llvm-6502/unittests/ExecutionEngine/JIT/JITTest.cpp
Filip Pizlo 6eb43d2956 This threads SectionName through the allocateCodeSection/allocateDataSection APIs, both in C++ and C land.
It's useful for the memory managers that are allocating a section to know what the name of the section is.  
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what 
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about 
what each allocation is for.  This allows clients that supply their own memory managers to do this.  
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM 
client.

This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM.  I'm assuming that 
it's safe to change the C++ API because that API is allowed to change.  I'm assuming that it's safe to change 
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory 
management C API).



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-02 00:59:25 +00:00

737 lines
27 KiB
C++

//===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/TypeBuilder.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "gtest/gtest.h"
#include <vector>
using namespace llvm;
// This variable is intentionally defined differently in the statically-compiled
// program from the IR input to the JIT to assert that the JIT doesn't use its
// definition. Note that this variable must be defined even on platforms where
// JIT tests are disabled as it is referenced from the .def file.
extern "C" int32_t JITTest_AvailableExternallyGlobal;
int32_t JITTest_AvailableExternallyGlobal LLVM_ATTRIBUTE_USED = 42;
// This function is intentionally defined differently in the statically-compiled
// program from the IR input to the JIT to assert that the JIT doesn't use its
// definition. Note that this function must be defined even on platforms where
// JIT tests are disabled as it is referenced from the .def file.
extern "C" int32_t JITTest_AvailableExternallyFunction() LLVM_ATTRIBUTE_USED;
extern "C" int32_t JITTest_AvailableExternallyFunction() {
return 42;
}
namespace {
// Tests on ARM, PowerPC and SystemZ disabled as we're running the old jit
#if !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__)
Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
std::vector<Type*> params;
FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
params, false);
Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> builder(Entry);
Value *Load = builder.CreateLoad(G);
Type *GTy = G->getType()->getElementType();
Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
builder.CreateStore(Add, G);
builder.CreateRet(Add);
return F;
}
std::string DumpFunction(const Function *F) {
std::string Result;
raw_string_ostream(Result) << "" << *F;
return Result;
}
class RecordingJITMemoryManager : public JITMemoryManager {
const OwningPtr<JITMemoryManager> Base;
public:
RecordingJITMemoryManager()
: Base(JITMemoryManager::CreateDefaultMemManager()) {
stubsAllocated = 0;
}
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) {
return Base->getPointerToNamedFunction(Name, AbortOnFailure);
}
virtual void setMemoryWritable() { Base->setMemoryWritable(); }
virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
virtual void AllocateGOT() { Base->AllocateGOT(); }
virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
struct StartFunctionBodyCall {
StartFunctionBodyCall(uint8_t *Result, const Function *F,
uintptr_t ActualSize, uintptr_t ActualSizeResult)
: Result(Result), F(F), F_dump(DumpFunction(F)),
ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
uint8_t *Result;
const Function *F;
std::string F_dump;
uintptr_t ActualSize;
uintptr_t ActualSizeResult;
};
std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
virtual uint8_t *startFunctionBody(const Function *F,
uintptr_t &ActualSize) {
uintptr_t InitialActualSize = ActualSize;
uint8_t *Result = Base->startFunctionBody(F, ActualSize);
startFunctionBodyCalls.push_back(
StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
return Result;
}
int stubsAllocated;
virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
unsigned Alignment) {
stubsAllocated++;
return Base->allocateStub(F, StubSize, Alignment);
}
struct EndFunctionBodyCall {
EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd)
: F(F), F_dump(DumpFunction(F)),
FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
const Function *F;
std::string F_dump;
uint8_t *FunctionStart;
uint8_t *FunctionEnd;
};
std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
endFunctionBodyCalls.push_back(
EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
