llvm-6502/include/llvm/Support/YAMLTraits.h
Simon Atanasyan 84a0dc323d [YAML] Add an optional argument EnumMask to the yaml::IO::bitSetCase().
Some bit-set fields used in ELF file headers in fact contain two parts.
The first one is a regular bit-field. The second one is an enumeraion.
For example ELF header `e_flags` for MIPS target might contain the
following values:

Bit-set values:

  EF_MIPS_NOREORDER = 0x00000001
  EF_MIPS_PIC       = 0x00000002
  EF_MIPS_CPIC      = 0x00000004
  EF_MIPS_ABI2      = 0x00000020

Enumeration:

  EF_MIPS_ARCH_32   = 0x50000000
  EF_MIPS_ARCH_64   = 0x60000000
  EF_MIPS_ARCH_32R2 = 0x70000000
  EF_MIPS_ARCH_64R2 = 0x80000000

For printing bit-sets we use the `yaml::IO::bitSetCase()`. It does not
support bit-set/enumeration combinations and prints too many flags from
an enumeration part. This patch fixes this problem. New method
`yaml::IO::maskedBitSetCase()` handle "enumeration" part of bitset
defined by provided mask.

Patch reviewed by Nick Kledzik and Sean Silva.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209504 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-23 08:07:09 +00:00

1295 lines
40 KiB
C++

//===- llvm/Support/YAMLTraits.h --------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_YAMLTRAITS_H
#define LLVM_SUPPORT_YAMLTRAITS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
namespace llvm {
namespace yaml {
/// This class should be specialized by any type that needs to be converted
/// to/from a YAML mapping. For example:
///
/// struct MappingTraits<MyStruct> {
/// static void mapping(IO &io, MyStruct &s) {
/// io.mapRequired("name", s.name);
/// io.mapRequired("size", s.size);
/// io.mapOptional("age", s.age);
/// }
/// };
template<class T>
struct MappingTraits {
// Must provide:
// static void mapping(IO &io, T &fields);
// Optionally may provide:
// static StringRef validate(IO &io, T &fields);
};
/// This class should be specialized by any integral type that converts
/// to/from a YAML scalar where there is a one-to-one mapping between
/// in-memory values and a string in YAML. For example:
///
/// struct ScalarEnumerationTraits<Colors> {
/// static void enumeration(IO &io, Colors &value) {
/// io.enumCase(value, "red", cRed);
/// io.enumCase(value, "blue", cBlue);
/// io.enumCase(value, "green", cGreen);
/// }
/// };
template<typename T>
struct ScalarEnumerationTraits {
// Must provide:
// static void enumeration(IO &io, T &value);
};
/// This class should be specialized by any integer type that is a union
/// of bit values and the YAML representation is a flow sequence of
/// strings. For example:
///
/// struct ScalarBitSetTraits<MyFlags> {
/// static void bitset(IO &io, MyFlags &value) {
/// io.bitSetCase(value, "big", flagBig);
/// io.bitSetCase(value, "flat", flagFlat);
/// io.bitSetCase(value, "round", flagRound);
/// }
/// };
template<typename T>
struct ScalarBitSetTraits {
// Must provide:
// static void bitset(IO &io, T &value);
};
/// This class should be specialized by type that requires custom conversion
/// to/from a yaml scalar. For example:
///
/// template<>
/// struct ScalarTraits<MyType> {
/// static void output(const MyType &val, void*, llvm::raw_ostream &out) {
/// // stream out custom formatting
/// out << llvm::format("%x", val);
/// }
/// static StringRef input(StringRef scalar, void*, MyType &value) {
/// // parse scalar and set `value`
/// // return empty string on success, or error string
/// return StringRef();
/// }
/// static bool mustQuote(StringRef) { return true; }
/// };
template<typename T>
struct ScalarTraits {
// Must provide:
//
// Function to write the value as a string:
//static void output(const T &value, void *ctxt, llvm::raw_ostream &out);
//
// Function to convert a string to a value. Returns the empty
// StringRef on success or an error string if string is malformed:
//static StringRef input(StringRef scalar, void *ctxt, T &value);
//
// Function to determine if the value should be quoted.
