = Parser.getTok().getLoc();
bool isNegative = getParser().getTok().is(AsmToken::Minus);
const MCExpr *Offset;
if (getParser().ParseExpression(Offset))
return true;
// The expression has to be a constant. Memory references with relocations
// don't come through here, as they use the <label> forms of the relevant
// instructions.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
if (!CE)
return Error (E, "constant expression expected");
// If the constant was #-0, represent it as INT32_MIN.
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
CE = MCConstantExpr::Create(INT32_MIN, getContext());
// Now we should have the closing ']'
E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(E, "']' expected");
Parser.Lex(); // Eat right bracket token.
// Don't worry about range checking the value here. That's handled by
// the is*() predicates.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
ARM_AM::no_shift, 0, false, S,E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
// The register offset is optionally preceded by a '+' or '-'
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
Parser.Lex(); // Eat the '-'.
} else if (Parser.getTok().is(AsmToken::Plus)) {
// Nothing to do.
Parser.Lex(); // Eat the '+'.
}
E = Parser.getTok().getLoc();
int OffsetRegNum = tryParseRegister();
if (OffsetRegNum == -1)
return Error(E, "register expected");
// If there's a shift operator, handle it.
ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
unsigned ShiftImm = 0;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the ','.
if (parseMemRegOffsetShift(ShiftType, ShiftImm))
return true;
}
// Now we should have the closing ']'
E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(E, "']' expected");
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
ShiftType, ShiftImm, isNegative,
S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
/// parseMemRegOffsetShift - one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// return true if it parses a shift otherwise it returns false.
bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
unsigned &Amount) {
SMLoc Loc = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return true;
StringRef ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL")
St = ARM_AM::lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
St = ARM_AM::lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
St = ARM_AM::asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
St = ARM_AM::ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
St = ARM_AM::rrx;
else
return Error(Loc, "illegal shift operator");
Parser.Lex(); // Eat shift type token.
// rrx stands alone.
Amount = 0;
if (St != ARM_AM::rrx) {
Loc = Parser.getTok().getLoc();
// A '#' and a shift amount.
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
const MCExpr *Expr;
if (getParser().ParseExpression(Expr))
return true;
// Range check the immediate.
// lsl, ror: 0 <= imm <= 31
// lsr, asr: 0 <= imm <= 32
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
if (!CE)
return Error(Loc, "shift amount must be an immediate");
int64_t Imm = CE->getValue();
if (Imm < 0 ||
((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
return Error(Loc, "immediate shift value out of range");
Amount = Imm;
}
return false;
}
/// Parse a arm instruction operand. For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic) {
SMLoc S, E;
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Identifier: {
if (!tryParseRegisterWithWriteBack(Operands))
return false;
int Res = tryParseShiftRegister(Operands);
if (Res == 0) // success
return false;
else if (Res == -1) // irrecoverable error
return true;
// Fall though for the Identifier case that is not a register or a
// special name.
}
case AsmToken::Integer: // things like 1f and 2b as a branch targets
case AsmToken::Dot: { // . as a branch target
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = Parser.getTok().getLoc();
if (getParser().ParseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::LBrac:
return parseMemory(Operands);
case AsmToken::LCurly:
return parseRegisterList(Operands);
case AsmToken::Hash: {
// #42 -> immediate.
// TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
S = Parser.getTok().getLoc();
Parser.Lex();
bool isNegative = Parser.getTok().is(AsmToken::Minus);
const MCExpr *ImmVal;
if (getParser().ParseExpression(ImmVal))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
if (!CE) {
Error(S, "constant expression expected");
return MatchOperand_ParseFail;
}
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
return false;
}
case AsmToken::Colon: {
// ":lower16:" and ":upper16:" expression prefixes
// FIXME: Check it's an expression prefix,
// e.g. (FOO - :lower16:BAR) isn't legal.