Base->endFunctionBody(F, FunctionStart, FunctionEnd);
}
virtual uint8_t *allocateDataSection(
uintptr_t Size, unsigned Alignment, unsigned SectionID,
StringRef SectionName, bool IsReadOnly) {
return Base->allocateDataSection(
Size, Alignment, SectionID, SectionName, IsReadOnly);
}
virtual uint8_t *allocateCodeSection(
uintptr_t Size, unsigned Alignment, unsigned SectionID,
StringRef SectionName) {
return Base->allocateCodeSection(
Size, Alignment, SectionID, SectionName);
}
virtual bool finalizeMemory(std::string *ErrMsg) { return false; }
virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
return Base->allocateSpace(Size, Alignment);
}
virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
return Base->allocateGlobal(Size, Alignment);
}
struct DeallocateFunctionBodyCall {
DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
const void *Body;
};
std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
virtual void deallocateFunctionBody(void *Body) {
deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
Base->deallocateFunctionBody(Body);
}
};
bool LoadAssemblyInto(Module *M, const char *assembly) {
SMDiagnostic Error;
bool success =
NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
std::string errMsg;
raw_string_ostream os(errMsg);
Error.print("", os);
EXPECT_TRUE(success) << os.str();
return success;
}
class JITTest : public testing::Test {
protected:
virtual RecordingJITMemoryManager *createMemoryManager() {
return new RecordingJITMemoryManager;
}
virtual void SetUp() {
M = new Module("<main>", Context);
RJMM = createMemoryManager();
RJMM->setPoisonMemory(true);
std::string Error;
TargetOptions Options;
TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
.setJITMemoryManager(RJMM)
.setErrorStr(&Error)
.setTargetOptions(Options).create());
ASSERT_TRUE(TheJIT.get() != NULL) << Error;
}
void LoadAssembly(const char *assembly) {
LoadAssemblyInto(M, assembly);
}
LLVMContext Context;
Module *M; // Owned by ExecutionEngine.
RecordingJITMemoryManager *RJMM;
OwningPtr<ExecutionEngine> TheJIT;
};
// Regression test for a bug. The JIT used to allocate globals inside the same
// memory block used for the function, and when the function code was freed,
// the global was left in the same place. This test allocates a function
// that uses and global, deallocates it, and then makes sure that the global
// stays alive after that.
TEST(JIT, GlobalInFunction) {
LLVMContext context;
Module *M = new Module("<main>", context);
JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
// Tell the memory manager to poison freed memory so that accessing freed
// memory is more easily tested.
MemMgr->setPoisonMemory(true);
std::string Error;
OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
.setEngineKind(EngineKind::JIT)
.setErrorStr(&Error)
.setJITMemoryManager(MemMgr)
// The next line enables the fix:
.setAllocateGVsWithCode(false)
.create());
ASSERT_EQ(Error, "");
// Create a global variable.
Type *GTy = Type::getInt32Ty(context);
GlobalVariable *G = new GlobalVariable(
*M,
GTy,
false, // Not constant.
GlobalValue::InternalLinkage,
Constant::getNullValue(GTy),
"myglobal");
// Make a function that points to a global.
Function *F1 = makeReturnGlobal("F1", G, M);
// Get the pointer to the native code to force it to JIT the function and
// allocate space for the global.
void (*F1Ptr)() =
reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
// Since F1 was codegen'd, a pointer to G should be available.
int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
ASSERT_NE((int32_t*)NULL, GPtr);
EXPECT_EQ(0, *GPtr);
// F1() should increment G.
F1Ptr();
EXPECT_EQ(1, *GPtr);
// Make a second function identical to the first, referring to the same
// global.
Function *F2 = makeReturnGlobal("F2", G, M);
void (*F2Ptr)() =
reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
// F2() should increment G.
F2Ptr();
EXPECT_EQ(2, *GPtr);
// Deallocate F1.
JIT->freeMachineCodeForFunction(F1);
// F2() should *still* increment G.
F2Ptr();
EXPECT_EQ(3, *GPtr);
}
int PlusOne(int arg) {
return arg + 1;
}
TEST_F(JITTest, FarCallToKnownFunction) {
// x86-64 can only make direct calls to functions within 32 bits of
// the current PC. To call anything farther away, we have to load
// the address into a register and call through the register. The
// current JIT does this by allocating a stub for any far call.
// There was a bug in which the JIT tried to emit a direct call when
// the target was already in the JIT's global mappings and lazy
// compilation was disabled.