//static bool mustQuote(StringRef);
};
/// This class should be specialized by any type that needs to be converted
/// to/from a YAML sequence. For example:
///
/// template<>
/// struct SequenceTraits< std::vector<MyType> > {
/// static size_t size(IO &io, std::vector<MyType> &seq) {
/// return seq.size();
/// }
/// static MyType& element(IO &, std::vector<MyType> &seq, size_t index) {
/// if ( index >= seq.size() )
/// seq.resize(index+1);
/// return seq[index];
/// }
/// };
template<typename T>
struct SequenceTraits {
// Must provide:
// static size_t size(IO &io, T &seq);
// static T::value_type& element(IO &io, T &seq, size_t index);
//
// The following is option and will cause generated YAML to use
// a flow sequence (e.g. [a,b,c]).
// static const bool flow = true;
};
/// This class should be specialized by any type that needs to be converted
/// to/from a list of YAML documents.
template<typename T>
struct DocumentListTraits {
// Must provide:
// static size_t size(IO &io, T &seq);
// static T::value_type& element(IO &io, T &seq, size_t index);
};
// Only used by compiler if both template types are the same
template <typename T, T>
struct SameType;
// Only used for better diagnostics of missing traits
template <typename T>
struct MissingTrait;
// Test if ScalarEnumerationTraits<T> is defined on type T.
template <class T>
struct has_ScalarEnumerationTraits
{
typedef void (*Signature_enumeration)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_enumeration, &U::enumeration>*);
template <typename U>
static double test(...);
public:
static bool const value =
(sizeof(test<ScalarEnumerationTraits<T> >(nullptr)) == 1);
};
// Test if ScalarBitSetTraits<T> is defined on type T.
template <class T>
struct has_ScalarBitSetTraits
{
typedef void (*Signature_bitset)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_bitset, &U::bitset>*);
template <typename U>
static double test(...);
public:
static bool const value = (sizeof(test<ScalarBitSetTraits<T> >(nullptr)) == 1);
};
// Test if ScalarTraits<T> is defined on type T.
template <class T>
struct has_ScalarTraits
{
typedef StringRef (*Signature_input)(StringRef, void*, T&);
typedef void (*Signature_output)(const T&, void*, llvm::raw_ostream&);
typedef bool (*Signature_mustQuote)(StringRef);
template <typename U>
static char test(SameType<Signature_input, &U::input> *,
SameType<Signature_output, &U::output> *,
SameType<Signature_mustQuote, &U::mustQuote> *);
template <typename U>
static double test(...);
public:
static bool const value =
(sizeof(test<ScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
};
// Test if MappingTraits<T> is defined on type T.
template <class T>
struct has_MappingTraits
{
typedef void (*Signature_mapping)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_mapping, &U::mapping>*);
template <typename U>
static double test(...);
public:
static bool const value = (sizeof(test<MappingTraits<T> >(nullptr)) == 1);
};
// Test if MappingTraits<T>::validate() is defined on type T.
template <class T>
struct has_MappingValidateTraits
{
typedef StringRef (*Signature_validate)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_validate, &U::validate>*);
template <typename U>
static double test(...);
public:
static bool const value = (sizeof(test<MappingTraits<T> >(nullptr)) == 1);
};
// Test if SequenceTraits<T> is defined on type T.
template <class T>
struct has_SequenceMethodTraits
{
typedef size_t (*Signature_size)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_size, &U::size>*);
template <typename U>
static double test(...);
public:
static bool const value = (sizeof(test<SequenceTraits<T> >(nullptr)) == 1);
};
// has_FlowTraits<int> will cause an error with some compilers because
// it subclasses int. Using this wrapper only instantiates the
// real has_FlowTraits only if the template type is a class.
template <typename T, bool Enabled = std::is_class<T>::value>
class has_FlowTraits
{
public:
static const bool value = false;
};
// Some older gcc compilers don't support straight forward tests
// for members, so test for ambiguity cause by the base and derived
// classes both defining the member.