ARMMCExpr::VariantKind RefKind;
if (parsePrefix(RefKind))
return true;
const MCExpr *SubExprVal;
if (getParser().ParseExpression(SubExprVal))
return true;
const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
getContext());
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
return false;
}
}
}
// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
// :lower16: and :upper16:.
bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
RefKind = ARMMCExpr::VK_ARM_None;
// :lower16: and :upper16: modifiers
assert(getLexer().is(AsmToken::Colon) && "expected a :");
Parser.Lex(); // Eat ':'
if (getLexer().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
return true;
}
StringRef IDVal = Parser.getTok().getIdentifier();
if (IDVal == "lower16") {
RefKind = ARMMCExpr::VK_ARM_LO16;
} else if (IDVal == "upper16") {
RefKind = ARMMCExpr::VK_ARM_HI16;
} else {
Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
return true;
}
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "unexpected token after prefix");
return true;
}
Parser.Lex(); // Eat the last ':'
return false;
}
const MCExpr *
ARMAsmParser::applyPrefixToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant) {
// Recurse over the given expression, rebuilding it to apply the given variant
// to the leftmost symbol.
if (Variant == MCSymbolRefExpr::VK_None)
return E;
switch (E->getKind()) {
case MCExpr::Target:
llvm_unreachable("Can't handle target expr yet");
case MCExpr::Constant:
llvm_unreachable("Can't handle lower16/upper16 of constant yet");
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
if (SRE->getKind() != MCSymbolRefExpr::VK_None)
return 0;
return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext());
}
case MCExpr::Unary:
llvm_unreachable("Can't handle unary expressions yet");
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
const MCExpr *LHS = applyPrefixToExpr(BE->getLHS(), Variant);
const MCExpr *RHS = BE->getRHS();
if (!LHS)
return 0;
return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext());
}
}
assert(0 && "Invalid expression kind!");
return 0;
}
/// \brief Given a mnemonic, split out possible predication code and carry
/// setting letters to form a canonical mnemonic and flags.
//
// FIXME: Would be nice to autogen this.
// FIXME: This is a bit of a maze of special cases.
StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
unsigned &PredicationCode,
bool &CarrySetting,
unsigned &ProcessorIMod,
StringRef &ITMask) {
PredicationCode = ARMCC::AL;
CarrySetting = false;
ProcessorIMod = 0;
// Ignore some mnemonics we know aren't predicated forms.
//
// FIXME: Would be nice to autogen this.
if ((Mnemonic == "movs" && isThumb()) ||
Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal")
return Mnemonic;
// First, split out any predication code. Ignore mnemonics we know aren't
// predicated but do have a carry-set and so weren't caught above.
if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
Mnemonic != "sbcs" && Mnemonic != "rscs") {
unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
.Case("eq", ARMCC::EQ)
.Case("ne", ARMCC::NE)
.Case("hs", ARMCC::HS)
.Case("cs", ARMCC::HS)
.Case("lo", ARMCC::LO)
.Case("cc", ARMCC::LO)
.Case("mi", ARMCC::MI)
.Case("pl", ARMCC::PL)
.Case("vs", ARMCC::VS)
.Case("vc", ARMCC::VC)
.Case("hi", ARMCC::HI)
.Case("ls", ARMCC::LS)
.Case("ge", ARMCC::GE)
.Case("lt", ARMCC::LT)
.Case("gt", ARMCC::GT)
.Case("le", ARMCC::LE)
.Case("al", ARMCC::AL)
.Default(~0U);
if (CC != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
PredicationCode = CC;
}
}
// Next, determine if we have a carry setting bit. We explicitly ignore all
// the instructions we know end in 's'.
if (Mnemonic.endswith("s") &&
!(Mnemonic == "cps" || Mnemonic == "mls" ||
Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
Mnemonic == "vrsqrts" || Mnemonic == "srs" ||
(Mnemonic == "movs" && isThumb()))) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
CarrySetting = true;
}
// The "cps" instruction can have a interrupt mode operand which is glued into
// the mnemonic. Check if this is the case, split it and parse the imod op
if (Mnemonic.startswith("cps")) {
// Split out any imod code.
unsigned IMod =
StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
.Case("ie", ARM_PROC::IE)
.Case("id", ARM_PROC::ID)
.Default(~0U);
if (IMod != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
ProcessorIMod = IMod;
}
}
// The "it" instruction has the condition mask on the end of the mnemonic.
if (Mnemonic.startswith("it")) {
ITMask = Mnemonic.slice(2, Mnemonic.size());
Mnemonic = Mnemonic.slice(0, 2);
}
return Mnemonic;
}
/// \brief Given a canonical mnemonic, determine if the instruction ever allows
/// inclusion of carry set or predication code operands.