Function *KnownFunction = Function::Create(
TypeBuilder<int(int), false>::get(Context),
GlobalValue::ExternalLinkage, "known", M);
TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
// int test() { return known(7); }
Function *TestFunction = Function::Create(
TypeBuilder<int(), false>::get(Context),
GlobalValue::ExternalLinkage, "test", M);
BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
IRBuilder<> Builder(Entry);
Value *result = Builder.CreateCall(
KnownFunction,
ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
Builder.CreateRet(result);
TheJIT->DisableLazyCompilation(true);
int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
(intptr_t)TheJIT->getPointerToFunction(TestFunction));
// This used to crash in trying to call PlusOne().
EXPECT_EQ(8, TestFunctionPtr());
}
// Test a function C which calls A and B which call each other.
TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
TheJIT->DisableLazyCompilation(true);
FunctionType *Func1Ty =
cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
std::vector<Type*> arg_types;
arg_types.push_back(Type::getInt1Ty(Context));
FunctionType *FuncTy = FunctionType::get(
Type::getVoidTy(Context), arg_types, false);
Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
"func1", M);
Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
"func2", M);
Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
"func3", M);
BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
// Make Func1 call Func2(0) and Func3(0).
IRBuilder<> Builder(Block1);
Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
Builder.CreateRetVoid();
// void Func2(bool b) { if (b) { Func3(false); return; } return; }
Builder.SetInsertPoint(Block2);
Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
Builder.SetInsertPoint(True2);
Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
Builder.CreateRetVoid();
Builder.SetInsertPoint(False2);
Builder.CreateRetVoid();
// void Func3(bool b) { if (b) { Func2(false); return; } return; }
Builder.SetInsertPoint(Block3);
Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
Builder.SetInsertPoint(True3);
Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
Builder.CreateRetVoid();
Builder.SetInsertPoint(False3);
Builder.CreateRetVoid();
// Compile the function to native code
void (*F1Ptr)() =
reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
F1Ptr();
}
// Regression test for PR5162. This used to trigger an AssertingVH inside the
// JIT's Function to stub mapping.
TEST_F(JITTest, NonLazyLeaksNoStubs) {
TheJIT->DisableLazyCompilation(true);
// Create two functions with a single basic block each.
FunctionType *FuncTy =
cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
"func1", M);
Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
"func2", M);
BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
// The first function calls the second and returns the result
IRBuilder<> Builder(Block1);
Value *Result = Builder.CreateCall(Func2);
Builder.CreateRet(Result);
// The second function just returns a constant
Builder.SetInsertPoint(Block2);
Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
// Compile the function to native code
(void)TheJIT->getPointerToFunction(Func1);
// Free the JIT state for the functions
TheJIT->freeMachineCodeForFunction(Func1);
TheJIT->freeMachineCodeForFunction(Func2);
// Delete the first function (and show that is has no users)
EXPECT_EQ(Func1->getNumUses(), 0u);
Func1->eraseFromParent();
// Delete the second function (and show that it has no users - it had one,
// func1 but that's gone now)
EXPECT_EQ(Func2->getNumUses(), 0u);
Func2->eraseFromParent();
}
TEST_F(JITTest, ModuleDeletion) {
TheJIT->DisableLazyCompilation(false);
LoadAssembly("define void @main() { "
" call i32 @computeVal() "
" ret void "
"} "
" "
"define internal i32 @computeVal() { "
" ret i32 0 "
"} ");
Function *func = M->getFunction("main");
TheJIT->getPointerToFunction(func);
TheJIT->removeModule(M);
delete M;
SmallPtrSet<const void*, 2> FunctionsDeallocated;
for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
i != e; ++i) {
FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
}
for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
EXPECT_TRUE(FunctionsDeallocated.count(
RJMM->startFunctionBodyCalls[i].Result))
<< "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
}
EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
RJMM->deallocateFunctionBodyCalls.size());
}
// ARM, MIPS and PPC still emit stubs for calls since the target may be
// too far away to call directly. This #if can probably be removed when
// http://llvm.org/PR5201 is fixed.
