mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
a6fb1b6743
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42284 91177308-0d34-0410-b5e6-96231b3b80d8
546 lines
19 KiB
C++
546 lines
19 KiB
C++
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Evan Cheng and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a top-down list scheduler, using standard algorithms.
|
|
// The basic approach uses a priority queue of available nodes to schedule.
|
|
// One at a time, nodes are taken from the priority queue (thus in priority
|
|
// order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <climits>
|
|
#include <queue>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumNoops , "Number of noops inserted");
|
|
STATISTIC(NumStalls, "Number of pipeline stalls");
|
|
|
|
static RegisterScheduler
|
|
tdListDAGScheduler("list-td", " Top-down list scheduler",
|
|
createTDListDAGScheduler);
|
|
|
|
namespace {
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleDAGList - The actual list scheduler implementation. This supports
|
|
/// top-down scheduling.
|
|
///
|
|
class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG {
|
|
private:
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
///
|
|
SchedulingPriorityQueue *AvailableQueue;
|
|
|
|
/// PendingQueue - This contains all of the instructions whose operands have
|
|
/// been issued, but their results are not ready yet (due to the latency of
|
|
/// the operation). Once the operands becomes available, the instruction is
|
|
/// added to the AvailableQueue. This keeps track of each SUnit and the
|
|
/// number of cycles left to execute before the operation is available.
|
|
std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
HazardRecognizer *HazardRec;
|
|
|
|
public:
|
|
ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
|
|
const TargetMachine &tm,
|
|
SchedulingPriorityQueue *availqueue,
|
|
HazardRecognizer *HR)
|
|
: ScheduleDAG(dag, bb, tm),
|
|
AvailableQueue(availqueue), HazardRec(HR) {
|
|
}
|
|
|
|
~ScheduleDAGList() {
|
|
delete HazardRec;
|
|
delete AvailableQueue;
|
|
}
|
|
|
|
void Schedule();
|
|
|
|
private:
|
|
void ReleaseSucc(SUnit *SuccSU, bool isChain);
|
|
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
|
void ListScheduleTopDown();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
HazardRecognizer::~HazardRecognizer() {}
|
|
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
void ScheduleDAGList::Schedule() {
|
|
DOUT << "********** List Scheduling **********\n";
|
|
|
|
// Build scheduling units.
|
|
BuildSchedUnits();
|
|
|
|
AvailableQueue->initNodes(SUnitMap, SUnits);
|
|
|
|
ListScheduleTopDown();
|
|
|
|
AvailableQueue->releaseState();
|
|
|
|
DOUT << "*** Final schedule ***\n";
|
|
DEBUG(dumpSchedule());
|
|
DOUT << "\n";
|
|
|
|
// Emit in scheduled order
|
|
EmitSchedule();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Down Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the PendingQueue if the count reaches zero.
|
|
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
|
|
if (!isChain)
|
|
SuccSU->NumPredsLeft--;
|
|
else
|
|
SuccSU->NumChainPredsLeft--;
|
|
|
|
assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 &&
|
|
"List scheduling internal error");
|
|
|
|
if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
|
|
// Compute how many cycles it will be before this actually becomes
|
|
// available. This is the max of the start time of all predecessors plus
|
|
// their latencies.
|
|
unsigned AvailableCycle = 0;
|
|
for (SUnit::pred_iterator I = SuccSU->Preds.begin(),
|
|
E = SuccSU->Preds.end(); I != E; ++I) {
|
|
// If this is a token edge, we don't need to wait for the latency of the
|
|
// preceeding instruction (e.g. a long-latency load) unless there is also
|
|
// some other data dependence.
|
|
SUnit &Pred = *I->Dep;
|
|
unsigned PredDoneCycle = Pred.Cycle;
|
|
if (!I->isCtrl)
|
|
PredDoneCycle += Pred.Latency;
|
|
else if (Pred.Latency)
|
|
PredDoneCycle += 1;
|
|
|
|
AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
|
|
}
|
|
|
|
PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
Sequence.push_back(SU);
|
|
SU->Cycle = CurCycle;
|
|
|
|
// Bottom up: release successors.