//
// FIXME: It would be nice to autogen this.
void ARMAsmParser::
getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
bool &CanAcceptPredicationCode) {
if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" ||
Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mvn" ||
Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
Mnemonic == "sbc" || Mnemonic == "umull" ||
Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "neg" ||
((Mnemonic == "mov" || Mnemonic == "mla") && !isThumb())) {
CanAcceptCarrySet = true;
} else {
CanAcceptCarrySet = false;
}
if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
(Mnemonic == "clrex" && !isThumb()) ||
(Mnemonic == "nop" && isThumbOne()) ||
((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw") &&
!isThumb()) ||
((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
!isThumb()) ||
Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
CanAcceptPredicationCode = false;
} else {
CanAcceptPredicationCode = true;
}
if (isThumb())
if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
CanAcceptPredicationCode = false;
}
bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// FIXME: This is all horribly hacky. We really need a better way to deal
// with optional operands like this in the matcher table.
// The 'mov' mnemonic is special. One variant has a cc_out operand, while
// another does not. Specifically, the MOVW instruction does not. So we
// special case it here and remove the defaulted (non-setting) cc_out
// operand if that's the instruction we're trying to match.
//
// We do this as post-processing of the explicit operands rather than just
// conditionally adding the cc_out in the first place because we need
// to check the type of the parsed immediate operand.
if (Mnemonic == "mov" && Operands.size() > 4 &&
!static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
return true;
// Register-register 'add' for thumb does not have a cc_out operand
// when there are only two register operands.
if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->isReg() &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
return true;
// Register-register 'add' for thumb does not have a cc_out operand
// when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
// have to check the immediate range here since Thumb2 has a variant
// that can handle a different range and has a cc_out operand.
if (isThumb() && Mnemonic == "add" && Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
(static_cast<ARMOperand*>(Operands[5])->isReg() ||
static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
return true;
// For Thumb2, add immediate does not have a cc_out operand for the
// imm0_4096 variant. That's the least-preferred variant when
// selecting via the generic "add" mnemonic, so to know that we
// should remove the cc_out operand, we have to explicitly check that
// it's not one of the other variants. Ugh.
if (isThumbTwo() && Mnemonic == "add" && Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->isReg() &&
static_cast<ARMOperand*>(Operands[5])->isImm()) {
// Nest conditions rather than one big 'if' statement for readability.
//
// If either register is a high reg, it's either one of the SP
// variants (handled above) or a 32-bit encoding, so we just
// check against T3.
if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
!isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
return false;
// If both registers are low, we're in an IT block, and the immediate is
// in range, we should use encoding T1 instead, which has a cc_out.
if (inITBlock() &&
isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
static_cast<ARMOperand*>(Operands[5])->isImm0_7())
return false;
// Otherwise, we use encoding T4, which does not have a cc_out
// operand.
return true;
}
// Register-register 'add/sub' for thumb does not have a cc_out operand
// when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
// the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
// right, this will result in better diagnostics (which operand is off)
// anyway.
if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
(Operands.size() == 5 || Operands.size() == 6) &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
return true;
return false;
}
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Mnemonic = Name.slice(Start, Next);
// Split out the predication code and carry setting flag from the mnemonic.
unsigned PredicationCode;
unsigned ProcessorIMod;
bool CarrySetting;
StringRef ITMask;
Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
ProcessorIMod, ITMask);
// In Thumb1, only the branch (B) instruction can be predicated.
if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
Parser.EatToEndOfStatement();
return Error(NameLoc, "conditional execution not supported in Thumb1");
}
Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
// Handle the IT instruction ITMask. Convert it to a bitmask. This
// is the mask as it will be for the IT encoding if the conditional
// encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
// where the conditional bit0 is zero, the instruction post-processing
// will adjust the mask accordingly.
if (Mnemonic == "it") {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
if (ITMask.size() > 3) {
Parser.EatToEndOfStatement();
return Error(Loc, "too many conditions on IT instruction");
}
unsigned Mask = 8;
for (unsigned i = ITMask.size(); i != 0; --i) {
char pos = ITMask[i - 1];
if (pos != 't' && pos != 'e') {
Parser.EatToEndOfStatement();
return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
}
Mask >>= 1;
if (ITMask[i - 1] == 't')
Mask |= 8;
}
Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
}
// FIXME: This is all a pretty gross hack. We should automatically handle
// optional operands like this via tblgen.
// Next, add the CCOut and ConditionCode operands, if needed.