#if !defined(__arm__) && !defined(__mips__) && \
!defined(__powerpc__) && !defined(__ppc__)
typedef int (*FooPtr) ();
TEST_F(JITTest, NoStubs) {
LoadAssembly("define void @bar() {"
"entry: "
"ret void"
"}"
" "
"define i32 @foo() {"
"entry:"
"call void @bar()"
"ret i32 undef"
"}"
" "
"define i32 @main() {"
"entry:"
"%0 = call i32 @foo()"
"call void @bar()"
"ret i32 undef"
"}");
Function *foo = M->getFunction("foo");
uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
FooPtr ptr = (FooPtr)(tmp);
(ptr)();
// We should now allocate no more stubs, we have the code to foo
// and the existing stub for bar.
int stubsBefore = RJMM->stubsAllocated;
Function *func = M->getFunction("main");
TheJIT->getPointerToFunction(func);
Function *bar = M->getFunction("bar");
TheJIT->getPointerToFunction(bar);
ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
}
#endif // !ARM && !PPC
TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
TheJIT->DisableLazyCompilation(true);
LoadAssembly("define i8()* @get_foo_addr() { "
" ret i8()* @foo "
"} "
" "
"define i8 @foo() { "
" ret i8 42 "
"} ");
Function *F_get_foo_addr = M->getFunction("get_foo_addr");
typedef char(*fooT)();
fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
(intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
fooT foo_addr = get_foo_addr();
// Now free get_foo_addr. This should not free the machine code for foo or
// any call stub returned as foo's canonical address.
TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
// Check by calling the reported address of foo.
EXPECT_EQ(42, foo_addr());
// The reported address should also be the same as the result of a subsequent
// getPointerToFunction(foo).
#if 0
// Fails until PR5126 is fixed:
Function *F_foo = M->getFunction("foo");
fooT foo = reinterpret_cast<fooT>(
(intptr_t)TheJIT->getPointerToFunction(F_foo));
EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
#endif
}
// ARM does not have an implementation of replaceMachineCodeForFunction(),
// so recompileAndRelinkFunction doesn't work.
#if !defined(__arm__)
TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
GlobalValue::ExternalLinkage, "test", M);
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
IRBuilder<> Builder(Entry);
Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
Builder.CreateRet(Val);
TheJIT->DisableLazyCompilation(true);
// Compile the function once, and make sure it works.
int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
(intptr_t)TheJIT->recompileAndRelinkFunction(F));
EXPECT_EQ(1, OrigFPtr());
// Now change the function to return a different value.
Entry->eraseFromParent();
BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
Builder.SetInsertPoint(NewEntry);
Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
Builder.CreateRet(Val);
// Recompile it, which should produce a new function pointer _and_ update the
// old one.
int (*NewFPtr)() = reinterpret_cast<int(*)()>(
(intptr_t)TheJIT->recompileAndRelinkFunction(F));
EXPECT_EQ(2, NewFPtr())
<< "The new pointer should call the new version of the function";
EXPECT_EQ(2, OrigFPtr())
<< "The old pointer's target should now jump to the new version";
}
#endif // !defined(__arm__)
TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
TheJIT->DisableLazyCompilation(true);
LoadAssembly("@JITTest_AvailableExternallyGlobal = "
" available_externally global i32 7 "
" "
"define i32 @loader() { "
" %result = load i32* @JITTest_AvailableExternallyGlobal "
" ret i32 %result "
"} ");
Function *loaderIR = M->getFunction("loader");
int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
(intptr_t)TheJIT->getPointerToFunction(loaderIR));
EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
<< " not 7 from the IR version.";
}
TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
TheJIT->DisableLazyCompilation(true);
LoadAssembly("define available_externally i32 "
" @JITTest_AvailableExternallyFunction() { "
" ret i32 7 "
"} "
" "
"define i32 @func() { "
" %result = tail call i32 "
" @JITTest_AvailableExternallyFunction() "
" ret i32 %result "
"} ");
Function *funcIR = M->getFunction("func");
int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
(intptr_t)TheJIT->getPointerToFunction(funcIR));
EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
<< " not 7 from the IR version.";
}
TEST_F(JITTest, EscapedLazyStubStillCallable) {
TheJIT->DisableLazyCompilation(false);
LoadAssembly("define internal i32 @stubbed() { "
" ret i32 42 "
"} "
" "
"define i32()* @get_stub() { "
" ret i32()* @stubbed "
"} ");
typedef int32_t(*StubTy)();
// Call get_stub() to get the address of @stubbed without actually JITting it.
