llvm-6502/test/CodeGen/SystemZ/atomicrmw-nand-04.ll
Richard Sandiford 6824f127f9 [SystemZ] Be more careful about inverting CC masks
System z branches have a mask to select which of the 4 CC values should
cause the branch to be taken.  We can invert a branch by inverting the mask.
However, not all instructions can produce all 4 CC values, so inverting
the branch like this can lead to some oddities.  For example, integer
comparisons only produce a CC of 0 (equal), 1 (less) or 2 (greater).
If an integer EQ is reversed to NE before instruction selection,
the branch will test for 1 or 2.  If instead the branch is reversed
after instruction selection (by inverting the mask), it will test for
1, 2 or 3.  Both are correct, but the second isn't really canonical.
This patch therefore keeps track of which CC values are possible
and uses this when inverting a mask.

Although this is mostly cosmestic, it fixes undefined behavior
for the CIJNLH in branch-08.ll.  Another fix would have been
to mask out bit 0 when generating the fused compare and branch,
but the point of this patch is that we shouldn't need to do that
in the first place.

The patch also makes it easier to reuse CC results from other instructions.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187495 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-31 12:30:20 +00:00

178 lines
4.5 KiB
LLVM

; Test 64-bit atomic NANDs.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s
; Check NANDs of a variable.
define i64 @f1(i64 %dummy, i64 *%src, i64 %b) {
; CHECK-LABEL: f1:
; CHECK: lg %r2, 0(%r3)
; CHECK: [[LABEL:\.[^:]*]]:
; CHECK: lgr %r0, %r2
; CHECK: ngr %r0, %r4
; CHECK: lcgr %r0, %r0
; CHECK: aghi %r0, -1
; CHECK: csg %r2, %r0, 0(%r3)
; CHECK: jl [[LABEL]]
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 %b seq_cst
ret i64 %res
}
; Check NANDs of 1, which are done using a register. (We could use RISBG
; instead, but that isn't implemented yet.)
define i64 @f2(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f2:
; CHECK: ngr
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 1 seq_cst
ret i64 %res
}
; Check the equivalent of NIHF with 1, which can use RISBG instead.
define i64 @f3(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f3:
; CHECK: lg %r2, 0(%r3)
; CHECK: [[LABEL:\.[^:]*]]:
; CHECK: risbg %r0, %r2, 31, 191, 0
; CHECK: lcgr %r0, %r0
; CHECK: aghi %r0, -1
; CHECK: csg %r2, %r0, 0(%r3)
; CHECK: jl [[LABEL]]
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 8589934591 seq_cst
ret i64 %res
}
; Check the lowest NIHF value outside the range of RISBG.
define i64 @f4(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f4:
; CHECK: lg %r2, 0(%r3)
; CHECK: [[LABEL:\.[^:]*]]:
; CHECK: lgr %r0, %r2
; CHECK: nihf %r0, 2
; CHECK: lcgr %r0, %r0
; CHECK: aghi %r0, -1
; CHECK: csg %r2, %r0, 0(%r3)
; CHECK: jl [[LABEL]]
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 12884901887 seq_cst
ret i64 %res
}
; Check the next value up, which must use a register.
define i64 @f5(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f5:
; CHECK: ngr
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 12884901888 seq_cst
ret i64 %res
}
; Check the lowest NIHH value outside the range of RISBG.
define i64 @f6(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f6:
; CHECK: nihh {{%r[0-5]}}, 2
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 844424930131967 seq_cst
ret i64 %res
}
; Check the next value up, which must use a register.
define i64 @f7(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f7:
; CHECK: ngr
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 281474976710656 seq_cst
ret i64 %res
}
; Check the highest NILL value outside the range of RISBG.
define i64 @f8(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f8:
; CHECK: nill {{%r[0-5]}}, 65530
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -6 seq_cst
ret i64 %res
}
; Check the lowest NILL value outside the range of RISBG.
define i64 @f9(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f9:
; CHECK: nill {{%r[0-5]}}, 2
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -65534 seq_cst
ret i64 %res
}
; Check the highest useful NILF value.
define i64 @f10(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f10:
; CHECK: nilf {{%r[0-5]}}, 4294901758
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -65538 seq_cst
ret i64 %res
}
; Check the highest NILH value outside the range of RISBG.
define i64 @f11(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f11:
; CHECK: nilh {{%r[0-5]}}, 65530
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -327681 seq_cst
ret i64 %res
}
; Check the lowest NILH value outside the range of RISBG.
define i64 @f12(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f12:
; CHECK: nilh {{%r[0-5]}}, 2
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -4294770689 seq_cst
ret i64 %res
}
; Check the lowest NILF value outside the range of RISBG.
define i64 @f13(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f13:
; CHECK: nilf {{%r[0-5]}}, 2
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -4294967294 seq_cst
ret i64 %res
}
; Check the highest NIHL value outside the range of RISBG.
define i64 @f14(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f14:
; CHECK: nihl {{%r[0-5]}}, 65530
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -21474836481 seq_cst
ret i64 %res
}
; Check the lowest NIHL value outside the range of RISBG.
define i64 @f15(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f15:
; CHECK: nihl {{%r[0-5]}}, 2
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -281462091808769 seq_cst
ret i64 %res
}
; Check the highest NIHH value outside the range of RISBG.
define i64 @f16(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f16:
; CHECK: nihh {{%r[0-5]}}, 65530
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -1407374883553281 seq_cst
ret i64 %res
}
; Check the highest useful NIHF value.
define i64 @f17(i64 %dummy, i64 *%src) {
; CHECK-LABEL: f17:
; CHECK: nihf {{%r[0-5]}}, 4294901758
; CHECK: br %r14
%res = atomicrmw nand i64 *%src, i64 -281479271677953 seq_cst
ret i64 %res
}