//
// For mnemonics which can ever incorporate a carry setting bit or predication
// code, our matching model involves us always generating CCOut and
// ConditionCode operands to match the mnemonic "as written" and then we let
// the matcher deal with finding the right instruction or generating an
// appropriate error.
bool CanAcceptCarrySet, CanAcceptPredicationCode;
getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
// If we had a carry-set on an instruction that can't do that, issue an
// error.
if (!CanAcceptCarrySet && CarrySetting) {
Parser.EatToEndOfStatement();
return Error(NameLoc, "instruction '" + Mnemonic +
"' can not set flags, but 's' suffix specified");
}
// If we had a predication code on an instruction that can't do that, issue an
// error.
if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
Parser.EatToEndOfStatement();
return Error(NameLoc, "instruction '" + Mnemonic +
"' is not predicable, but condition code specified");
}
// Add the carry setting operand, if necessary.
if (CanAcceptCarrySet) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
Loc));
}
// Add the predication code operand, if necessary.
if (CanAcceptPredicationCode) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
CarrySetting);
Operands.push_back(ARMOperand::CreateCondCode(
ARMCC::CondCodes(PredicationCode), Loc));
}
// Add the processor imod operand, if necessary.
if (ProcessorIMod) {
Operands.push_back(ARMOperand::CreateImm(
MCConstantExpr::Create(ProcessorIMod, getContext()),
NameLoc, NameLoc));
}
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
StringRef ExtraToken = Name.slice(Start, Next);
// For now, we're only parsing Thumb1 (for the most part), so
// just ignore ".n" qualifiers. We'll use them to restrict
// matching when we do Thumb2.
if (ExtraToken != ".n") {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
}
}
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Mnemonic)) {
Parser.EatToEndOfStatement();
return true;
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (parseOperand(Operands, Mnemonic)) {
Parser.EatToEndOfStatement();
return true;
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
Parser.EatToEndOfStatement();
return TokError("unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
// Some instructions, mostly Thumb, have forms for the same mnemonic that
// do and don't have a cc_out optional-def operand. With some spot-checks
// of the operand list, we can figure out which variant we're trying to
// parse and adjust accordingly before actually matching. We shouldn't ever
// try to remove a cc_out operand that was explicitly set on the the
// mnemonic, of course (CarrySetting == true). Reason number #317 the
// table driven matcher doesn't fit well with the ARM instruction set.
if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
Operands.erase(Operands.begin() + 1);
delete Op;
}
// ARM mode 'blx' need special handling, as the register operand version
// is predicable, but the label operand version is not. So, we can't rely
// on the Mnemonic based checking to correctly figure out when to put
// a CondCode operand in the list. If we're trying to match the label
// version, remove the CondCode operand here.
if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
static_cast<ARMOperand*>(Operands[2])->isImm()) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
Operands.erase(Operands.begin() + 1);
delete Op;
}
// The vector-compare-to-zero instructions have a literal token "#0" at
// the end that comes to here as an immediate operand. Convert it to a
// token to play nicely with the matcher.
if ((Mnemonic == "vceq" || Mnemonic == "vcge" || Mnemonic == "vcgt" ||
Mnemonic == "vcle" || Mnemonic == "vclt") && Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[5])->isImm()) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
if (CE && CE->getValue() == 0) {
Operands.erase(Operands.begin() + 5);
Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
delete Op;
}
}
// Similarly, the Thumb1 "RSB" instruction has a literal "#0" on the
// end. Convert it to a token here.
if (Mnemonic == "rsb" && isThumb() && Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[5])->isImm()) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
if (CE && CE->getValue() == 0) {
Operands.erase(Operands.begin() + 5);
Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
delete Op;
}
}
return false;
}
// Validate context-sensitive operand constraints.
// return 'true' if register list contains non-low GPR registers,
// 'false' otherwise. If Reg is in the register list or is HiReg, set
// 'containsReg' to true.
static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
unsigned HiReg, bool &containsReg) {
containsReg = false;
for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
unsigned OpReg = Inst.getOperand(i).getReg();
if (OpReg == Reg)
containsReg = true;
// Anything other than a low register isn't legal here.
if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
return true;
}
return false;
}
// Check if the specified regisgter is in the register list of the inst,
// starting at the indicated operand number.
static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
unsigned OpReg = Inst.getOperand(i).getReg();
if (OpReg == Reg)
return true;
}
return false;
}
// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
// the ARMInsts array) instead. Getting that here requires awkward
// API changes, though. Better way?
namespace llvm {
extern MCInstrDesc ARMInsts[];
}
static MCInstrDesc &getInstDesc(unsigned Opcode) {
return ARMInsts[Opcode];
}
// FIXME: We would really like to be able to tablegen'erate this.
bool ARMAsmParser::
validateInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
SMLoc Loc = Operands[0]->getStartLoc();
// Check the IT block state first.