template <class T>
struct has_FlowTraits<T, true>
{
struct Fallback { bool flow; };
struct Derived : T, Fallback { };
template<typename C>
static char (&f(SameType<bool Fallback::*, &C::flow>*))[1];
template<typename C>
static char (&f(...))[2];
public:
static bool const value = sizeof(f<Derived>(nullptr)) == 2;
};
// Test if SequenceTraits<T> is defined on type T
template<typename T>
struct has_SequenceTraits : public std::integral_constant<bool,
has_SequenceMethodTraits<T>::value > { };
// Test if DocumentListTraits<T> is defined on type T
template <class T>
struct has_DocumentListTraits
{
typedef size_t (*Signature_size)(class IO&, T&);
template <typename U>
static char test(SameType<Signature_size, &U::size>*);
template <typename U>
static double test(...);
public:
static bool const value = (sizeof(test<DocumentListTraits<T> >(nullptr))==1);
};
inline bool isNumber(StringRef S) {
static const char OctalChars[] = "01234567";
if (S.startswith("0") &&
S.drop_front().find_first_not_of(OctalChars) == StringRef::npos)
return true;
if (S.startswith("0o") &&
S.drop_front(2).find_first_not_of(OctalChars) == StringRef::npos)
return true;
static const char HexChars[] = "0123456789abcdefABCDEF";
if (S.startswith("0x") &&
S.drop_front(2).find_first_not_of(HexChars) == StringRef::npos)
return true;
static const char DecChars[] = "0123456789";
if (S.find_first_not_of(DecChars) == StringRef::npos)
return true;
if (S.equals(".inf") || S.equals(".Inf") || S.equals(".INF"))
return true;
Regex FloatMatcher("^(\\.[0-9]+|[0-9]+(\\.[0-9]*)?)([eE][-+]?[0-9]+)?$");
if (FloatMatcher.match(S))
return true;
return false;
}
inline bool isNumeric(StringRef S) {
if ((S.front() == '-' || S.front() == '+') && isNumber(S.drop_front()))
return true;
if (isNumber(S))
return true;
if (S.equals(".nan") || S.equals(".NaN") || S.equals(".NAN"))
return true;
return false;
}
inline bool isNull(StringRef S) {
return S.equals("null") || S.equals("Null") || S.equals("NULL") ||
S.equals("~");
}
inline bool isBool(StringRef S) {
return S.equals("true") || S.equals("True") || S.equals("TRUE") ||
S.equals("false") || S.equals("False") || S.equals("FALSE");
}
inline bool needsQuotes(StringRef S) {
if (S.empty())
return true;
if (isspace(S.front()) || isspace(S.back()))
return true;
if (S.front() == ',')
return true;
static const char ScalarSafeChars[] =
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_-/^., \t";
if (S.find_first_not_of(ScalarSafeChars) != StringRef::npos)
return true;
if (isNull(S))
return true;
if (isBool(S))
return true;
if (isNumeric(S))
return true;
return false;
}
template<typename T>
struct missingTraits : public std::integral_constant<bool,
!has_ScalarEnumerationTraits<T>::value
&& !has_ScalarBitSetTraits<T>::value
&& !has_ScalarTraits<T>::value
&& !has_MappingTraits<T>::value
&& !has_SequenceTraits<T>::value
&& !has_DocumentListTraits<T>::value > {};
template<typename T>
struct validatedMappingTraits : public std::integral_constant<bool,
has_MappingTraits<T>::value
&& has_MappingValidateTraits<T>::value> {};
template<typename T>
struct unvalidatedMappingTraits : public std::integral_constant<bool,
has_MappingTraits<T>::value
&& !has_MappingValidateTraits<T>::value> {};
// Base class for Input and Output.
