llvm-6502/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
Hal Finkel ade705c6e5 Revert "r225811 - Revert "r225808 - [PowerPC] Add StackMap/PatchPoint support""
This re-applies r225808, fixed to avoid problems with SDAG dependencies along
with the preceding fix to ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs.
These problems caused the original regression tests to assert/segfault on many
(but not all) systems.

Original commit message:

This commit does two things:

 1. Refactors PPCFastISel to use more of the common infrastructure for call
    lowering (this lets us take advantage of this common code for lowering some
    common intrinsics, stackmap/patchpoint among them).

 2. Adds support for stackmap/patchpoint lowering. For the most part, this is
    very similar to the support in the AArch64 target, with the obvious differences
    (different registers, NOP instructions, etc.). The test cases are adapted
    from the AArch64 test cases.

One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).

StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225909 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:07:51 +00:00

433 lines
14 KiB
C++

//===-- PPCTargetTransformInfo.cpp - PPC specific TTI pass ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// PPC target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCTargetMachine.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "ppctti"
static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
// Declare the pass initialization routine locally as target-specific passes
// don't have a target-wide initialization entry point, and so we rely on the
// pass constructor initialization.
namespace llvm {
void initializePPCTTIPass(PassRegistry &);
}
namespace {
class PPCTTI final : public ImmutablePass, public TargetTransformInfo {
const TargetMachine *TM;
const PPCSubtarget *ST;
const PPCTargetLowering *TLI;
public:
PPCTTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
llvm_unreachable("This pass cannot be directly constructed");
}
PPCTTI(const PPCTargetMachine *TM)
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializePPCTTIPass(*PassRegistry::getPassRegistry());
}
void initializePass() override {
pushTTIStack(this);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
TargetTransformInfo::getAnalysisUsage(AU);
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
}
/// \name Scalar TTI Implementations
/// @{
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
void getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const override;
/// @}
/// \name Vector TTI Implementations
/// @{
unsigned getNumberOfRegisters(bool Vector) const override;
unsigned getRegisterBitWidth(bool Vector) const override;
unsigned getMaxInterleaveFactor() const override;
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
OperandValueKind, OperandValueProperties,
OperandValueProperties) const override;
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const override;
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const override;
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const override;
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const override;
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const override;
/// @}
};
} // end anonymous namespace
INITIALIZE_AG_PASS(PPCTTI, TargetTransformInfo, "ppctti",
"PPC Target Transform Info", true, true, false)
char PPCTTI::ID = 0;
ImmutablePass *
llvm::createPPCTargetTransformInfoPass(const PPCTargetMachine *TM) {
return new PPCTTI(TM);
}
//===----------------------------------------------------------------------===//
//
// PPC cost model.
//
//===----------------------------------------------------------------------===//
PPCTTI::PopcntSupportKind PPCTTI::getPopcntSupport(unsigned TyWidth) const {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
if (ST->hasPOPCNTD() && TyWidth <= 64)
return PSK_FastHardware;
return PSK_Software;
}
unsigned PPCTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
if (DisablePPCConstHoist)
return TargetTransformInfo::getIntImmCost(Imm, Ty);
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
if (Imm == 0)
return TCC_Free;
if (Imm.getBitWidth() <= 64) {
if (isInt<16>(Imm.getSExtValue()))
return TCC_Basic;
if (isInt<32>(Imm.getSExtValue())) {
// A constant that can be materialized using lis.
if ((Imm.getZExtValue() & 0xFFFF) == 0)
return TCC_Basic;
return 2 * TCC_Basic;
}
}
return 4 * TCC_Basic;
}
unsigned PPCTTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty) const {
if (DisablePPCConstHoist)
return TargetTransformInfo::getIntImmCost(IID, Idx, Imm, Ty);
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
switch (IID) {
default: return TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
return TCC_Free;
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TCC_Free;
break;
}
return PPCTTI::getIntImmCost(Imm, Ty);
}
unsigned PPCTTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) const {
if (DisablePPCConstHoist)
return TargetTransformInfo::getIntImmCost(Opcode, Idx, Imm, Ty);
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
unsigned ImmIdx = ~0U;
bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
ZeroFree = false;
switch (Opcode) {
default: return TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr. This prevents the
