llvm-6502/lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.cpp
Chris Lattner f0144127b9 Rip all of the global variable lowering logic out of TargetAsmInfo. Since
it is highly specific to the object file that will be generated in the end,
this introduces a new TargetLoweringObjectFile interface that is implemented
for each of ELF/MachO/COFF/Alpha/PIC16 and XCore.

Though still is still a brutal and ugly refactoring, this is a major step
towards goodness.

This patch also:
1. fixes a bunch of dangling pointer problems in the PIC16 backend.
2. disables the TargetLowering copy ctor which PIC16 was accidentally using.
3. gets us closer to xcore having its own crazy target section flags and
   pic16 not having to shadow sections with its own objects.
4. fixes wierdness where ELF targets would set CStringSection but not
   CStringSection_.  Factor the code better.
5. fixes some bugs in string lowering on ELF targets.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77294 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-28 03:13:23 +00:00

635 lines
19 KiB
C++

//===-- X86IntelAsmPrinter.cpp - Convert X86 LLVM code to Intel assembly --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to Intel format assembly language.
// This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "X86IntelAsmPrinter.h"
#include "X86InstrInfo.h"
#include "X86TargetAsmInfo.h"
#include "X86.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
static X86MachineFunctionInfo calculateFunctionInfo(const Function *F,
const TargetData *TD) {
X86MachineFunctionInfo Info;
uint64_t Size = 0;
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Info.setDecorationStyle(StdCall);
break;
case CallingConv::X86_FastCall:
Info.setDecorationStyle(FastCall);
break;
default:
return Info;
}
unsigned argNum = 1;
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI, ++argNum) {
const Type* Ty = AI->getType();
// 'Dereference' type in case of byval parameter attribute
if (F->paramHasAttr(argNum, Attribute::ByVal))
Ty = cast<PointerType>(Ty)->getElementType();
// Size should be aligned to DWORD boundary
Size += ((TD->getTypeAllocSize(Ty) + 3)/4)*4;
}
// We're not supporting tooooo huge arguments :)
Info.setBytesToPopOnReturn((unsigned int)Size);
return Info;
}
/// decorateName - Query FunctionInfoMap and use this information for various
/// name decoration.
void X86IntelAsmPrinter::decorateName(std::string &Name,
const GlobalValue *GV) {
const Function *F = dyn_cast<Function>(GV);
if (!F) return;
// We don't want to decorate non-stdcall or non-fastcall functions right now
unsigned CC = F->getCallingConv();
if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall)
return;
FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F);
const X86MachineFunctionInfo *Info;
if (info_item == FunctionInfoMap.end()) {
// Calculate apropriate function info and populate map
FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData());
Info = &FunctionInfoMap[F];
} else {
Info = &info_item->second;
}
const FunctionType *FT = F->getFunctionType();
switch (Info->getDecorationStyle()) {
case None:
break;
case StdCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
break;
case FastCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
if (Name[0] == '_')
Name[0] = '@';
else
Name = '@' + Name;
break;
default:
llvm_unreachable("Unsupported DecorationStyle");
}
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool X86IntelAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
SetupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// Print out labels for the function.
const Function *F = MF.getFunction();
unsigned CC = F->getCallingConv();
unsigned FnAlign = MF.getAlignment();
// Populate function information map. Actually, We don't want to populate
// non-stdcall or non-fastcall functions' information right now.
if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall)
FunctionInfoMap[F] = *MF.getInfo<X86MachineFunctionInfo>();
decorateName(CurrentFnName, F);
SwitchToTextSection("_text", F);
switch (F->getLinkage()) {
default: llvm_unreachable("Unsupported linkage type!");
case Function::PrivateLinkage:
case Function::LinkerPrivateLinkage:
case Function::InternalLinkage:
EmitAlignment(FnAlign);
break;
case Function::DLLExportLinkage:
DLLExportedFns.insert(CurrentFnName);
//FALLS THROUGH
case Function::ExternalLinkage:
O << "\tpublic " << CurrentFnName << "\n";
EmitAlignment(FnAlign);
break;
}
O << CurrentFnName << "\tproc near\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block if there are any predecessors.
if (!I->pred_empty()) {
printBasicBlockLabel(I, true, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
O << CurrentFnName << "\tendp\n";
O.flush();
// We didn't modify anything.
return false;
}
void X86IntelAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) {
unsigned char value = MI->getOperand(Op).getImm();
assert(value <= 7 && "Invalid ssecc argument!");
switch (value) {
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
}
}
void X86IntelAsmPrinter::printOp(const MachineOperand &MO,
const char *Modifier) {
switch (MO.getType()) {
case MachineOperand::MO_Register: {
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
MVT VT = (strcmp(Modifier,"subreg64") == 0) ?