class IO {
public:
IO(void *Ctxt=nullptr);
virtual ~IO();
virtual bool outputting() = 0;
virtual unsigned beginSequence() = 0;
virtual bool preflightElement(unsigned, void *&) = 0;
virtual void postflightElement(void*) = 0;
virtual void endSequence() = 0;
virtual bool canElideEmptySequence() = 0;
virtual unsigned beginFlowSequence() = 0;
virtual bool preflightFlowElement(unsigned, void *&) = 0;
virtual void postflightFlowElement(void*) = 0;
virtual void endFlowSequence() = 0;
virtual bool mapTag(StringRef Tag, bool Default=false) = 0;
virtual void beginMapping() = 0;
virtual void endMapping() = 0;
virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0;
virtual void postflightKey(void*) = 0;
virtual void beginEnumScalar() = 0;
virtual bool matchEnumScalar(const char*, bool) = 0;
virtual void endEnumScalar() = 0;
virtual bool beginBitSetScalar(bool &) = 0;
virtual bool bitSetMatch(const char*, bool) = 0;
virtual void endBitSetScalar() = 0;
virtual void scalarString(StringRef &, bool) = 0;
virtual void setError(const Twine &) = 0;
template <typename T>
void enumCase(T &Val, const char* Str, const T ConstVal) {
if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) {
Val = ConstVal;
}
}
// allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
template <typename T>
void enumCase(T &Val, const char* Str, const uint32_t ConstVal) {
if ( matchEnumScalar(Str, outputting() && Val == static_cast<T>(ConstVal)) ) {
Val = ConstVal;
}
}
template <typename T>
void bitSetCase(T &Val, const char* Str, const T ConstVal) {
if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
Val = Val | ConstVal;
}
}
// allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
template <typename T>
void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) {
if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
Val = Val | ConstVal;
}
}
template <typename T>
void maskedBitSetCase(T &Val, const char *Str, T ConstVal, T Mask) {
if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
Val = Val | ConstVal;
}
template <typename T>
void maskedBitSetCase(T &Val, const char *Str, uint32_t ConstVal,
uint32_t Mask) {
if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
Val = Val | ConstVal;
}
void *getContext();
void setContext(void *);
template <typename T>
void mapRequired(const char* Key, T& Val) {
this->processKey(Key, Val, true);
}
template <typename T>
typename std::enable_if<has_SequenceTraits<T>::value,void>::type
mapOptional(const char* Key, T& Val) {
// omit key/value instead of outputting empty sequence
if ( this->canElideEmptySequence() && !(Val.begin() != Val.end()) )
return;
this->processKey(Key, Val, false);
}
template <typename T>
void mapOptional(const char* Key, Optional<T> &Val) {
processKeyWithDefault(Key, Val, Optional<T>(), /*Required=*/false);
}
template <typename T>
typename std::enable_if<!has_SequenceTraits<T>::value,void>::type
mapOptional(const char* Key, T& Val) {
this->processKey(Key, Val, false);
}
template <typename T>
void mapOptional(const char* Key, T& Val, const T& Default) {
this->processKeyWithDefault(Key, Val, Default, false);
}
private:
template <typename T>
void processKeyWithDefault(const char *Key, Optional<T> &Val,
const Optional<T> &DefaultValue, bool Required) {
assert(DefaultValue.hasValue() == false &&
"Optional<T> shouldn't have a value!");
void *SaveInfo;
bool UseDefault;
const bool sameAsDefault = outputting() && !Val.hasValue();
if (!outputting() && !Val.hasValue())
Val = T();
if (this->preflightKey(Key, Required, sameAsDefault, UseDefault,
SaveInfo)) {
yamlize(*this, Val.getValue(), Required);
this->postflightKey(SaveInfo);
} else {
if (UseDefault)
Val = DefaultValue;
}
}
template <typename T>
void processKeyWithDefault(const char *Key, T &Val, const T& DefaultValue,
bool Required) {
void *SaveInfo;
bool UseDefault;
const bool sameAsDefault = outputting() && Val == DefaultValue;
if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault,
SaveInfo) ) {
yamlize(*this, Val, Required);
this->postflightKey(SaveInfo);
}
else {
if ( UseDefault )
Val = DefaultValue;
}
}
template <typename T>
void processKey(const char *Key, T &Val, bool Required) {
void *SaveInfo;
bool UseDefault;
if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) {
yamlize(*this, Val, Required);
this->postflightKey(SaveInfo);
}
}
private:
void *Ctxt;
};
template<typename T>
typename std::enable_if<has_ScalarEnumerationTraits<T>::value,void>::type
yamlize(IO &io, T &Val, bool) {
io.beginEnumScalar();
ScalarEnumerationTraits<T>::enumeration(io, Val);
io.endEnumScalar();
}
template<typename T>
typename std::enable_if<has_ScalarBitSetTraits<T>::value,void>::type
yamlize(IO &io, T &Val, bool) {
bool DoClear;
if ( io.beginBitSetScalar(DoClear) ) {
if ( DoClear )
Val = static_cast<T>(0);
ScalarBitSetTraits<T>::bitset(io, Val);
io.endBitSetScalar();
}
}
template<typename T>
typename std::enable_if<has_ScalarTraits<T>::value,void>::type
yamlize(IO &io, T &Val, bool) {
if ( io.outputting() ) {
std::string Storage;