// NOTE: In Thumb mode, the BKPT instruction has the interesting property of
// being allowed in IT blocks, but not being predicable. It just always
// executes.
if (inITBlock() && Inst.getOpcode() != ARM::tBKPT) {
unsigned bit = 1;
if (ITState.FirstCond)
ITState.FirstCond = false;
else
bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
// The instruction must be predicable.
if (!MCID.isPredicable())
return Error(Loc, "instructions in IT block must be predicable");
unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
unsigned ITCond = bit ? ITState.Cond :
ARMCC::getOppositeCondition(ITState.Cond);
if (Cond != ITCond) {
// Find the condition code Operand to get its SMLoc information.
SMLoc CondLoc;
for (unsigned i = 1; i < Operands.size(); ++i)
if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
CondLoc = Operands[i]->getStartLoc();
return Error(CondLoc, "incorrect condition in IT block; got '" +
StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
"', but expected '" +
ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
}
// Check for non-'al' condition codes outside of the IT block.
} else if (isThumbTwo() && MCID.isPredicable() &&
Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
ARMCC::AL && Inst.getOpcode() != ARM::tB &&
Inst.getOpcode() != ARM::t2B)
return Error(Loc, "predicated instructions must be in IT block");
switch (Inst.getOpcode()) {
case ARM::LDRD:
case ARM::LDRD_PRE:
case ARM::LDRD_POST:
case ARM::LDREXD: {
// Rt2 must be Rt + 1.
unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
if (Rt2 != Rt + 1)
return Error(Operands[3]->getStartLoc(),
"destination operands must be sequential");
return false;
}
case ARM::STRD: {
// Rt2 must be Rt + 1.
unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
if (Rt2 != Rt + 1)
return Error(Operands[3]->getStartLoc(),
"source operands must be sequential");
return false;
}
case ARM::STRD_PRE:
case ARM::STRD_POST:
case ARM::STREXD: {
// Rt2 must be Rt + 1.
unsigned Rt = getARMRegisterNumbering(Inst.getOperand(1).getReg());
unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(2).getReg());
if (Rt2 != Rt + 1)
return Error(Operands[3]->getStartLoc(),
"source operands must be sequential");
return false;
}
case ARM::SBFX:
case ARM::UBFX: {
// width must be in range [1, 32-lsb]
unsigned lsb = Inst.getOperand(2).getImm();
unsigned widthm1 = Inst.getOperand(3).getImm();
if (widthm1 >= 32 - lsb)
return Error(Operands[5]->getStartLoc(),
"bitfield width must be in range [1,32-lsb]");
return false;
}
case ARM::tLDMIA: {
// If we're parsing Thumb2, the .w variant is available and handles
// most cases that are normally illegal for a Thumb1 LDM
// instruction. We'll make the transformation in processInstruction()
// if necessary.
//
// Thumb LDM instructions are writeback iff the base register is not
// in the register list.
unsigned Rn = Inst.getOperand(0).getReg();
bool hasWritebackToken =
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
"registers must be in range r0-r7");
// If we should have writeback, then there should be a '!' token.
if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
return Error(Operands[2]->getStartLoc(),
"writeback operator '!' expected");
// If we should not have writeback, there must not be a '!'. This is
// true even for the 32-bit wide encodings.
if (listContainsBase && hasWritebackToken)
return Error(Operands[3]->getStartLoc(),
"writeback operator '!' not allowed when base register "
"in register list");
break;
}
case ARM::t2LDMIA_UPD: {
if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
return Error(Operands[4]->getStartLoc(),
"writeback operator '!' not allowed when base register "
"in register list");
break;
}
case ARM::tPOP: {
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, 0, ARM::PC, listContainsBase))
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or pc");
break;
}
case ARM::tPUSH: {
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, 0, ARM::LR, listContainsBase))
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or lr");
break;
}
case ARM::tSTMIA_UPD: {
bool listContainsBase;
if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase))
return Error(Operands[4]->getStartLoc(),
"registers must be in range r0-r7");
break;
}
}
return false;
}
void ARMAsmParser::
processInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
switch (Inst.getOpcode()) {
case ARM::LDMIA_UPD:
// If this is a load of a single register via a 'pop', then we should use
// a post-indexed LDR instruction instead, per the ARM ARM.