MVT::i64 : ((strcmp(Modifier, "subreg32") == 0) ? MVT::i32 :
((strcmp(Modifier,"subreg16") == 0) ? MVT::i16 :MVT::i8));
Reg = getX86SubSuperRegister(Reg, VT);
}
O << TRI->getName(Reg);
} else
O << "reg" << MO.getReg();
return;
}
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_JumpTableIndex: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp) O << "OFFSET ";
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< "_" << MO.getIndex();
return;
}
case MachineOperand::MO_ConstantPoolIndex: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp) O << "OFFSET ";
O << "[" << TAI->getPrivateGlobalPrefix() << "CPI"
<< getFunctionNumber() << "_" << MO.getIndex();
printOffset(MO.getOffset());
O << "]";
return;
}
case MachineOperand::MO_GlobalAddress: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
GlobalValue *GV = MO.getGlobal();
std::string Name = Mang->getMangledName(GV);
decorateName(Name, GV);
if (!isMemOp) O << "OFFSET ";
// Handle dllimport linkage.
// FIXME: This should be fixed with full support of stdcall & fastcall
// CC's
if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
O << "__imp_";
O << Name;
printOffset(MO.getOffset());
return;
}
case MachineOperand::MO_ExternalSymbol: {
O << TAI->getGlobalPrefix() << MO.getSymbolName();
return;
}
default:
O << "<unknown operand type>"; return;
}
}
void X86IntelAsmPrinter::print_pcrel_imm(const MachineInstr *MI, unsigned OpNo){
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default: llvm_unreachable("Unknown pcrel immediate operand");
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMBB());
return;
case MachineOperand::MO_GlobalAddress: {
GlobalValue *GV = MO.getGlobal();
std::string Name = Mang->getMangledName(GV);
decorateName(Name, GV);
// Handle dllimport linkage.
// FIXME: This should be fixed with full support of stdcall & fastcall
// CC's
if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
O << "__imp_";
O << Name;
printOffset(MO.getOffset());
return;
}
case MachineOperand::MO_ExternalSymbol:
O << TAI->getGlobalPrefix() << MO.getSymbolName();
return;
}
}
void X86IntelAsmPrinter::printLeaMemReference(const MachineInstr *MI,
unsigned Op,
const char *Modifier) {
const MachineOperand &BaseReg = MI->getOperand(Op);
int ScaleVal = MI->getOperand(Op+1).getImm();
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &DispSpec = MI->getOperand(Op+3);
O << "[";
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOp(BaseReg, Modifier);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << "*";
printOp(IndexReg, Modifier);
NeedPlus = true;
}
if (DispSpec.isGlobal() || DispSpec.isCPI() ||
DispSpec.isJTI()) {
if (NeedPlus)
O << " + ";
printOp(DispSpec, "mem");
} else {
int DispVal = DispSpec.getImm();
if (DispVal || (!BaseReg.getReg() && !IndexReg.getReg())) {
if (NeedPlus) {
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
}
O << DispVal;
}
}
O << "]";
}
void X86IntelAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op,
const char *Modifier) {
assert(isMem(MI, Op) && "Invalid memory reference!");
MachineOperand Segment = MI->getOperand(Op+4);
if (Segment.getReg()) {
printOperand(MI, Op+4, Modifier);
O << ':';
}
printLeaMemReference(MI, Op, Modifier);
}
void X86IntelAsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false, false);
O << '-' << "\"L" << getFunctionNumber() << "$pb\"'\n";
}
void X86IntelAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) {
O << "L" << getFunctionNumber() << "$pb\n";
O << "L" << getFunctionNumber() << "$pb:";
}
bool X86IntelAsmPrinter::printAsmMRegister(const MachineOperand &MO,
const char Mode) {
unsigned Reg = MO.getReg();
switch (Mode) {
default: return true; // Unknown mode.
case 'b': // Print QImode register
Reg = getX86SubSuperRegister(Reg, MVT::i8);
break;
case 'h': // Print QImode high register
Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
break;
case 'w': // Print HImode register
Reg = getX86SubSuperRegister(Reg, MVT::i16);
break;
case 'k': // Print SImode register
Reg = getX86SubSuperRegister(Reg, MVT::i32);
break;
}
O << TRI->getName(Reg);
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool X86IntelAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
return printAsmMRegister(MI->getOperand(OpNo), ExtraCode[0]);
}
}
printOperand(MI, OpNo);
return false;
}
bool X86IntelAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
printMemReference(MI, OpNo);
return false;
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction
/// MI in Intel syntax to the current output stream.
