llvm-6502/include/llvm/Operator.h
Nick Lewycky c49c0ff74c Add the remaining instructions/constant expressions as Operators so that code
can manipulate instructions and constantexpr's uniformly. No users yet though.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133373 91177308-0d34-0410-b5e6-96231b3b80d8
2011-06-19 02:26:33 +00:00

404 lines
13 KiB
C++

//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various classes for working with Instructions and
// ConstantExprs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OPERATOR_H
#define LLVM_OPERATOR_H
#include "llvm/Constants.h"
#include "llvm/Instruction.h"
namespace llvm {
class GetElementPtrInst;
class BinaryOperator;
class ConstantExpr;
/// Operator - This is a utility class that provides an abstraction for the
/// common functionality between Instructions and ConstantExprs.
///
class Operator : public User {
private:
// Do not implement any of these. The Operator class is intended to be used
// as a utility, and is never itself instantiated.
void *operator new(size_t, unsigned);
void *operator new(size_t s);
Operator();
~Operator();
public:
/// getOpcode - Return the opcode for this Instruction or ConstantExpr.
///
unsigned getOpcode() const {
if (const Instruction *I = dyn_cast<Instruction>(this))
return I->getOpcode();
return cast<ConstantExpr>(this)->getOpcode();
}
/// getOpcode - If V is an Instruction or ConstantExpr, return its
/// opcode. Otherwise return UserOp1.
///
static unsigned getOpcode(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getOpcode();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
return CE->getOpcode();
return Instruction::UserOp1;
}
static inline bool classof(const Operator *) { return true; }
static inline bool classof(const Instruction *) { return true; }
static inline bool classof(const ConstantExpr *) { return true; }
static inline bool classof(const Value *V) {
return isa<Instruction>(V) || isa<ConstantExpr>(V);
}
};
/// OverflowingBinaryOperator - Utility class for integer arithmetic operators
/// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
/// despite that operator having the potential for overflow.
///
class OverflowingBinaryOperator : public Operator {
public:
enum {
NoUnsignedWrap = (1 << 0),
NoSignedWrap = (1 << 1)
};
private:
~OverflowingBinaryOperator(); // do not implement
friend class BinaryOperator;
friend class ConstantExpr;
void setHasNoUnsignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
}
void setHasNoSignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
}
public:
/// hasNoUnsignedWrap - Test whether this operation is known to never
/// undergo unsigned overflow, aka the nuw property.
bool hasNoUnsignedWrap() const {
return SubclassOptionalData & NoUnsignedWrap;
}
/// hasNoSignedWrap - Test whether this operation is known to never
/// undergo signed overflow, aka the nsw property.
bool hasNoSignedWrap() const {
return (SubclassOptionalData & NoSignedWrap) != 0;
}
static inline bool classof(const OverflowingBinaryOperator *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Add ||
I->getOpcode() == Instruction::Sub ||
I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::Shl;
}
static inline bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Instruction::Add ||
CE->getOpcode() == Instruction::Sub ||
CE->getOpcode() == Instruction::Mul ||
CE->getOpcode() == Instruction::Shl;
}
static inline bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
/// "exact", indicating that no bits are destroyed.
class PossiblyExactOperator : public Operator {
public:
enum {
IsExact = (1 << 0)
};
friend class BinaryOperator;
friend class ConstantExpr;
void setIsExact(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
}
private:
~PossiblyExactOperator(); // do not implement
public:
/// isExact - Test whether this division is known to be exact, with
/// zero remainder.
bool isExact() const {
return SubclassOptionalData & IsExact;
}
static bool isPossiblyExactOpcode(unsigned OpC) {
return OpC == Instruction::SDiv ||
OpC == Instruction::UDiv ||
OpC == Instruction::AShr ||
OpC == Instruction::LShr;
}
static inline bool classof(const ConstantExpr *CE) {
return isPossiblyExactOpcode(CE->getOpcode());
}
static inline bool classof(const Instruction *I) {
return isPossiblyExactOpcode(I->getOpcode());
}
static inline bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// ConcreteOperator - A helper template for defining operators for individual
/// opcodes.
