llvm-6502/lib/Target/AArch64/AArch64FastISel.cpp
Juergen Ributzka 446f01b1d5 [AArch64] MachO large code-model: Materialize FP constants in code.
In the large code model we have to first get the address of the GOT entry, load
the address of the constant, and then load the constant itself.

To avoid these loads and the GOT entry alltogether this commit changes the way
how FP constants are materialized in the large code model. The constats are now
materialized in a GPR and then bitconverted/moved into the FPR.

Reviewed by Tim Northover

Fixes rdar://problem/16572564.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223941 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 19:43:32 +00:00

4969 lines
164 KiB
C++

//===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the AArch64-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// AArch64GenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64CallingConvention.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
namespace {
class AArch64FastISel final : public FastISel {
class Address {
public:
typedef enum {
RegBase,
FrameIndexBase
} BaseKind;
private:
BaseKind Kind;
AArch64_AM::ShiftExtendType ExtType;
union {
unsigned Reg;
int FI;
} Base;
unsigned OffsetReg;
unsigned Shift;
int64_t Offset;
const GlobalValue *GV;
public:
Address() : Kind(RegBase), ExtType(AArch64_AM::InvalidShiftExtend),
OffsetReg(0), Shift(0), Offset(0), GV(nullptr) { Base.Reg = 0; }
void setKind(BaseKind K) { Kind = K; }
BaseKind getKind() const { return Kind; }
void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
bool isRegBase() const { return Kind == RegBase; }
bool isFIBase() const { return Kind == FrameIndexBase; }
void setReg(unsigned Reg) {
assert(isRegBase() && "Invalid base register access!");
Base.Reg = Reg;
}
unsigned getReg() const {
assert(isRegBase() && "Invalid base register access!");
return Base.Reg;
}
void setOffsetReg(unsigned Reg) {
OffsetReg = Reg;
}
unsigned getOffsetReg() const {
return OffsetReg;
}
void setFI(unsigned FI) {
assert(isFIBase() && "Invalid base frame index access!");
Base.FI = FI;
}
unsigned getFI() const {
assert(isFIBase() && "Invalid base frame index access!");
return Base.FI;
}
void setOffset(int64_t O) { Offset = O; }
int64_t getOffset() { return Offset; }
void setShift(unsigned S) { Shift = S; }
unsigned getShift() { return Shift; }
void setGlobalValue(const GlobalValue *G) { GV = G; }
const GlobalValue *getGlobalValue() { return GV; }
};
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
LLVMContext *Context;
bool fastLowerArguments() override;
bool fastLowerCall(CallLoweringInfo &CLI) override;
bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
private:
// Selection routines.
bool selectAddSub(const Instruction *I);
bool selectLogicalOp(const Instruction *I);
bool selectLoad(const Instruction *I);
bool selectStore(const Instruction *I);
bool selectBranch(const Instruction *I);
bool selectIndirectBr(const Instruction *I);
bool selectCmp(const Instruction *I);
bool selectSelect(const Instruction *I);
bool selectFPExt(const Instruction *I);
bool selectFPTrunc(const Instruction *I);
bool selectFPToInt(const Instruction *I, bool Signed);
bool selectIntToFP(const Instruction *I, bool Signed);
bool selectRem(const Instruction *I, unsigned ISDOpcode);
bool selectRet(const Instruction *I);
bool selectTrunc(const Instruction *I);
bool selectIntExt(const Instruction *I);
bool selectMul(const Instruction *I);
bool selectShift(const Instruction *I);
bool selectBitCast(const Instruction *I);
bool selectFRem(const Instruction *I);
bool selectSDiv(const Instruction *I);
bool selectGetElementPtr(const Instruction *I);
// Utility helper routines.
bool isTypeLegal(Type *Ty, MVT &VT);
bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
bool isValueAvailable(const Value *V) const;
bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
bool computeCallAddress(const Value *V, Address &Addr);
bool simplifyAddress(Address &Addr, MVT VT);
void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
unsigned Flags, unsigned ScaleFactor,
MachineMemOperand *MMO);
bool isMemCpySmall(uint64_t Len, unsigned Alignment);
bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
unsigned Alignment);
bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
const Value *Cond);
bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
bool optimizeSelect(const SelectInst *SI);
std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
// Emit helper routines.
unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
const Value *RHS, bool SetFlags = false,
bool WantResult = true, bool IsZExt = false);
unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
bool SetFlags = false, bool WantResult = true);
unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
bool WantResult = true);
unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType,
uint64_t ShiftImm, bool SetFlags = false,
bool WantResult = true);
unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
AArch64_AM::ShiftExtendType ExtType,
uint64_t ShiftImm, bool SetFlags = false,
bool WantResult = true);
// Emit functions.
bool emitCompareAndBranch(const BranchInst *BI);
bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
MachineMemOperand *MMO = nullptr);
bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
MachineMemOperand *MMO = nullptr);
unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags = false, bool WantResult = true,
bool IsZExt = false);
unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags = false, bool WantResult = true,
bool IsZExt = false);
unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
unsigned RHSReg, bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
