mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
00edf4c1d8
Previously it was only be able to detect problems if the pointer was a numerical value (eg inttoptr i32 1 to i32*), but not if it was an alloca or globa. The reason was the use of ComputeMaskedBits: imagine you have "alloca i8, align 2", and ask ComputeMaskedBits what it knows about the bits of the alloca pointer. It can tell you that the bottom bit is known zero (due to align 2) but it can't tell you that bit 1 is known one. That's because the address could be an even multiple of 2 rather than an odd multiple, eg it might be a multiple of 4. Thus trying to use KnownOne is ineffective in the case of an alloca as it will never have any bits set. Instead look explicitly for constant offsets from allocas and globals. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164595 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
IPA | ||
AliasAnalysis.cpp | ||
AliasAnalysisCounter.cpp | ||
AliasAnalysisEvaluator.cpp | ||
AliasDebugger.cpp | ||
AliasSetTracker.cpp | ||
Analysis.cpp | ||
BasicAliasAnalysis.cpp | ||
BlockFrequencyInfo.cpp | ||
BranchProbabilityInfo.cpp | ||
CaptureTracking.cpp | ||
CFGPrinter.cpp | ||
CMakeLists.txt | ||
CodeMetrics.cpp | ||
ConstantFolding.cpp | ||
DbgInfoPrinter.cpp | ||
DominanceFrontier.cpp | ||
DomPrinter.cpp | ||
InlineCost.cpp | ||
InstCount.cpp | ||
InstructionSimplify.cpp | ||
Interval.cpp | ||
IntervalPartition.cpp | ||
IVUsers.cpp | ||
LazyValueInfo.cpp | ||
LibCallAliasAnalysis.cpp | ||
LibCallSemantics.cpp | ||
Lint.cpp | ||
LLVMBuild.txt | ||
Loads.cpp | ||
LoopDependenceAnalysis.cpp | ||
LoopInfo.cpp | ||
LoopPass.cpp | ||
Makefile | ||
MemDepPrinter.cpp | ||
MemoryBuiltins.cpp | ||
MemoryDependenceAnalysis.cpp | ||
ModuleDebugInfoPrinter.cpp | ||
NoAliasAnalysis.cpp | ||
PathNumbering.cpp | ||
PathProfileInfo.cpp | ||
PathProfileVerifier.cpp | ||
PHITransAddr.cpp | ||
PostDominators.cpp | ||
ProfileDataLoader.cpp | ||
ProfileDataLoaderPass.cpp | ||
ProfileEstimatorPass.cpp | ||
ProfileInfo.cpp | ||
ProfileInfoLoader.cpp | ||
ProfileInfoLoaderPass.cpp | ||
ProfileVerifierPass.cpp | ||
README.txt | ||
RegionInfo.cpp | ||
RegionPass.cpp | ||
RegionPrinter.cpp | ||
ScalarEvolution.cpp | ||
ScalarEvolutionAliasAnalysis.cpp | ||
ScalarEvolutionExpander.cpp | ||
ScalarEvolutionNormalization.cpp | ||
SparsePropagation.cpp | ||
Trace.cpp | ||
TypeBasedAliasAnalysis.cpp | ||
ValueTracking.cpp |
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//