template<typename SuperClass, unsigned Opc>
class ConcreteOperator : public SuperClass {
~ConcreteOperator(); // DO NOT IMPLEMENT
public:
static inline bool classof(const ConcreteOperator<SuperClass, Opc> *) {
return true;
}
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Opc;
}
static inline bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Opc;
}
static inline bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
class FAddOperator : public ConcreteOperator<Operator, Instruction::FAdd> {
~FAddOperator(); // DO NOT IMPLEMENT
};
class FSubOperator : public ConcreteOperator<Operator, Instruction::FSub> {
~FSubOperator(); // DO NOT IMPLEMENT
};
class FMulOperator : public ConcreteOperator<Operator, Instruction::FMul> {
~FMulOperator(); // DO NOT IMPLEMENT
};
class FDivOperator : public ConcreteOperator<Operator, Instruction::FDiv> {
~FDivOperator(); // DO NOT IMPLEMENT
};
class URemOperator : public ConcreteOperator<Operator, Instruction::URem> {
~URemOperator(); // DO NOT IMPLEMENT
};
class SRemOperator : public ConcreteOperator<Operator, Instruction::SRem> {
~SRemOperator(); // DO NOT IMPLEMENT
};
class FRemOperator : public ConcreteOperator<Operator, Instruction::FRem> {
~FRemOperator(); // DO NOT IMPLEMENT
};
class AndOperator : public ConcreteOperator<Operator, Instruction::And> {
~AndOperator(); // DO NOT IMPLEMENT
};
class OrOperator : public ConcreteOperator<Operator, Instruction::Or> {
~OrOperator(); // DO NOT IMPLEMENT
};
class XorOperator : public ConcreteOperator<Operator, Instruction::Xor> {
~XorOperator(); // DO NOT IMPLEMENT
};
class TruncOperator : public ConcreteOperator<Operator, Instruction::Trunc> {
~TruncOperator(); // DO NOT IMPLEMENT
};
class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {
~ZExtOperator(); // DO NOT IMPLEMENT
};
class SExtOperator : public ConcreteOperator<Operator, Instruction::SExt> {
~SExtOperator(); // DO NOT IMPLEMENT
};
class FPToUIOperator : public ConcreteOperator<Operator, Instruction::FPToUI> {
~FPToUIOperator(); // DO NOT IMPLEMENT
};
class FPToSIOperator : public ConcreteOperator<Operator, Instruction::FPToSI> {
~FPToSIOperator(); // DO NOT IMPLEMENT
};
class UIToFPOperator : public ConcreteOperator<Operator, Instruction::UIToFP> {
~UIToFPOperator(); // DO NOT IMPLEMENT
};
class SIToFPOperator : public ConcreteOperator<Operator, Instruction::SIToFP> {
~SIToFPOperator(); // DO NOT IMPLEMENT
};
class FPTruncOperator
: public ConcreteOperator<Operator, Instruction::FPTrunc> {
~FPTruncOperator(); // DO NOT IMPLEMENT
};
class FPExtOperator : public ConcreteOperator<Operator, Instruction::FPExt> {
~FPExtOperator(); // DO NOT IMPLEMENT
};
class PtrToIntOperator
: public ConcreteOperator<Operator, Instruction::PtrToInt> {
~PtrToIntOperator(); // DO NOT IMPLEMENT
};
class IntToPtrOperator
: public ConcreteOperator<Operator, Instruction::IntToPtr> {
~IntToPtrOperator(); // DO NOT IMPLEMENT
};
class BitCastOperator
: public ConcreteOperator<Operator, Instruction::BitCast> {
~BitCastOperator(); // DO NOT IMPLEMENT
};
class ICmpOperator : public ConcreteOperator<Operator, Instruction::ICmp> {
~ICmpOperator(); // DO NOT IMPLEMENT
};
class FCmpOperator : public ConcreteOperator<Operator, Instruction::FCmp> {
~FCmpOperator(); // DO NOT IMPLEMENT
};
class SelectOperator : public ConcreteOperator<Operator, Instruction::Select> {
~SelectOperator(); // DO NOT IMPLEMENT
};
class ExtractElementOperator
: public ConcreteOperator<Operator, Instruction::ExtractElement> {
~ExtractElementOperator(); // DO NOT IMPLEMENT
};
class InsertElementOperator
: public ConcreteOperator<Operator, Instruction::InsertElement> {
~InsertElementOperator(); // DO NOT IMPLEMENT
};
class ShuffleVectorOperator
: public ConcreteOperator<Operator, Instruction::ShuffleVector> {
~ShuffleVectorOperator(); // DO NOT IMPLEMENT
};
class ExtractValueOperator
: public ConcreteOperator<Operator, Instruction::ExtractValue> {
~ExtractValueOperator(); // DO NOT IMPLEMENT
};
class InsertValueOperator
: public ConcreteOperator<Operator, Instruction::InsertValue> {
~InsertValueOperator(); // DO NOT IMPLEMENT
};
class AddOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
~AddOperator(); // DO NOT IMPLEMENT
};
class SubOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
~SubOperator(); // DO NOT IMPLEMENT
};
class MulOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
~MulOperator(); // DO NOT IMPLEMENT
};
class ShlOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
~ShlOperator(); // DO NOT IMPLEMENT
};
class SDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
~SDivOperator(); // DO NOT IMPLEMENT
};
class UDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
~UDivOperator(); // DO NOT IMPLEMENT
};
class AShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
~AShrOperator(); // DO NOT IMPLEMENT
};
class LShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
~LShrOperator(); // DO NOT IMPLEMENT
};
class GEPOperator
: public ConcreteOperator<Operator, Instruction::GetElementPtr> {
~GEPOperator(); // DO NOT IMPLEMENT
enum {
IsInBounds = (1 << 0)
};
friend class GetElementPtrInst;
friend class ConstantExpr;
void setIsInBounds(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
}
public:
/// isInBounds - Test whether this is an inbounds GEP, as defined
/// by LangRef.html.
bool isInBounds() const {
return SubclassOptionalData & IsInBounds;
}
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
/// getPointerOperandType - Method to return the pointer operand as a
/// PointerType.
const PointerType *getPointerOperandType() const {
return reinterpret_cast<const PointerType*>(getPointerOperand()->getType());
}
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
bool hasIndices() const {
return getNumOperands() > 1;
}
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (ConstantInt *C = dyn_cast<ConstantInt>(I))
if (C->isZero())
continue;
return false;
}
return true;
}
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (!isa<ConstantInt>(I))
return false;
}
return true;
}
};
} // End llvm namespace
#endif