llvm-6502/lib/CodeGen/RegAllocBase.h
2010-10-22 23:33:19 +00:00

182 lines
6.5 KiB
C++

//===-- RegAllocBase.h - basic regalloc interface and driver --*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RegAllocBase class, which is the skeleton of a basic
// register allocation algorithm and interface for extending it. It provides the
// building blocks on which to construct other experimental allocators and test
// the validity of two principles:
//
// - If virtual and physical register liveness is modeled using intervals, then
// on-the-fly interference checking is cheap. Furthermore, interferences can be
// lazily cached and reused.
//
// - Register allocation complexity, and generated code performance is
// determined by the effectiveness of live range splitting rather than optimal
// coloring.
//
// Following the first principle, interfering checking revolves around the
// LiveIntervalUnion data structure.
//
// To fulfill the second principle, the basic allocator provides a driver for
// incremental splitting. It essentially punts on the problem of register
// coloring, instead driving the assignment of virtual to physical registers by
// the cost of splitting. The basic allocator allows for heuristic reassignment
// of registers, if a more sophisticated allocator chooses to do that.
//
// This framework provides a way to engineer the compile time vs. code
// quality trade-off without relying a particular theoretical solver.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_REGALLOCBASE
#define LLVM_CODEGEN_REGALLOCBASE
#include "LiveIntervalUnion.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/OwningPtr.h"
#include <vector>
#include <queue>
namespace llvm {
class VirtRegMap;
/// RegAllocBase provides the register allocation driver and interface that can
/// be extended to add interesting heuristics.
///
/// More sophisticated allocators must override the selectOrSplit() method to
/// implement live range splitting and must specify a comparator to determine
/// register assignment priority. LessSpillWeightPriority is provided as a
/// standard comparator.
class RegAllocBase {
protected:
typedef SmallVector<LiveInterval*, 4> LiveVirtRegs;
typedef LiveVirtRegs::iterator LVRIter;
// Array of LiveIntervalUnions indexed by physical register.
class LIUArray {
unsigned nRegs_;
OwningArrayPtr<LiveIntervalUnion> array_;
public:
LIUArray(): nRegs_(0) {}
unsigned numRegs() const { return nRegs_; }
void init(unsigned nRegs);
void clear();
LiveIntervalUnion& operator[](unsigned physReg) {
assert(physReg < nRegs_ && "physReg out of bounds");
return array_[physReg];
}
};
const TargetRegisterInfo *tri_;
VirtRegMap *vrm_;
LiveIntervals *lis_;
LIUArray physReg2liu_;
RegAllocBase(): tri_(0), vrm_(0), lis_(0) {}
virtual ~RegAllocBase() {}
// A RegAlloc pass should call this before allocatePhysRegs.
void init(const TargetRegisterInfo &tri, VirtRegMap &vrm, LiveIntervals &lis);
// The top-level driver. Specialize with the comparator that determines the
// priority of assigning live virtual registers. The output is a VirtRegMap
// that us updated with physical register assignments.
template<typename LICompare>
void allocatePhysRegs(LICompare liCompare);
// A RegAlloc pass should override this to provide the allocation heuristics.
// Each call must guarantee forward progess by returning an available
// PhysReg or new set of split LiveVirtRegs. It is up to the splitter to
// converge quickly toward fully spilled live ranges.
virtual unsigned selectOrSplit(LiveInterval &lvr,
LiveVirtRegs &splitLVRs) = 0;
// A RegAlloc pass should call this when PassManager releases its memory.
virtual void releaseMemory();
// Helper for checking interference between a live virtual register and a
// physical register, including all its register aliases.
bool checkPhysRegInterference(LiveIntervalUnion::Query &query, unsigned preg);
private:
template<typename PQ>
void seedLiveVirtRegs(PQ &lvrQ);
};
// Heuristic that determines the priority of assigning virtual to physical
// registers. The main impact of the heuristic is expected to be compile time.
// The default is to simply compare spill weights.
struct LessSpillWeightPriority
: public std::binary_function<LiveInterval,LiveInterval, bool> {
bool operator()(const LiveInterval *left, const LiveInterval *right) const {
return left->weight < right->weight;
}
};
// Visit all the live virtual registers. If they are already assigned to a
// physical register, unify them with the corresponding LiveIntervalUnion,
// otherwise push them on the priority queue for later assignment.
template<typename PQ>
void RegAllocBase::seedLiveVirtRegs(PQ &lvrQ) {
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval &li = *liItr->second;
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
physReg2liu_[reg].unify(li);
}
else {
lvrQ.push(&li);
}
}
}
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
// selectOrSplit implementation.
template<typename LICompare>
void RegAllocBase::allocatePhysRegs(LICompare liCompare) {
typedef std::priority_queue
<LiveInterval*, std::vector<LiveInterval*>, LICompare> LiveVirtRegQueue;
LiveVirtRegQueue lvrQ(liCompare);
seedLiveVirtRegs(lvrQ);
while (!lvrQ.empty()) {
LiveInterval *lvr = lvrQ.top();
lvrQ.pop();
LiveVirtRegs splitLVRs;
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
if (availablePhysReg) {
assert(splitLVRs.empty() && "inconsistent splitting");
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
physReg2liu_[availablePhysReg].unify(*lvr);
}
else {
for (LVRIter lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
lvrI != lvrEnd; ++lvrI ) {
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
"expect split value in virtual register");
lvrQ.push(*lvrI);
}
}
}
}
} // end namespace llvm
#endif // !defined(LLVM_CODEGEN_REGALLOCBASE)