// creation of new constants for every base constant that gets constant
// folded with the offset.
if (Idx == 0)
return 2 * TCC_Basic;
return TCC_Free;
case Instruction::And:
RunFree = true; // (for the rotate-and-mask instructions)
// Fallthrough...
case Instruction::Add:
case Instruction::Or:
case Instruction::Xor:
ShiftedFree = true;
// Fallthrough...
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
ImmIdx = 1;
break;
case Instruction::ICmp:
UnsignedFree = true;
ImmIdx = 1;
// Fallthrough... (zero comparisons can use record-form instructions)
case Instruction::Select:
ZeroFree = true;
break;
case Instruction::PHI:
case Instruction::Call:
case Instruction::Ret:
case Instruction::Load:
case Instruction::Store:
break;
}
if (ZeroFree && Imm == 0)
return TCC_Free;
if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
if (isInt<16>(Imm.getSExtValue()))
return TCC_Free;
if (RunFree) {
if (Imm.getBitWidth() <= 32 &&
(isShiftedMask_32(Imm.getZExtValue()) ||
isShiftedMask_32(~Imm.getZExtValue())))
return TCC_Free;
if (ST->isPPC64() &&
(isShiftedMask_64(Imm.getZExtValue()) ||
isShiftedMask_64(~Imm.getZExtValue())))
return TCC_Free;
}
if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
return TCC_Free;
if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
return TCC_Free;
}
return PPCTTI::getIntImmCost(Imm, Ty);
}
void PPCTTI::getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const {
if (TM->getSubtarget<PPCSubtarget>(F).getDarwinDirective() == PPC::DIR_A2) {
// The A2 is in-order with a deep pipeline, and concatenation unrolling
// helps expose latency-hiding opportunities to the instruction scheduler.
UP.Partial = UP.Runtime = true;
}
TargetTransformInfo::getUnrollingPreferences(F, L, UP);
}
unsigned PPCTTI::getNumberOfRegisters(bool Vector) const {
if (Vector && !ST->hasAltivec())
return 0;
return ST->hasVSX() ? 64 : 32;
}
unsigned PPCTTI::getRegisterBitWidth(bool Vector) const {
if (Vector) {
if (ST->hasAltivec()) return 128;
return 0;
}
if (ST->isPPC64())
return 64;
return 32;
}
unsigned PPCTTI::getMaxInterleaveFactor() const {
unsigned Directive = ST->getDarwinDirective();
// The 440 has no SIMD support, but floating-point instructions
// have a 5-cycle latency, so unroll by 5x for latency hiding.
if (Directive == PPC::DIR_440)
return 5;
// The A2 has no SIMD support, but floating-point instructions
// have a 6-cycle latency, so unroll by 6x for latency hiding.
if (Directive == PPC::DIR_A2)
return 6;
// FIXME: For lack of any better information, do no harm...
if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
return 1;
// For most things, modern systems have two execution units (and
// out-of-order execution).
return 2;
}
unsigned PPCTTI::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
OperandValueProperties Opd2PropInfo) const {
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
// Fallback to the default implementation.
return TargetTransformInfo::getArithmeticInstrCost(
Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
}
unsigned PPCTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) const {
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
}
unsigned PPCTTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
}
unsigned PPCTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
unsigned PPCTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
assert(Val->isVectorTy() && "This must be a vector type");
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
// Double-precision scalars are already located in index #0.
if (Index == 0)
return 0;
return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
}
// Estimated cost of a load-hit-store delay. This was obtained
// experimentally as a minimum needed to prevent unprofitable
// vectorization for the paq8p benchmark. It may need to be
// raised further if other unprofitable cases remain.
unsigned LHSPenalty = 2;
if (ISD == ISD::INSERT_VECTOR_ELT)
LHSPenalty += 7;
// Vector element insert/extract with Altivec is very expensive,
// because they require store and reload with the attendant
// processor stall for load-hit-store. Until VSX is available,
// these need to be estimated as very costly.
if (ISD == ISD::EXTRACT_VECTOR_ELT ||
ISD == ISD::INSERT_VECTOR_ELT)
return LHSPenalty +
TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
}
unsigned PPCTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
"Invalid Opcode");
unsigned Cost =
TargetTransformInfo::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
// VSX loads/stores support unaligned access.
if (ST->hasVSX()) {
if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64)
return Cost;
}
bool UnalignedAltivec =
Src->isVectorTy() &&
Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() &&
LT.second.getSizeInBits() == 128 &&
Opcode == Instruction::Load;
// PPC in general does not support unaligned loads and stores. They'll need
// to be decomposed based on the alignment factor.
unsigned SrcBytes = LT.second.getStoreSize();
if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) {
Cost += LT.first*(SrcBytes/Alignment-1);
// For a vector type, there is also scalarization overhead (only for
// stores, loads are expanded using the vector-load + permutation sequence,
// which is much less expensive).
if (Src->isVectorTy() && Opcode == Instruction::Store)
for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
}
return Cost;
}