mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-06 04:31:08 +00:00
5026b2cc8b
To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
66 lines
2.0 KiB
LLVM
66 lines
2.0 KiB
LLVM
; RUN: opt < %s -analyze -delinearize | FileCheck %s
|
|
; void foo(int n, int m, int o, double A[n][m][o]) {
|
|
;
|
|
; for (int i = 0; i < n; i++)
|
|
; for (int j = 0; j < m; j++)
|
|
; for (int k = 0; k < o; k++)
|
|
; A[i][j][k] = 1.0;
|
|
; }
|
|
|
|
; AddRec: {{{%A,+,(8 * (zext i32 %m to i64) * (zext i32 %o to i64))}<%for.i>,+,(8 * (zext i32 %o to i64))}<%for.j>,+,8}<%for.k>
|
|
; CHECK: Base offset: %A
|
|
; CHECK: ArrayDecl[UnknownSize][(zext i32 %m to i64)][(zext i32 %o to i64)] with elements of 8 bytes.
|
|
; CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
|
|
|
|
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
|
|
target triple = "x86_64-unknown-linux-gnu"
|
|
|
|
define void @foo(i32 %n, i32 %m, i32 %o, double* %A) {
|
|
entry:
|
|
%m_zext = zext i32 %m to i64
|
|
%n_zext = zext i32 %o to i64
|
|
br label %for.i
|
|
|
|
for.i:
|
|
%i = phi i64 [ %i.inc, %for.i.inc ], [ 0, %entry ]
|
|
br label %for.j
|
|
|
|
for.j:
|
|
%j = phi i64 [ %j.inc, %for.j.inc ], [ 0, %for.i ]
|
|
br label %for.k
|
|
|
|
for.k:
|
|
%k = phi i64 [ %k.inc, %for.k.inc ], [ 0, %for.j ]
|
|
%tmp = mul i64 %i, %m_zext
|
|
%tmp1 = trunc i64 %j to i32
|
|
%tmp2 = trunc i64 %i to i32
|
|
%mul.us.us = mul nsw i32 %tmp1, %tmp2
|
|
%tmp.us.us = add i64 %j, %tmp
|
|
%tmp17.us.us = mul i64 %tmp.us.us, %n_zext
|
|
%subscript = add i64 %tmp17.us.us, %k
|
|
%idx = getelementptr inbounds double* %A, i64 %subscript
|
|
store double 1.0, double* %idx
|
|
br label %for.k.inc
|
|
|
|
for.k.inc:
|
|
%k.inc = add i64 %k, 1
|
|
%k.inc.trunc = trunc i64 %k.inc to i32
|
|
%k.exitcond = icmp eq i32 %k.inc.trunc, %o
|
|
br i1 %k.exitcond, label %for.j.inc, label %for.k
|
|
|
|
for.j.inc:
|
|
%j.inc = add i64 %j, 1
|
|
%j.inc.trunc = trunc i64 %j.inc to i32
|
|
%j.exitcond = icmp eq i32 %j.inc.trunc, %m
|
|
br i1 %j.exitcond, label %for.i.inc, label %for.j
|
|
|
|
for.i.inc:
|
|
%i.inc = add i64 %i, 1
|
|
%i.inc.trunc = trunc i64 %i.inc to i32
|
|
%i.exitcond = icmp eq i32 %i.inc.trunc, %n
|
|
br i1 %i.exitcond, label %end, label %for.i
|
|
|
|
end:
|
|
ret void
|
|
}
|