if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
Inst.getNumOperands() == 5) {
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR_POST_IMM);
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset
TmpInst.addOperand(MCOperand::CreateImm(4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
case ARM::STMDB_UPD:
// If this is a store of a single register via a 'push', then we should use
// a pre-indexed STR instruction instead, per the ARM ARM.
if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
Inst.getNumOperands() == 5) {
MCInst TmpInst;
TmpInst.setOpcode(ARM::STR_PRE_IMM);
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
TmpInst.addOperand(MCOperand::CreateImm(-4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
case ARM::tADDi8:
// If the immediate is in the range 0-7, we want tADDi3 iff Rd was
// explicitly specified. From the ARM ARM: "Encoding T1 is preferred
// to encoding T2 if <Rd> is specified and encoding T2 is preferred
// to encoding T1 if <Rd> is omitted."
if (Inst.getOperand(3).getImm() < 8 && Operands.size() == 6)
Inst.setOpcode(ARM::tADDi3);
break;
case ARM::tB:
// A Thumb conditional branch outside of an IT block is a tBcc.
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock())
Inst.setOpcode(ARM::tBcc);
break;
case ARM::t2B:
// A Thumb2 conditional branch outside of an IT block is a t2Bcc.
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock())
Inst.setOpcode(ARM::t2Bcc);
break;
case ARM::t2Bcc:
// If the conditional is AL or we're in an IT block, we really want t2B.
if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock())
Inst.setOpcode(ARM::t2B);
break;
case ARM::tBcc:
// If the conditional is AL, we really want tB.
if (Inst.getOperand(1).getImm() == ARMCC::AL)
Inst.setOpcode(ARM::tB);
break;
case ARM::tLDMIA: {
// If the register list contains any high registers, or if the writeback
// doesn't match what tLDMIA can do, we need to use the 32-bit encoding
// instead if we're in Thumb2. Otherwise, this should have generated
// an error in validateInstruction().
unsigned Rn = Inst.getOperand(0).getReg();
bool hasWritebackToken =
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
(!listContainsBase && !hasWritebackToken) ||
(listContainsBase && hasWritebackToken)) {
// 16-bit encoding isn't sufficient. Switch to the 32-bit version.
assert (isThumbTwo());
Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
// If we're switching to the updating version, we need to insert
// the writeback tied operand.
if (hasWritebackToken)
Inst.insert(Inst.begin(),
MCOperand::CreateReg(Inst.getOperand(0).getReg()));
}
break;
}
case ARM::t2MOVi: {
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
Inst.getOperand(1).getImm() <= 255 &&
((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
Inst.getOperand(4).getReg() == ARM::CPSR) ||
(inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
// The operands aren't in the same order for tMOVi8...
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(4));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
}
case ARM::t2MOVr: {
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
Inst.getOperand(2).getImm() == ARMCC::AL &&
Inst.getOperand(4).getReg() == ARM::CPSR &&
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
// The operands aren't the same for tMOV[S]r... (no cc_out)
MCInst TmpInst;
TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
}
case ARM::t2IT: {
// The mask bits for all but the first condition are represented as
// the low bit of the condition code value implies 't'. We currently
// always have 1 implies 't', so XOR toggle the bits if the low bit
// of the condition code is zero. The encoding also expects the low
// bit of the condition to be encoded as bit 4 of the mask operand,
// so mask that in if needed
MCOperand &MO = Inst.getOperand(1);
unsigned Mask = MO.getImm();
unsigned OrigMask = Mask;
unsigned TZ = CountTrailingZeros_32(Mask);
if ((Inst.getOperand(0).getImm() & 1) == 0) {
assert(Mask && TZ <= 3 && "illegal IT mask value!");
for (unsigned i = 3; i != TZ; --i)
Mask ^= 1 << i;
} else
Mask |= 0x10;
MO.setImm(Mask);
// Set up the IT block state according to the IT instruction we just
// matched.
assert(!inITBlock() && "nested IT blocks?!");
ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
ITState.Mask = OrigMask; // Use the original mask, not the updated one.
