llvm-6502/utils/TableGen/InstrInfoEmitter.cpp
Dan Gohman a606d955de Start TargetRegisterClass indices at 0 instead of 1, so that
MachineRegisterInfo doesn't have to confusingly allocate an extra
entry.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106296 91177308-0d34-0410-b5e6-96231b3b80d8
2010-06-18 18:13:55 +00:00

335 lines
12 KiB
C++

//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of the target
// instruction set for the code generator.
//
//===----------------------------------------------------------------------===//
#include "InstrInfoEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
using namespace llvm;
static void PrintDefList(const std::vector<Record*> &Uses,
unsigned Num, raw_ostream &OS) {
OS << "static const unsigned ImplicitList" << Num << "[] = { ";
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
OS << getQualifiedName(Uses[i]) << ", ";
OS << "0 };\n";
}
static void PrintBarriers(std::vector<Record*> &Barriers,
unsigned Num, raw_ostream &OS) {
OS << "static const TargetRegisterClass* Barriers" << Num << "[] = { ";
for (unsigned i = 0, e = Barriers.size(); i != e; ++i)
OS << "&" << getQualifiedName(Barriers[i]) << "RegClass, ";
OS << "NULL };\n";
}
//===----------------------------------------------------------------------===//
// Instruction Itinerary Information.
//===----------------------------------------------------------------------===//
void InstrInfoEmitter::GatherItinClasses() {
std::vector<Record*> DefList =
Records.getAllDerivedDefinitions("InstrItinClass");
std::sort(DefList.begin(), DefList.end(), LessRecord());
for (unsigned i = 0, N = DefList.size(); i < N; i++)
ItinClassMap[DefList[i]->getName()] = i;
}
unsigned InstrInfoEmitter::getItinClassNumber(const Record *InstRec) {
return ItinClassMap[InstRec->getValueAsDef("Itinerary")->getName()];
}
//===----------------------------------------------------------------------===//
// Operand Info Emission.
//===----------------------------------------------------------------------===//
std::vector<std::string>
InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
std::vector<std::string> Result;
for (unsigned i = 0, e = Inst.OperandList.size(); i != e; ++i) {
// Handle aggregate operands and normal operands the same way by expanding
// either case into a list of operands for this op.
std::vector<CodeGenInstruction::OperandInfo> OperandList;
// This might be a multiple operand thing. Targets like X86 have
// registers in their multi-operand operands. It may also be an anonymous
// operand, which has a single operand, but no declared class for the
// operand.
DagInit *MIOI = Inst.OperandList[i].MIOperandInfo;
if (!MIOI || MIOI->getNumArgs() == 0) {
// Single, anonymous, operand.
OperandList.push_back(Inst.OperandList[i]);
} else {
for (unsigned j = 0, e = Inst.OperandList[i].MINumOperands; j != e; ++j) {
OperandList.push_back(Inst.OperandList[i]);
Record *OpR = dynamic_cast<DefInit*>(MIOI->getArg(j))->getDef();
OperandList.back().Rec = OpR;
}
}
for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
Record *OpR = OperandList[j].Rec;
std::string Res;
if (OpR->isSubClassOf("RegisterClass"))
Res += getQualifiedName(OpR) + "RegClassID, ";
else if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
else
// -1 means the operand does not have a fixed register class.
Res += "-1, ";
// Fill in applicable flags.
Res += "0";
// Ptr value whose register class is resolved via callback.
if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += "|(1<<TOI::LookupPtrRegClass)";
// Predicate operands. Check to see if the original unexpanded operand
// was of type PredicateOperand.
if (Inst.OperandList[i].Rec->isSubClassOf("PredicateOperand"))
Res += "|(1<<TOI::Predicate)";
// Optional def operands. Check to see if the original unexpanded operand
// was of type OptionalDefOperand.
if (Inst.OperandList[i].Rec->isSubClassOf("OptionalDefOperand"))
Res += "|(1<<TOI::OptionalDef)";
// Fill in constraint info.