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
ReleaseSucc(I->Dep, I->isCtrl);
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void ScheduleDAGList::ListScheduleTopDown() {
|
|
unsigned CurCycle = 0;
|
|
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front();
|
|
|
|
// All leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
|
|
AvailableQueue->push(&SUnits[i]);
|
|
SUnits[i].isAvailable = SUnits[i].isPending = true;
|
|
}
|
|
}
|
|
|
|
// Emit the entry node first.
|
|
ScheduleNodeTopDown(Entry, CurCycle);
|
|
HazardRec->EmitInstruction(Entry->Node);
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
while (!AvailableQueue->empty() || !PendingQueue.empty()) {
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
|
if (PendingQueue[i].first == CurCycle) {
|
|
AvailableQueue->push(PendingQueue[i].second);
|
|
PendingQueue[i].second->isAvailable = true;
|
|
PendingQueue[i] = PendingQueue.back();
|
|
PendingQueue.pop_back();
|
|
--i; --e;
|
|
} else {
|
|
assert(PendingQueue[i].first > CurCycle && "Negative latency?");
|
|
}
|
|
}
|
|
|
|
// If there are no instructions available, don't try to issue anything, and
|
|
// don't advance the hazard recognizer.
|
|
if (AvailableQueue->empty()) {
|
|
++CurCycle;
|
|
continue;
|
|
}
|
|
|
|
SUnit *FoundSUnit = 0;
|
|
SDNode *FoundNode = 0;
|
|
|
|
bool HasNoopHazards = false;
|
|
while (!AvailableQueue->empty()) {
|
|
SUnit *CurSUnit = AvailableQueue->pop();
|
|
|
|
// Get the node represented by this SUnit.
|
|
FoundNode = CurSUnit->Node;
|
|
|
|
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
|
// real target node flagged to it. If so, use the target node.
|
|
for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size();
|
|
FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
|
|
FoundNode = CurSUnit->FlaggedNodes[i];
|
|
|
|
HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
|
|
if (HT == HazardRecognizer::NoHazard) {
|
|
FoundSUnit = CurSUnit;
|
|
break;
|
|
}
|
|
|
|
// Remember if this is a noop hazard.
|
|
HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
|
|
|
|
NotReady.push_back(CurSUnit);
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
if (!NotReady.empty()) {
|
|
AvailableQueue->push_all(NotReady);
|
|
NotReady.clear();
|
|
}
|
|
|
|
// If we found a node to schedule, do it now.
|
|
if (FoundSUnit) {
|
|
ScheduleNodeTopDown(FoundSUnit, CurCycle);
|
|
HazardRec->EmitInstruction(FoundNode);
|
|
FoundSUnit->isScheduled = true;
|
|
AvailableQueue->ScheduledNode(FoundSUnit);
|
|
|
|
// If this is a pseudo-op node, we don't want to increment the current
|
|
// cycle.
|
|
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
|
|
++CurCycle;
|
|
} else if (!HasNoopHazards) {
|
|
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
|
// the current cycle and try again.
|
|
DOUT << "*** Advancing cycle, no work to do\n";
|
|
HazardRec->AdvanceCycle();
|
|
++NumStalls;
|
|
++CurCycle;
|
|
} else {
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
// that will fault if we don't do this right. This is the case for
|
|
// processors without pipeline interlocks and other cases.
|
|
DOUT << "*** Emitting noop\n";
|
|
HazardRec->EmitNoop();
|
|
Sequence.push_back(0); // NULL SUnit* -> noop
|
|
++NumNoops;
|
|
++CurCycle;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
assert(!AnyNotSched);
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LatencyPriorityQueue Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a SchedulingPriorityQueue that schedules using latency information to
|
|
// reduce the length of the critical path through the basic block.
|
|
//
|
|
namespace {
|
|
class LatencyPriorityQueue;
|
|
|
|
/// Sorting functions for the Available queue.