llvm::raw_string_ostream Buffer(Storage);
ScalarTraits<T>::output(Val, io.getContext(), Buffer);
StringRef Str = Buffer.str();
io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
}
else {
StringRef Str;
io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val);
if ( !Result.empty() ) {
io.setError(llvm::Twine(Result));
}
}
}
template<typename T>
typename std::enable_if<validatedMappingTraits<T>::value, void>::type
yamlize(IO &io, T &Val, bool) {
io.beginMapping();
if (io.outputting()) {
StringRef Err = MappingTraits<T>::validate(io, Val);
if (!Err.empty()) {
llvm::errs() << Err << "\n";
assert(Err.empty() && "invalid struct trying to be written as yaml");
}
}
MappingTraits<T>::mapping(io, Val);
if (!io.outputting()) {
StringRef Err = MappingTraits<T>::validate(io, Val);
if (!Err.empty())
io.setError(Err);
}
io.endMapping();
}
template<typename T>
typename std::enable_if<unvalidatedMappingTraits<T>::value, void>::type
yamlize(IO &io, T &Val, bool) {
io.beginMapping();
MappingTraits<T>::mapping(io, Val);
io.endMapping();
}
template<typename T>
typename std::enable_if<missingTraits<T>::value, void>::type
yamlize(IO &io, T &Val, bool) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
}
template<typename T>
typename std::enable_if<has_SequenceTraits<T>::value,void>::type
yamlize(IO &io, T &Seq, bool) {
if ( has_FlowTraits< SequenceTraits<T> >::value ) {
unsigned incnt = io.beginFlowSequence();
unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
for(unsigned i=0; i < count; ++i) {
void *SaveInfo;
if ( io.preflightFlowElement(i, SaveInfo) ) {
yamlize(io, SequenceTraits<T>::element(io, Seq, i), true);
io.postflightFlowElement(SaveInfo);
}
}
io.endFlowSequence();
}
else {
unsigned incnt = io.beginSequence();
unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
for(unsigned i=0; i < count; ++i) {
void *SaveInfo;
if ( io.preflightElement(i, SaveInfo) ) {
yamlize(io, SequenceTraits<T>::element(io, Seq, i), true);
io.postflightElement(SaveInfo);
}
}
io.endSequence();
}
}
template<>
struct ScalarTraits<bool> {
static void output(const bool &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, bool &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<StringRef> {
static void output(const StringRef &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, StringRef &);
static bool mustQuote(StringRef S) { return needsQuotes(S); }
};
template<>
struct ScalarTraits<std::string> {
static void output(const std::string &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, std::string &);
static bool mustQuote(StringRef S) { return needsQuotes(S); }
};
template<>
struct ScalarTraits<uint8_t> {
static void output(const uint8_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, uint8_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<uint16_t> {
static void output(const uint16_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, uint16_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<uint32_t> {
static void output(const uint32_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, uint32_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<uint64_t> {
static void output(const uint64_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, uint64_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<int8_t> {
static void output(const int8_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, int8_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<int16_t> {
static void output(const int16_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, int16_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<int32_t> {
static void output(const int32_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, int32_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<int64_t> {
static void output(const int64_t &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, int64_t &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<float> {
static void output(const float &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, float &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<double> {
static void output(const double &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, double &);
static bool mustQuote(StringRef) { return false; }
};
// Utility for use within MappingTraits<>::mapping() method
// to [de]normalize an object for use with YAML conversion.
template <typename TNorm, typename TFinal>
struct MappingNormalization {
MappingNormalization(IO &i_o, TFinal &Obj)
: io(i_o), BufPtr(nullptr), Result(Obj) {
if ( io.outputting() ) {
BufPtr = new (&Buffer) TNorm(io, Obj);
}
else {
BufPtr = new (&Buffer) TNorm(io);
}
}
~MappingNormalization() {
if ( ! io.outputting() ) {
Result = BufPtr->denormalize(io);
}
BufPtr->~TNorm();
}
TNorm* operator->() { return BufPtr; }
private:
typedef llvm::AlignedCharArrayUnion<TNorm> Storage;
Storage Buffer;
IO &io;
TNorm *BufPtr;
TFinal &Result;
};
// Utility for use within MappingTraits<>::mapping() method
// to [de]normalize an object for use with YAML conversion.