Res += ", ";
const CodeGenInstruction::ConstraintInfo &Constraint =
Inst.OperandList[i].Constraints[j];
if (Constraint.isNone())
Res += "0";
else if (Constraint.isEarlyClobber())
Res += "(1 << TOI::EARLY_CLOBBER)";
else {
assert(Constraint.isTied());
Res += "((" + utostr(Constraint.getTiedOperand()) +
" << 16) | (1 << TOI::TIED_TO))";
}
Result.push_back(Res);
}
}
return Result;
}
void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
OperandInfoMapTy &OperandInfoIDs) {
// ID #0 is for no operand info.
unsigned OperandListNum = 0;
OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
OS << "\n";
const CodeGenTarget &Target = CDP.getTargetInfo();
for (CodeGenTarget::inst_iterator II = Target.inst_begin(),
E = Target.inst_end(); II != E; ++II) {
std::vector<std::string> OperandInfo = GetOperandInfo(**II);
unsigned &N = OperandInfoIDs[OperandInfo];
if (N != 0) continue;
N = ++OperandListNum;
OS << "static const TargetOperandInfo OperandInfo" << N << "[] = { ";
for (unsigned i = 0, e = OperandInfo.size(); i != e; ++i)
OS << "{ " << OperandInfo[i] << " }, ";
OS << "};\n";
}
}
void InstrInfoEmitter::DetectRegisterClassBarriers(std::vector<Record*> &Defs,
const std::vector<CodeGenRegisterClass> &RCs,
std::vector<Record*> &Barriers) {
std::set<Record*> DefSet;
unsigned NumDefs = Defs.size();
for (unsigned i = 0; i < NumDefs; ++i)
DefSet.insert(Defs[i]);
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RCs[i];
unsigned NumRegs = RC.Elements.size();
if (NumRegs > NumDefs)
continue; // Can't possibly clobber this RC.
bool Clobber = true;
for (unsigned j = 0; j < NumRegs; ++j) {
Record *Reg = RC.Elements[j];
if (!DefSet.count(Reg)) {
Clobber = false;
break;
}
}
if (Clobber)
Barriers.push_back(RC.TheDef);
}
}
//===----------------------------------------------------------------------===//
// Main Output.
//===----------------------------------------------------------------------===//
// run - Emit the main instruction description records for the target...
void InstrInfoEmitter::run(raw_ostream &OS) {
GatherItinClasses();
EmitSourceFileHeader("Target Instruction Descriptors", OS);
OS << "namespace llvm {\n\n";
CodeGenTarget &Target = CDP.getTargetInfo();
const std::string &TargetName = Target.getName();
Record *InstrInfo = Target.getInstructionSet();
const std::vector<CodeGenRegisterClass> &RCs = Target.getRegisterClasses();
// Keep track of all of the def lists we have emitted already.
std::map<std::vector<Record*>, unsigned> EmittedLists;
unsigned ListNumber = 0;
std::map<std::vector<Record*>, unsigned> EmittedBarriers;
unsigned BarrierNumber = 0;
std::map<Record*, unsigned> BarriersMap;
// Emit all of the instruction's implicit uses and defs.
for (CodeGenTarget::inst_iterator II = Target.inst_begin(),
E = Target.inst_end(); II != E; ++II) {
Record *Inst = (*II)->TheDef;
std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
if (!Uses.empty()) {
unsigned &IL = EmittedLists[Uses];
if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
}
std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
if (!Defs.empty()) {
std::vector<Record*> RCBarriers;
DetectRegisterClassBarriers(Defs, RCs, RCBarriers);
if (!RCBarriers.empty()) {
unsigned &IB = EmittedBarriers[RCBarriers];
if (!IB) PrintBarriers(RCBarriers, IB = ++BarrierNumber, OS);
BarriersMap.insert(std::make_pair(Inst, IB));
}
unsigned &IL = EmittedLists[Defs];
if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
}
}
OperandInfoMapTy OperandInfoIDs;
// Emit all of the operand info records.
EmitOperandInfo(OS, OperandInfoIDs);
// Emit all of the TargetInstrDesc records in their ENUM ordering.