///
void X86IntelAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
bool X86IntelAsmPrinter::doInitialization(Module &M) {
bool Result = AsmPrinter::doInitialization(M);
Mang->markCharUnacceptable('.');
O << "\t.686\n\t.MMX\n\t.XMM\n\t.model flat\n\n";
// Emit declarations for external functions.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->isDeclaration()) {
std::string Name = Mang->getMangledName(I);
decorateName(Name, I);
O << "\tEXTERN " ;
if (I->hasDLLImportLinkage()) {
O << "__imp_";
}
O << Name << ":near\n";
}
// Emit declarations for external globals. Note that VC++ always declares
// external globals to have type byte, and if that's good enough for VC++...
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->isDeclaration()) {
std::string Name = Mang->getMangledName(I);
O << "\tEXTERN " ;
if (I->hasDLLImportLinkage()) {
O << "__imp_";
}
O << Name << ":byte\n";
}
}
return Result;
}
void X86IntelAsmPrinter::PrintGlobalVariable(const GlobalVariable *GV) {
// Check to see if this is a special global used by LLVM, if so, emit it.
if (GV->isDeclaration() ||
EmitSpecialLLVMGlobal(GV))
return;
const TargetData *TD = TM.getTargetData();
std::string name = Mang->getMangledName(GV);
Constant *C = GV->getInitializer();
unsigned Align = TD->getPreferredAlignmentLog(GV);
bool bCustomSegment = false;
switch (GV->getLinkage()) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
SwitchToDataSection("");
O << name << "?\tSEGEMNT PARA common 'COMMON'\n";
bCustomSegment = true;
// FIXME: the default alignment is 16 bytes, but 1, 2, 4, and 256
// are also available.
break;
case GlobalValue::AppendingLinkage:
SwitchToDataSection("");
O << name << "?\tSEGMENT PARA public 'DATA'\n";
bCustomSegment = true;
// FIXME: the default alignment is 16 bytes, but 1, 2, 4, and 256
// are also available.
break;
case GlobalValue::DLLExportLinkage:
DLLExportedGVs.insert(name);
// FALL THROUGH
case GlobalValue::ExternalLinkage:
O << "\tpublic " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage:
SwitchToSection(getObjFileLowering().getDataSection());
break;
default:
llvm_unreachable("Unknown linkage type!");
}
if (!bCustomSegment)
EmitAlignment(Align, GV);
O << name << ":";
if (VerboseAsm)
O << "\t\t\t\t" << TAI->getCommentString()
<< " " << GV->getName();
O << '\n';
EmitGlobalConstant(C);
if (bCustomSegment)
O << name << "?\tends\n";
}
bool X86IntelAsmPrinter::doFinalization(Module &M) {
// Output linker support code for dllexported globals
if (!DLLExportedGVs.empty() || !DLLExportedFns.empty()) {
SwitchToDataSection("");
O << "; WARNING: The following code is valid only with MASM v8.x"
<< "and (possible) higher\n"
<< "; This version of MASM is usually shipped with Microsoft "
<< "Visual Studio 2005\n"
<< "; or (possible) further versions. Unfortunately, there is no "
<< "way to support\n"
<< "; dllexported symbols in the earlier versions of MASM in fully "
<< "automatic way\n\n";
O << "_drectve\t segment info alias('.drectve')\n";
}
for (StringSet<>::iterator i = DLLExportedGVs.begin(),
e = DLLExportedGVs.end();
i != e; ++i)
O << "\t db ' /EXPORT:" << i->getKeyData() << ",data'\n";
for (StringSet<>::iterator i = DLLExportedFns.begin(),
e = DLLExportedFns.end();
i != e; ++i)
O << "\t db ' /EXPORT:" << i->getKeyData() << "'\n";
if (!DLLExportedGVs.empty() || !DLLExportedFns.empty())
O << "_drectve\t ends\n";
// Bypass X86SharedAsmPrinter::doFinalization().
bool Result = AsmPrinter::doFinalization(M);
SwitchToDataSection("");
O << "\tend\n";
return Result;
}
void X86IntelAsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (NumElts) {
// ML does not have escape sequences except '' for '. It also has a maximum
// string length of 255.
unsigned len = 0;
bool inString = false;
for (unsigned i = 0; i < NumElts; i++) {
int n = cast<ConstantInt>(CVA->getOperand(i))->getZExtValue() & 255;
if (len == 0)
O << "\tdb ";
if (n >= 32 && n <= 127) {
if (!inString) {
if (len > 0) {
O << ",'";
len += 2;
} else {
O << "'";
len++;
}
inString = true;
}
if (n == '\'') {
O << "'";
len++;
}
O << char(n);
} else {
if (inString) {
O << "'";
len++;
inString = false;
}
if (len > 0) {
O << ",";
len++;
}
O << n;
len += 1 + (n > 9) + (n > 99);
}
if (len > 60) {
if (inString) {
O << "'";
inString = false;
}
O << "\n";
len = 0;
}
}
if (len > 0) {
if (inString)
O << "'";
O << "\n";
}
}
}
// Include the auto-generated portion of the assembly writer.
#include "X86GenAsmWriter1.inc"