bool WantResult = true);
unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
const Value *RHS);
unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, uint64_t Imm);
unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
uint64_t ShiftImm);
unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill);
unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
uint64_t Imm, bool IsZExt = true);
unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill);
unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
uint64_t Imm, bool IsZExt = true);
unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill);
unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
uint64_t Imm, bool IsZExt = false);
unsigned materializeInt(const ConstantInt *CI, MVT VT);
unsigned materializeFP(const ConstantFP *CFP, MVT VT);
unsigned materializeGV(const GlobalValue *GV);
// Call handling routines.
private:
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
unsigned &NumBytes);
bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
public:
// Backend specific FastISel code.
unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
unsigned fastMaterializeConstant(const Constant *C) override;
unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo)
: FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
Subtarget = &TM.getSubtarget<AArch64Subtarget>();
Context = &FuncInfo.Fn->getContext();
}
bool fastSelectInstruction(const Instruction *I) override;
#include "AArch64GenFastISel.inc"
};
} // end anonymous namespace
#include "AArch64GenCallingConv.inc"
/// \brief Check if the sign-/zero-extend will be a noop.
static bool isIntExtFree(const Instruction *I) {
assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
"Unexpected integer extend instruction.");
assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
"Unexpected value type.");
bool IsZExt = isa<ZExtInst>(I);
if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
if (LI->hasOneUse())
return true;
if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
return true;
return false;
}
/// \brief Determine the implicit scale factor that is applied by a memory
/// operation for a given value type.
static unsigned getImplicitScaleFactor(MVT VT) {
switch (VT.SimpleTy) {
default:
return 0; // invalid
case MVT::i1: // fall-through
case MVT::i8:
return 1;
case MVT::i16:
return 2;
case MVT::i32: // fall-through
case MVT::f32:
return 4;
case MVT::i64: // fall-through
case MVT::f64:
return 8;
}
}
CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
if (CC == CallingConv::WebKit_JS)
return CC_AArch64_WebKit_JS;
return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
}
unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
"Alloca should always return a pointer.");
// Don't handle dynamic allocas.
if (!FuncInfo.StaticAllocaMap.count(AI))
return 0;
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(SI->second)
.addImm(0)
.addImm(0);
return ResultReg;
}
return 0;
}
unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
if (VT > MVT::i64)
return 0;
if (!CI->isZero())
return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
// Create a copy from the zero register to materialize a "0" value.
const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
: &AArch64::GPR32RegClass;
unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
ResultReg).addReg(ZeroReg, getKillRegState(true));
return ResultReg;
}
unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
// Positive zero (+0.0) has to be materialized with a fmov from the zero
// register, because the immediate version of fmov cannot encode zero.
if (CFP->isNullValue())
return fastMaterializeFloatZero(CFP);
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
const APFloat Val = CFP->getValueAPF();
bool Is64Bit = (VT == MVT::f64);
// This checks to see if we can use FMOV instructions to materialize
// a constant, otherwise we have to materialize via the constant pool.
if (TLI.isFPImmLegal(Val, VT)) {
int Imm =
Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
assert((Imm != -1) && "Cannot encode floating-point constant.");
unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
}
// For the MachO large code model materialize the FP constant in code.
if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm;
const TargetRegisterClass *RC = Is64Bit ?
&AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned TmpReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc1), TmpReg)
.addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(TmpReg, getKillRegState(true));
return ResultReg;
}
// Materialize via constant pool. MachineConstantPool wants an explicit
// alignment.
unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
if (Align == 0)
Align = DL.getTypeAllocSize(CFP->getType());
unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(ADRPReg)
.addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
return ResultReg;
}
unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
// We can't handle thread-local variables quickly yet.
if (GV->isThreadLocal())
return 0;
// MachO still uses GOT for large code-model accesses, but ELF requires
// movz/movk sequences, which FastISel doesn't handle yet.
if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
return 0;
unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
EVT DestEVT = TLI.getValueType(GV->getType(), true);
if (!DestEVT.isSimple())
return 0;
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
unsigned ResultReg;
if (OpFlags & AArch64II::MO_GOT) {
// ADRP + LDRX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
ResultReg)
.addReg(ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
AArch64II::MO_NC);