ITState.CurPosition = 0;
ITState.FirstCond = true;
break;
}
}
}
unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
// 16-bit thumb arithmetic instructions either require or preclude the 'S'
// suffix depending on whether they're in an IT block or not.
unsigned Opc = Inst.getOpcode();
MCInstrDesc &MCID = getInstDesc(Opc);
if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
assert(MCID.hasOptionalDef() &&
"optionally flag setting instruction missing optional def operand");
assert(MCID.NumOperands == Inst.getNumOperands() &&
"operand count mismatch!");
// Find the optional-def operand (cc_out).
unsigned OpNo;
for (OpNo = 0;
!MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
++OpNo)
;
// If we're parsing Thumb1, reject it completely.
if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
return Match_MnemonicFail;
// If we're parsing Thumb2, which form is legal depends on whether we're
// in an IT block.
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
!inITBlock())
return Match_RequiresITBlock;
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
inITBlock())
return Match_RequiresNotITBlock;
}
// Some high-register supporting Thumb1 encodings only allow both registers
// to be from r0-r7 when in Thumb2.
else if (Opc == ARM::tADDhirr && isThumbOne() &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
isARMLowRegister(Inst.getOperand(2).getReg()))
return Match_RequiresThumb2;
// Others only require ARMv6 or later.
else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()))
return Match_RequiresV6;
return Match_Success;
}
bool ARMAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out) {
MCInst Inst;
unsigned ErrorInfo;
unsigned MatchResult;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
switch (MatchResult) {
default: break;
case Match_Success:
// Context sensitive operand constraints aren't handled by the matcher,
// so check them here.
if (validateInstruction(Inst, Operands)) {
// Still progress the IT block, otherwise one wrong condition causes
// nasty cascading errors.
forwardITPosition();
return true;
}
// Some instructions need post-processing to, for example, tweak which
// encoding is selected.
processInstruction(Inst, Operands);
// Only move forward at the very end so that everything in validate
// and process gets a consistent answer about whether we're in an IT
// block.
forwardITPosition();
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
case Match_ConversionFail:
// The converter function will have already emited a diagnostic.
return true;
case Match_RequiresNotITBlock:
return Error(IDLoc, "flag setting instruction only valid outside IT block");
case Match_RequiresITBlock:
return Error(IDLoc, "instruction only valid inside IT block");
case Match_RequiresV6:
return Error(IDLoc, "instruction variant requires ARMv6 or later");
case Match_RequiresThumb2:
return Error(IDLoc, "instruction variant requires Thumb2");
}
llvm_unreachable("Implement any new match types added!");
return true;
}
/// parseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return parseDirectiveWord(4, DirectiveID.getLoc());
else if (IDVal == ".thumb")
return parseDirectiveThumb(DirectiveID.getLoc());
else if (IDVal == ".thumb_func")
return parseDirectiveThumbFunc(DirectiveID.getLoc());
else if (IDVal == ".code")
return parseDirectiveCode(DirectiveID.getLoc());
else if (IDVal == ".syntax")
return parseDirectiveSyntax(DirectiveID.getLoc());
return true;
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// parseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// TODO: set thumb mode
// TODO: tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// parseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
bool isMachO = MAI.hasSubsectionsViaSymbols();
StringRef Name;
// Darwin asm has function name after .thumb_func direction
// ELF doesn't
if (isMachO) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
return Error(L, "unexpected token in .thumb_func directive");
Name = Tok.getString();
Parser.Lex(); // Consume the identifier token.
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// FIXME: assuming function name will be the line following .thumb_func
if (!isMachO) {
Name = Parser.getTok().getString();
}
// Mark symbol as a thumb symbol.
MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
getParser().getStreamer().EmitThumbFunc(Func);
return false;
}
/// parseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(L, "unexpected token in .syntax directive");
StringRef Mode = Tok.getString();
if (Mode == "unified" || Mode == "UNIFIED")
Parser.Lex();
else if (Mode == "divided" || Mode == "DIVIDED")
return Error(L, "'.syntax divided' arm asssembly not supported");
else
return Error(L, "unrecognized syntax mode in .syntax directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// parseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Integer))
return Error(L, "unexpected token in .code directive");
int64_t Val = Parser.getTok().getIntVal();
if (Val == 16)
Parser.Lex();
else if (Val == 32)
Parser.Lex();
else
return Error(L, "invalid operand to .code directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
if (Val == 16) {
if (!isThumb())
SwitchMode();
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
} else {
if (isThumb())
SwitchMode();
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
}
return false;
}
extern "C" void LLVMInitializeARMAsmLexer();
/// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
LLVMInitializeARMAsmLexer();
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"