Function *get_stubIR = M->getFunction("get_stub");
StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
(intptr_t)TheJIT->getPointerToFunction(get_stubIR));
StubTy stubbed = get_stub();
// Now get_stubIR is the only reference to stubbed's stub.
get_stubIR->eraseFromParent();
// Now there are no references inside the JIT, but we've got a pointer outside
// it. The stub should be callable and return the right value.
EXPECT_EQ(42, stubbed());
}
// Converts the LLVM assembly to bitcode and returns it in a std::string. An
// empty string indicates an error.
std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
Module TempModule("TempModule", Context);
if (!LoadAssemblyInto(&TempModule, Assembly)) {
return "";
}
std::string Result;
raw_string_ostream OS(Result);
WriteBitcodeToFile(&TempModule, OS);
OS.flush();
return Result;
}
// Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
// lazily. The associated Module (owned by the ExecutionEngine) is returned in
// M. Both will be NULL on an error. Bitcode must live at least as long as the
// ExecutionEngine.
ExecutionEngine *getJITFromBitcode(
LLVMContext &Context, const std::string &Bitcode, Module *&M) {
// c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
MemoryBuffer *BitcodeBuffer =
MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
std::string errMsg;
M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
if (M == NULL) {
ADD_FAILURE() << errMsg;
delete BitcodeBuffer;
return NULL;
}
ExecutionEngine *TheJIT = EngineBuilder(M)
.setEngineKind(EngineKind::JIT)
.setErrorStr(&errMsg)
.create();
if (TheJIT == NULL) {
ADD_FAILURE() << errMsg;
delete M;
M = NULL;
return NULL;
}
return TheJIT;
}
TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
LLVMContext Context;
const std::string Bitcode =
AssembleToBitcode(Context,
"define available_externally i32 "
" @JITTest_AvailableExternallyFunction() { "
" ret i32 7 "
"} "
" "
"define i32 @func() { "
" %result = tail call i32 "
" @JITTest_AvailableExternallyFunction() "
" ret i32 %result "
"} ");
ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
Module *M;
OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
TheJIT->DisableLazyCompilation(true);
Function *funcIR = M->getFunction("func");
Function *availableFunctionIR =
M->getFunction("JITTest_AvailableExternallyFunction");
// Double-check that the available_externally function is still unmaterialized
// when getPointerToFunction needs to find out if it's available_externally.
EXPECT_TRUE(availableFunctionIR->isMaterializable());
int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
(intptr_t)TheJIT->getPointerToFunction(funcIR));
EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
<< " not 7 from the IR version.";
}
TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
LLVMContext Context;
const std::string Bitcode =
AssembleToBitcode(Context,
"define i32 @recur1(i32 %a) { "
" %zero = icmp eq i32 %a, 0 "
" br i1 %zero, label %done, label %notdone "
"done: "
" ret i32 3 "
"notdone: "
" %am1 = sub i32 %a, 1 "
" %result = call i32 @recur2(i32 %am1) "
" ret i32 %result "
"} "
" "
"define i32 @recur2(i32 %b) { "
" %result = call i32 @recur1(i32 %b) "
" ret i32 %result "
"} ");
ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
Module *M;
OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
TheJIT->DisableLazyCompilation(true);
Function *recur1IR = M->getFunction("recur1");
Function *recur2IR = M->getFunction("recur2");
EXPECT_TRUE(recur1IR->isMaterializable());
EXPECT_TRUE(recur2IR->isMaterializable());
int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
(intptr_t)TheJIT->getPointerToFunction(recur1IR));
EXPECT_EQ(3, recur1(4));
}
#endif // !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__)
// This code is copied from JITEventListenerTest, but it only runs once for all
// the tests in this directory. Everything seems fine, but that's strange
// behavior.
class JITEnvironment : public testing::Environment {
virtual void SetUp() {
// Required to create a JIT.
InitializeNativeTarget();
}
};
testing::Environment* const jit_env =
testing::AddGlobalTestEnvironment(new JITEnvironment);
}