|
|
struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
LatencyPriorityQueue *PQ;
|
|
latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
|
|
latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class LatencyPriorityQueue : public SchedulingPriorityQueue {
|
|
// SUnits - The SUnits for the current graph.
|
|
std::vector<SUnit> *SUnits;
|
|
|
|
// Latencies - The latency (max of latency from this node to the bb exit)
|
|
// for each node.
|
|
std::vector<int> Latencies;
|
|
|
|
/// NumNodesSolelyBlocking - This vector contains, for every node in the
|
|
/// Queue, the number of nodes that the node is the sole unscheduled
|
|
/// predecessor for. This is used as a tie-breaker heuristic for better
|
|
/// mobility.
|
|
std::vector<unsigned> NumNodesSolelyBlocking;
|
|
|
|
std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
|
|
public:
|
|
LatencyPriorityQueue() : Queue(latency_sort(this)) {
|
|
}
|
|
|
|
void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
|
|
std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
// Calculate node priorities.
|
|
CalculatePriorities();
|
|
}
|
|
|
|
void addNode(const SUnit *SU) {
|
|
Latencies.resize(SUnits->size(), -1);
|
|
NumNodesSolelyBlocking.resize(SUnits->size(), 0);
|
|
CalcLatency(*SU);
|
|
}
|
|
|
|
void updateNode(const SUnit *SU) {
|
|
Latencies[SU->NodeNum] = -1;
|
|
CalcLatency(*SU);
|
|
}
|
|
|
|
void releaseState() {
|
|
SUnits = 0;
|
|
Latencies.clear();
|
|
}
|
|
|
|
unsigned getLatency(unsigned NodeNum) const {
|
|
assert(NodeNum < Latencies.size());
|
|
return Latencies[NodeNum];
|
|
}
|
|
|
|
unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
|
|
assert(NodeNum < NumNodesSolelyBlocking.size());
|
|
return NumNodesSolelyBlocking[NodeNum];
|
|
}
|
|
|
|
unsigned size() const { return Queue.size(); }
|
|
|
|
bool empty() const { return Queue.empty(); }
|
|
|
|
virtual void push(SUnit *U) {
|
|
push_impl(U);
|
|
}
|
|
void push_impl(SUnit *U);
|
|
|
|
void push_all(const std::vector<SUnit *> &Nodes) {
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
|
push_impl(Nodes[i]);
|
|
}
|
|
|
|
SUnit *pop() {
|
|
if (empty()) return NULL;
|
|
SUnit *V = Queue.top();
|
|
Queue.pop();
|
|
return V;
|
|
}
|
|
|
|
/// remove - This is a really inefficient way to remove a node from a
|
|
/// priority queue. We should roll our own heap to make this better or
|
|
/// something.
|
|
void remove(SUnit *SU) {
|
|
std::vector<SUnit*> Temp;
|
|
|
|
assert(!Queue.empty() && "Not in queue!");
|
|
while (Queue.top() != SU) {
|
|
Temp.push_back(Queue.top());
|
|
Queue.pop();
|
|
assert(!Queue.empty() && "Not in queue!");
|
|
}
|
|
|
|
// Remove the node from the PQ.
|
|
Queue.pop();
|
|
|
|
// Add all the other nodes back.
|
|
for (unsigned i = 0, e = Temp.size(); i != e; ++i)
|
|
Queue.push(Temp[i]);
|
|
}
|
|
|
|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
|
|
// successor nodes that have a single unscheduled predecessor. If so, that
|
|
// single predecessor has a higher priority, since scheduling it will make
|
|
// the node available.
|
|
void ScheduledNode(SUnit *Node);
|
|
|
|
private:
|
|
void CalculatePriorities();
|
|
int CalcLatency(const SUnit &SU);
|
|
void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
|
|
SUnit *getSingleUnscheduledPred(SUnit *SU);
|
|
};
|
|
}
|
|
|
|
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
|
|
unsigned LHSNum = LHS->NodeNum;
|
|
unsigned RHSNum = RHS->NodeNum;
|
|
|
|
// The most important heuristic is scheduling the critical path.
