llvm-6502/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
Eli Bendersky 37bc5a2000 It doesn't make sense to move symbol relocations to section relocations when
relocations are resolved.  It's much more reasonable to do this decision when
relocations are just being added - we have all the information at that point.

Also a bit of renaming and extra comments to clarify extensions.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155819 91177308-0d34-0410-b5e6-96231b3b80d8
2012-04-30 12:15:58 +00:00

288 lines
10 KiB
C++

//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interface for the implementations of runtime dynamic linker facilities.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_RUNTIME_DYLD_IMPL_H
#define LLVM_RUNTIME_DYLD_IMPL_H
#include "ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <map>
using namespace llvm;
using namespace llvm::object;
namespace llvm {
class MemoryBuffer;
class Twine;
/// SectionEntry - represents a section emitted into memory by the dynamic
/// linker.
class SectionEntry {
public:
/// Address - address in the linker's memory where the section resides.
uint8_t *Address;
/// Size - section size.
size_t Size;
/// LoadAddress - the address of the section in the target process's memory.
/// Used for situations in which JIT-ed code is being executed in the address
/// space of a separate process. If the code executes in the same address
/// space where it was JIT-ed, this just equals Address.
uint64_t LoadAddress;
/// StubOffset - used for architectures with stub functions for far
/// relocations (like ARM).
uintptr_t StubOffset;
/// ObjAddress - address of the section in the in-memory object file. Used
/// for calculating relocations in some object formats (like MachO).
uintptr_t ObjAddress;
SectionEntry(uint8_t *address, size_t size, uintptr_t stubOffset,
uintptr_t objAddress)
: Address(address), Size(size), LoadAddress((uintptr_t)address),
StubOffset(stubOffset), ObjAddress(objAddress) {}
};
/// RelocationEntry - used to represent relocations internally in the dynamic
/// linker.
class RelocationEntry {
public:
/// SectionID - the section this relocation points to.
unsigned SectionID;
/// Offset - offset into the section.
uintptr_t Offset;
/// RelType - relocation type.
uint32_t RelType;
/// Addend - the relocation addend encoded in the instruction itself. Also
/// used to make a relocation section relative instead of symbol relative.
intptr_t Addend;
RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
: SectionID(id), Offset(offset), RelType(type), Addend(addend) {}
};
/// ObjRelocationInfo - relocation information as read from the object file.
/// Used to pass around data taken from object::RelocationRef, together with
/// the section to which the relocation points (represented by a SectionID).
class ObjRelocationInfo {
public:
unsigned SectionID;
uint64_t Offset;
SymbolRef Symbol;
uint64_t Type;
int64_t AdditionalInfo;
};
class RelocationValueRef {
public:
unsigned SectionID;
intptr_t Addend;
const char *SymbolName;
RelocationValueRef(): SectionID(0), Addend(0), SymbolName(0) {}
inline bool operator==(const RelocationValueRef &Other) const {
return std::memcmp(this, &Other, sizeof(RelocationValueRef)) == 0;
}
inline bool operator <(const RelocationValueRef &Other) const {
return std::memcmp(this, &Other, sizeof(RelocationValueRef)) < 0;
}
};
class RuntimeDyldImpl {
protected:
// The MemoryManager to load objects into.
RTDyldMemoryManager *MemMgr;
// A list of all sections emitted by the dynamic linker. These sections are
// referenced in the code by means of their index in this list - SectionID.
typedef SmallVector<SectionEntry, 64> SectionList;
SectionList Sections;
// Keep a map of sections from object file to the SectionID which
// references it.
typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
// Master symbol table. As modules are loaded and symbols are
// resolved, their addresses are stored here as a SectionID/Offset pair.
typedef std::pair<unsigned, uintptr_t> SymbolLoc;
StringMap<SymbolLoc> SymbolTable;
typedef DenseMap<const char*, SymbolLoc> LocalSymbolMap;
// Keep a map of common symbols to their sizes
typedef std::map<SymbolRef, unsigned> CommonSymbolMap;
// For each symbol, keep a list of relocations based on it. Anytime
// its address is reassigned (the JIT re-compiled the function, e.g.),
// the relocations get re-resolved.