template <typename TNorm, typename TFinal>
struct MappingNormalizationHeap {
MappingNormalizationHeap(IO &i_o, TFinal &Obj)
: io(i_o), BufPtr(NULL), Result(Obj) {
if ( io.outputting() ) {
BufPtr = new (&Buffer) TNorm(io, Obj);
}
else {
BufPtr = new TNorm(io);
}
}
~MappingNormalizationHeap() {
if ( io.outputting() ) {
BufPtr->~TNorm();
}
else {
Result = BufPtr->denormalize(io);
}
}
TNorm* operator->() { return BufPtr; }
private:
typedef llvm::AlignedCharArrayUnion<TNorm> Storage;
Storage Buffer;
IO &io;
TNorm *BufPtr;
TFinal &Result;
};
///
/// The Input class is used to parse a yaml document into in-memory structs
/// and vectors.
///
/// It works by using YAMLParser to do a syntax parse of the entire yaml
/// document, then the Input class builds a graph of HNodes which wraps
/// each yaml Node. The extra layer is buffering. The low level yaml
/// parser only lets you look at each node once. The buffering layer lets
/// you search and interate multiple times. This is necessary because
/// the mapRequired() method calls may not be in the same order
/// as the keys in the document.
///
class Input : public IO {
public:
// Construct a yaml Input object from a StringRef and optional
// user-data. The DiagHandler can be specified to provide
// alternative error reporting.
Input(StringRef InputContent,
void *Ctxt = nullptr,
SourceMgr::DiagHandlerTy DiagHandler = nullptr,
void *DiagHandlerCtxt = nullptr);
~Input();
// Check if there was an syntax or semantic error during parsing.
llvm::error_code error();
private:
bool outputting() override;
bool mapTag(StringRef, bool) override;
void beginMapping() override;
void endMapping() override;
bool preflightKey(const char *, bool, bool, bool &, void *&) override;
void postflightKey(void *) override;
unsigned beginSequence() override;
void endSequence() override;
bool preflightElement(unsigned index, void *&) override;
void postflightElement(void *) override;
unsigned beginFlowSequence() override;
bool preflightFlowElement(unsigned , void *&) override;
void postflightFlowElement(void *) override;
void endFlowSequence() override;
void beginEnumScalar() override;
bool matchEnumScalar(const char*, bool) override;
void endEnumScalar() override;
bool beginBitSetScalar(bool &) override;
bool bitSetMatch(const char *, bool ) override;
void endBitSetScalar() override;
void scalarString(StringRef &, bool) override;
void setError(const Twine &message) override;
bool canElideEmptySequence() override;
class HNode {
virtual void anchor();
public:
HNode(Node *n) : _node(n) { }
virtual ~HNode() { }
static inline bool classof(const HNode *) { return true; }
Node *_node;
};
class EmptyHNode : public HNode {
void anchor() override;
public:
EmptyHNode(Node *n) : HNode(n) { }
static inline bool classof(const HNode *n) {
return NullNode::classof(n->_node);
}
static inline bool classof(const EmptyHNode *) { return true; }
};
class ScalarHNode : public HNode {
void anchor() override;
public:
ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { }
StringRef value() const { return _value; }
static inline bool classof(const HNode *n) {
return ScalarNode::classof(n->_node);
}
static inline bool classof(const ScalarHNode *) { return true; }
protected:
StringRef _value;
};
class MapHNode : public HNode {
public:
MapHNode(Node *n) : HNode(n) { }
virtual ~MapHNode();
static inline bool classof(const HNode *n) {
return MappingNode::classof(n->_node);
}
static inline bool classof(const MapHNode *) { return true; }
typedef llvm::StringMap<HNode*> NameToNode;
bool isValidKey(StringRef key);
NameToNode Mapping;
llvm::SmallVector<const char*, 6> ValidKeys;
};
class SequenceHNode : public HNode {
public:
SequenceHNode(Node *n) : HNode(n) { }
virtual ~SequenceHNode();
static inline bool classof(const HNode *n) {
return SequenceNode::classof(n->_node);
}
static inline bool classof(const SequenceHNode *) { return true; }
std::vector<HNode*> Entries;
};
Input::HNode *createHNodes(Node *node);
void setError(HNode *hnode, const Twine &message);
void setError(Node *node, const Twine &message);
public:
// These are only used by operator>>. They could be private
// if those templated things could be made friends.