|
|
unsigned LHSLatency = PQ->getLatency(LHSNum);
|
|
unsigned RHSLatency = PQ->getLatency(RHSNum);
|
|
if (LHSLatency < RHSLatency) return true;
|
|
if (LHSLatency > RHSLatency) return false;
|
|
|
|
// After that, if two nodes have identical latencies, look to see if one will
|
|
// unblock more other nodes than the other.
|
|
unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
|
|
unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
|
|
if (LHSBlocked < RHSBlocked) return true;
|
|
if (LHSBlocked > RHSBlocked) return false;
|
|
|
|
// Finally, just to provide a stable ordering, use the node number as a
|
|
// deciding factor.
|
|
return LHSNum < RHSNum;
|
|
}
|
|
|
|
|
|
/// CalcNodePriority - Calculate the maximal path from the node to the exit.
|
|
///
|
|
int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
|
|
int &Latency = Latencies[SU.NodeNum];
|
|
if (Latency != -1)
|
|
return Latency;
|
|
|
|
int MaxSuccLatency = 0;
|
|
for (SUnit::const_succ_iterator I = SU.Succs.begin(), E = SU.Succs.end();
|
|
I != E; ++I)
|
|
MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->Dep));
|
|
|
|
return Latency = MaxSuccLatency + SU.Latency;
|
|
}
|
|
|
|
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
|
void LatencyPriorityQueue::CalculatePriorities() {
|
|
Latencies.assign(SUnits->size(), -1);
|
|
NumNodesSolelyBlocking.assign(SUnits->size(), 0);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
CalcLatency((*SUnits)[i]);
|
|
}
|
|
|
|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
|
|
/// of SU, return it, otherwise return null.
|
|
SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
|
|
SUnit *OnlyAvailablePred = 0;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
SUnit &Pred = *I->Dep;
|
|
if (!Pred.isScheduled) {
|
|
// We found an available, but not scheduled, predecessor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
|
|
return 0;
|
|
OnlyAvailablePred = &Pred;
|
|
}
|
|
}
|
|
|
|
return OnlyAvailablePred;
|
|
}
|
|
|
|
void LatencyPriorityQueue::push_impl(SUnit *SU) {
|
|
// Look at all of the successors of this node. Count the number of nodes that
|
|
// this node is the sole unscheduled node for.
|
|
unsigned NumNodesBlocking = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
if (getSingleUnscheduledPred(I->Dep) == SU)
|
|
++NumNodesBlocking;
|
|
NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
|
|
|
|
Queue.push(SU);
|
|
}
|
|
|
|
|
|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
|
|
// successor nodes that have a single unscheduled predecessor. If so, that
|
|
// single predecessor has a higher priority, since scheduling it will make
|
|
// the node available.
|
|
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
AdjustPriorityOfUnscheduledPreds(I->Dep);
|
|
}
|
|
|
|
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
|
|
/// scheduled. If SU is not itself available, then there is at least one
|
|
/// predecessor node that has not been scheduled yet. If SU has exactly ONE
|
|
/// unscheduled predecessor, we want to increase its priority: it getting
|
|
/// scheduled will make this node available, so it is better than some other
|
|
/// node of the same priority that will not make a node available.
|
|
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
|
|
if (SU->isPending) return; // All preds scheduled.
|
|
|
|
SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
|
|
if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
|
|
|
|
// Okay, we found a single predecessor that is available, but not scheduled.
|
|
// Since it is available, it must be in the priority queue. First remove it.
|
|
remove(OnlyAvailablePred);
|
|
|
|
// Reinsert the node into the priority queue, which recomputes its
|
|
// NumNodesSolelyBlocking value.
|
|
push(OnlyAvailablePred);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// createTDListDAGScheduler - This creates a top-down list scheduler with a
|
|
/// new hazard recognizer. This scheduler takes ownership of the hazard
|
|
/// recognizer and deletes it when done.
|
|
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB) {
|
|
return new ScheduleDAGList(*DAG, BB, DAG->getTarget(),
|
|
new LatencyPriorityQueue(),
|
|
IS->CreateTargetHazardRecognizer());
|
|
}
|