//
OS << "\nstatic const TargetInstrDesc " << TargetName
<< "Insts[] = {\n";
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i)
emitRecord(*NumberedInstructions[i], i, InstrInfo, EmittedLists,
BarriersMap, OperandInfoIDs, OS);
OS << "};\n";
OS << "} // End llvm namespace \n";
}
void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
Record *InstrInfo,
std::map<std::vector<Record*>, unsigned> &EmittedLists,
std::map<Record*, unsigned> &BarriersMap,
const OperandInfoMapTy &OpInfo,
raw_ostream &OS) {
int MinOperands = 0;
if (!Inst.OperandList.empty())
// Each logical operand can be multiple MI operands.
MinOperands = Inst.OperandList.back().MIOperandNo +
Inst.OperandList.back().MINumOperands;
OS << " { ";
OS << Num << ",\t" << MinOperands << ",\t"
<< Inst.NumDefs << ",\t" << getItinClassNumber(Inst.TheDef)
<< ",\t\"" << Inst.TheDef->getName() << "\", 0";
// Emit all of the target indepedent flags...
if (Inst.isReturn) OS << "|(1<<TID::Return)";
if (Inst.isBranch) OS << "|(1<<TID::Branch)";
if (Inst.isIndirectBranch) OS << "|(1<<TID::IndirectBranch)";
if (Inst.isBarrier) OS << "|(1<<TID::Barrier)";
if (Inst.hasDelaySlot) OS << "|(1<<TID::DelaySlot)";
if (Inst.isCall) OS << "|(1<<TID::Call)";
if (Inst.canFoldAsLoad) OS << "|(1<<TID::FoldableAsLoad)";
if (Inst.mayLoad) OS << "|(1<<TID::MayLoad)";
if (Inst.mayStore) OS << "|(1<<TID::MayStore)";
if (Inst.isPredicable) OS << "|(1<<TID::Predicable)";
if (Inst.isConvertibleToThreeAddress) OS << "|(1<<TID::ConvertibleTo3Addr)";
if (Inst.isCommutable) OS << "|(1<<TID::Commutable)";
if (Inst.isTerminator) OS << "|(1<<TID::Terminator)";
if (Inst.isReMaterializable) OS << "|(1<<TID::Rematerializable)";
if (Inst.isNotDuplicable) OS << "|(1<<TID::NotDuplicable)";
if (Inst.hasOptionalDef) OS << "|(1<<TID::HasOptionalDef)";
if (Inst.usesCustomInserter) OS << "|(1<<TID::UsesCustomInserter)";
if (Inst.isVariadic) OS << "|(1<<TID::Variadic)";
if (Inst.hasSideEffects) OS << "|(1<<TID::UnmodeledSideEffects)";
if (Inst.isAsCheapAsAMove) OS << "|(1<<TID::CheapAsAMove)";
if (Inst.hasExtraSrcRegAllocReq) OS << "|(1<<TID::ExtraSrcRegAllocReq)";
if (Inst.hasExtraDefRegAllocReq) OS << "|(1<<TID::ExtraDefRegAllocReq)";
// Emit all of the target-specific flags...
BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
if (!TSF) throw "no TSFlags?";
uint64_t Value = 0;
for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
if (BitInit *Bit = dynamic_cast<BitInit*>(TSF->getBit(i)))
Value |= uint64_t(Bit->getValue()) << i;
else
throw "Invalid TSFlags bit in " + Inst.TheDef->getName();
}
OS << ", 0x";
OS.write_hex(Value);
OS << "ULL, ";
// Emit the implicit uses and defs lists...
std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
if (UseList.empty())
OS << "NULL, ";
else
OS << "ImplicitList" << EmittedLists[UseList] << ", ";
std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
if (DefList.empty())
OS << "NULL, ";
else
OS << "ImplicitList" << EmittedLists[DefList] << ", ";
std::map<Record*, unsigned>::iterator BI = BarriersMap.find(Inst.TheDef);
if (BI == BarriersMap.end())
OS << "NULL, ";
else
OS << "Barriers" << BI->second << ", ";
// Emit the operand info.
std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
if (OperandInfo.empty())
OS << "0";
else
OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
}