bool setCurrentDocument();
void nextDocument();
private:
llvm::SourceMgr SrcMgr; // must be before Strm
std::unique_ptr<llvm::yaml::Stream> Strm;
std::unique_ptr<HNode> TopNode;
llvm::error_code EC;
llvm::BumpPtrAllocator StringAllocator;
llvm::yaml::document_iterator DocIterator;
std::vector<bool> BitValuesUsed;
HNode *CurrentNode;
bool ScalarMatchFound;
};
///
/// The Output class is used to generate a yaml document from in-memory structs
/// and vectors.
///
class Output : public IO {
public:
Output(llvm::raw_ostream &, void *Ctxt=nullptr);
virtual ~Output();
bool outputting() override;
bool mapTag(StringRef, bool) override;
void beginMapping() override;
void endMapping() override;
bool preflightKey(const char *key, bool, bool, bool &, void *&) override;
void postflightKey(void *) override;
unsigned beginSequence() override;
void endSequence() override;
bool preflightElement(unsigned, void *&) override;
void postflightElement(void *) override;
unsigned beginFlowSequence() override;
bool preflightFlowElement(unsigned, void *&) override;
void postflightFlowElement(void *) override;
void endFlowSequence() override;
void beginEnumScalar() override;
bool matchEnumScalar(const char*, bool) override;
void endEnumScalar() override;
bool beginBitSetScalar(bool &) override;
bool bitSetMatch(const char *, bool ) override;
void endBitSetScalar() override;
void scalarString(StringRef &, bool) override;
void setError(const Twine &message) override;
bool canElideEmptySequence() override;
public:
// These are only used by operator<<. They could be private
// if that templated operator could be made a friend.
void beginDocuments();
bool preflightDocument(unsigned);
void postflightDocument();
void endDocuments();
private:
void output(StringRef s);
void outputUpToEndOfLine(StringRef s);
void newLineCheck();
void outputNewLine();
void paddedKey(StringRef key);
enum InState { inSeq, inFlowSeq, inMapFirstKey, inMapOtherKey };
llvm::raw_ostream &Out;
SmallVector<InState, 8> StateStack;
int Column;
int ColumnAtFlowStart;
bool NeedBitValueComma;
bool NeedFlowSequenceComma;
bool EnumerationMatchFound;
bool NeedsNewLine;
};
/// YAML I/O does conversion based on types. But often native data types
/// are just a typedef of built in intergral types (e.g. int). But the C++
/// type matching system sees through the typedef and all the typedefed types
/// look like a built in type. This will cause the generic YAML I/O conversion
/// to be used. To provide better control over the YAML conversion, you can
/// use this macro instead of typedef. It will create a class with one field
/// and automatic conversion operators to and from the base type.
/// Based on BOOST_STRONG_TYPEDEF
#define LLVM_YAML_STRONG_TYPEDEF(_base, _type) \
struct _type { \
_type() { } \
_type(const _base v) : value(v) { } \
_type(const _type &v) : value(v.value) {} \
_type &operator=(const _type &rhs) { value = rhs.value; return *this; }\
_type &operator=(const _base &rhs) { value = rhs; return *this; } \
operator const _base & () const { return value; } \
bool operator==(const _type &rhs) const { return value == rhs.value; } \
bool operator==(const _base &rhs) const { return value == rhs; } \
bool operator<(const _type &rhs) const { return value < rhs.value; } \
_base value; \
};
///
/// Use these types instead of uintXX_t in any mapping to have
/// its yaml output formatted as hexadecimal.