// The symbol (or section) the relocation is sourced from is the Key
// in the relocation list where it's stored.
typedef SmallVector<RelocationEntry, 64> RelocationList;
// Relocations to sections already loaded. Indexed by SectionID which is the
// source of the address. The target where the address will be writen is
// SectionID/Offset in the relocation itself.
DenseMap<unsigned, RelocationList> Relocations;
// Relocations to external symbols that are not yet resolved. Symbols are
// external when they aren't found in the global symbol table of all loaded
// modules. This map is indexed by symbol name.
StringMap<RelocationList> ExternalSymbolRelocations;
typedef std::map<RelocationValueRef, uintptr_t> StubMap;
Triple::ArchType Arch;
inline unsigned getMaxStubSize() {
if (Arch == Triple::arm || Arch == Triple::thumb)
return 8; // 32-bit instruction and 32-bit address
else
return 0;
}
bool HasError;
std::string ErrorStr;
// Set the error state and record an error string.
bool Error(const Twine &Msg) {
ErrorStr = Msg.str();
HasError = true;
return true;
}
uint8_t *getSectionAddress(unsigned SectionID) {
return (uint8_t*)Sections[SectionID].Address;
}
/// \brief Emits a section containing common symbols.
/// \return SectionID.
unsigned emitCommonSymbols(ObjectImage &Obj,
const CommonSymbolMap &Map,
uint64_t TotalSize,
LocalSymbolMap &Symbols);
/// \brief Emits section data from the object file to the MemoryManager.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emits, else allocateDataSection() will be used.
/// \return SectionID.
unsigned emitSection(ObjectImage &Obj,
const SectionRef &Section,
bool IsCode);
/// \brief Find Section in LocalSections. If the secton is not found - emit
/// it and store in LocalSections.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emmits, else allocateDataSection() will be used.
/// \return SectionID.
unsigned findOrEmitSection(ObjectImage &Obj,
const SectionRef &Section,
bool IsCode,
ObjSectionToIDMap &LocalSections);
/// \brief If Value.SymbolName is NULL then store relocation to the
/// Relocations, else store it in the SymbolRelocations.
void addRelocation(const RelocationValueRef &Value, unsigned SectionID,
uintptr_t Offset, uint32_t RelType);
/// \brief Emits long jump instruction to Addr.
/// \return Pointer to the memory area for emitting target address.
uint8_t* createStubFunction(uint8_t *Addr);
/// \brief Resolves relocations from Relocs list with address from Value.
void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value);
/// \brief A object file specific relocation resolver
/// \param Address Address to apply the relocation action
/// \param Value Target symbol address to apply the relocation action
/// \param Type object file specific relocation type
/// \param Addend A constant addend used to compute the value to be stored
/// into the relocatable field
virtual void resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) = 0;
/// \brief Parses the object file relocation and stores it to Relocations
/// or SymbolRelocations (this depends on the object file type).
virtual void processRelocationRef(const ObjRelocationInfo &Rel,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID,
LocalSymbolMap &Symbols,
StubMap &Stubs) = 0;
/// \brief Resolve relocations to external symbols.
void resolveExternalSymbols();
virtual ObjectImage *createObjectImage(const MemoryBuffer *InputBuffer);
virtual void handleObjectLoaded(ObjectImage *Obj)
{
// Subclasses may choose to retain this image if they have a use for it
delete Obj;
}
public:
RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
virtual ~RuntimeDyldImpl();
bool loadObject(const MemoryBuffer *InputBuffer);
void *getSymbolAddress(StringRef Name) {
// FIXME: Just look up as a function for now. Overly simple of course.
// Work in progress.
if (SymbolTable.find(Name) == SymbolTable.end())
return 0;
SymbolLoc Loc = SymbolTable.lookup(Name);
return getSectionAddress(Loc.first) + Loc.second;
}
void resolveRelocations();
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress);
// Is the linker in an error state?
bool hasError() { return HasError; }
// Mark the error condition as handled and continue.
void clearError() { HasError = false; }
// Get the error message.
StringRef getErrorString() { return ErrorStr; }
virtual bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const = 0;
};
} // end namespace llvm
#endif