///
LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8)
LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32)
LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64)
template<>
struct ScalarTraits<Hex8> {
static void output(const Hex8 &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, Hex8 &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<Hex16> {
static void output(const Hex16 &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, Hex16 &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<Hex32> {
static void output(const Hex32 &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, Hex32 &);
static bool mustQuote(StringRef) { return false; }
};
template<>
struct ScalarTraits<Hex64> {
static void output(const Hex64 &, void*, llvm::raw_ostream &);
static StringRef input(StringRef, void*, Hex64 &);
static bool mustQuote(StringRef) { return false; }
};
// Define non-member operator>> so that Input can stream in a document list.
template <typename T>
inline
typename std::enable_if<has_DocumentListTraits<T>::value, Input &>::type
operator>>(Input &yin, T &docList) {
int i = 0;
while ( yin.setCurrentDocument() ) {
yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true);
if ( yin.error() )
return yin;
yin.nextDocument();
++i;
}
return yin;
}
// Define non-member operator>> so that Input can stream in a map as a document.
template <typename T>
inline
typename std::enable_if<has_MappingTraits<T>::value, Input &>::type
operator>>(Input &yin, T &docMap) {
yin.setCurrentDocument();
yamlize(yin, docMap, true);
return yin;
}
// Define non-member operator>> so that Input can stream in a sequence as
// a document.
template <typename T>
inline
typename std::enable_if<has_SequenceTraits<T>::value, Input &>::type
operator>>(Input &yin, T &docSeq) {
if (yin.setCurrentDocument())
yamlize(yin, docSeq, true);
return yin;
}
// Provide better error message about types missing a trait specialization
template <typename T>
inline
typename std::enable_if<missingTraits<T>::value, Input &>::type
operator>>(Input &yin, T &docSeq) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
return yin;
}
// Define non-member operator<< so that Output can stream out document list.
template <typename T>
inline
typename std::enable_if<has_DocumentListTraits<T>::value, Output &>::type
operator<<(Output &yout, T &docList) {
yout.beginDocuments();
const size_t count = DocumentListTraits<T>::size(yout, docList);
for(size_t i=0; i < count; ++i) {
if ( yout.preflightDocument(i) ) {
yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true);
yout.postflightDocument();
}
}
yout.endDocuments();
return yout;
}
// Define non-member operator<< so that Output can stream out a map.
template <typename T>
inline
typename std::enable_if<has_MappingTraits<T>::value, Output &>::type
operator<<(Output &yout, T &map) {
yout.beginDocuments();
if ( yout.preflightDocument(0) ) {
yamlize(yout, map, true);
yout.postflightDocument();
}
yout.endDocuments();
return yout;
}
// Define non-member operator<< so that Output can stream out a sequence.
template <typename T>
inline
typename std::enable_if<has_SequenceTraits<T>::value, Output &>::type
operator<<(Output &yout, T &seq) {
yout.beginDocuments();
if ( yout.preflightDocument(0) ) {
yamlize(yout, seq, true);
yout.postflightDocument();
}
yout.endDocuments();
return yout;
}
// Provide better error message about types missing a trait specialization
template <typename T>
inline
typename std::enable_if<missingTraits<T>::value, Output &>::type
operator<<(Output &yout, T &seq) {
char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
return yout;
}
} // namespace yaml
} // namespace llvm
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML sequence.
#define LLVM_YAML_IS_SEQUENCE_VECTOR(_type) \
namespace llvm { \
namespace yaml { \
template<> \
struct SequenceTraits< std::vector<_type> > { \
static size_t size(IO &io, std::vector<_type> &seq) { \
return seq.size(); \
} \
static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\
if ( index >= seq.size() ) \
seq.resize(index+1); \
return seq[index]; \
} \
}; \
} \
}
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML flow sequence.
#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(_type) \
namespace llvm { \
namespace yaml { \
template<> \
struct SequenceTraits< std::vector<_type> > { \
static size_t size(IO &io, std::vector<_type> &seq) { \
return seq.size(); \
} \
static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\
(void)flow; /* Remove this workaround after PR17897 is fixed */ \
if ( index >= seq.size() ) \
seq.resize(index+1); \
return seq[index]; \
} \
static const bool flow = true; \
}; \
} \
}
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML document list.
#define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type) \
namespace llvm { \
namespace yaml { \
template<> \
struct DocumentListTraits< std::vector<_type> > { \
static size_t size(IO &io, std::vector<_type> &seq) { \
return seq.size(); \
} \
static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\
if ( index >= seq.size() ) \
seq.resize(index+1); \
return seq[index]; \
} \
}; \
} \
}
#endif // LLVM_SUPPORT_YAMLTRAITS_H