} else if (OpFlags & AArch64II::MO_CONSTPOOL) {
// We can't handle addresses loaded from a constant pool quickly yet.
return 0;
} else {
// ADRP + ADDX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addReg(ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
.addImm(0);
}
return ResultReg;
}
unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple())
return 0;
MVT VT = CEVT.getSimpleVT();
if (const auto *CI = dyn_cast<ConstantInt>(C))
return materializeInt(CI, VT);
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return materializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return materializeGV(GV);
return 0;
}
unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
assert(CFP->isNullValue() &&
"Floating-point constant is not a positive zero.");
MVT VT;
if (!isTypeLegal(CFP->getType(), VT))
return 0;
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
bool Is64Bit = (VT == MVT::f64);
unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
}
/// \brief Check if the multiply is by a power-of-2 constant.
static bool isMulPowOf2(const Value *I) {
if (const auto *MI = dyn_cast<MulOperator>(I)) {
if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
if (C->getValue().isPowerOf2())
return true;
if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
if (C->getValue().isPowerOf2())
return true;
}
return false;
}
// Computes the address to get to an object.
bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
{
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
// Don't walk into other basic blocks unless the object is an alloca from
// another block, otherwise it may not have a virtual register assigned.
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
Opcode = I->getOpcode();
U = I;
}
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
Opcode = C->getOpcode();
U = C;
}
if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
if (Ty->getAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
switch (Opcode) {
default:
break;
case Instruction::BitCast: {
// Look through bitcasts.
return computeAddress(U->getOperand(0), Addr, Ty);
}
case Instruction::IntToPtr: {
// Look past no-op inttoptrs.
if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
return computeAddress(U->getOperand(0), Addr, Ty);
break;
}
case Instruction::PtrToInt: {
// Look past no-op ptrtoints.
if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
return computeAddress(U->getOperand(0), Addr, Ty);
break;
}
case Instruction::GetElementPtr: {
Address SavedAddr = Addr;
uint64_t TmpOffset = Addr.getOffset();
// Iterate through the GEP folding the constants into offsets where
// we can.
gep_type_iterator GTI = gep_type_begin(U);
for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
++i, ++GTI) {
const Value *Op = *i;
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
TmpOffset += SL->getElementOffset(Idx);
} else {
uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
for (;;) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
// Constant-offset addressing.
TmpOffset += CI->getSExtValue() * S;
break;
}
if (canFoldAddIntoGEP(U, Op)) {
// A compatible add with a constant operand. Fold the constant.
ConstantInt *CI =
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
TmpOffset += CI->getSExtValue() * S;
// Iterate on the other operand.
Op = cast<AddOperator>(Op)->getOperand(0);
continue;
}
// Unsupported
goto unsupported_gep;
}
}
}
// Try to grab the base operand now.
Addr.setOffset(TmpOffset);
if (computeAddress(U->getOperand(0), Addr, Ty))
return true;
// We failed, restore everything and try the other options.
Addr = SavedAddr;
unsupported_gep:
break;
}
case Instruction::Alloca: {
const AllocaInst *AI = cast<AllocaInst>(Obj);
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
Addr.setKind(Address::FrameIndexBase);
Addr.setFI(SI->second);
return true;
}
break;
}
case Instruction::Add: {
// Adds of constants are common and easy enough.
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (isa<ConstantInt>(LHS))
std::swap(LHS, RHS);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
return computeAddress(LHS, Addr, Ty);
}
Address Backup = Addr;
if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
return true;
Addr = Backup;
break;
}
case Instruction::Sub: {
// Subs of constants are common and easy enough.
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
return computeAddress(LHS, Addr, Ty);
}
break;
}
case Instruction::Shl: {
if (Addr.getOffsetReg())
break;
const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
if (!CI)
break;
unsigned Val = CI->getZExtValue();
if (Val < 1 || Val > 3)
break;
uint64_t NumBytes = 0;
if (Ty && Ty->isSized()) {
uint64_t NumBits = DL.getTypeSizeInBits(Ty);
NumBytes = NumBits / 8;
if (!isPowerOf2_64(NumBits))
NumBytes = 0;
}
if (NumBytes != (1ULL << Val))
break;
Addr.setShift(Val);
Addr.setExtendType(AArch64_AM::LSL);
const Value *Src = U->getOperand(0);
if (const auto *I = dyn_cast<Instruction>(Src))
if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
Src = I;
// Fold the zext or sext when it won't become a noop.
if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::UXTW);
Src = ZE->getOperand(0);
}
} else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::SXTW);
Src = SE->getOperand(0);
}
}
if (const auto *AI = dyn_cast<BinaryOperator>(Src))
if (AI->getOpcode() == Instruction::And) {
const Value *LHS = AI->getOperand(0);
const Value *RHS = AI->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(LHS))
if (C->getValue() == 0xffffffff)
std::swap(LHS, RHS);
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 0xffffffff) {
Addr.setExtendType(AArch64_AM::UXTW);
unsigned Reg = getRegForValue(LHS);
if (!Reg)
return false;
bool RegIsKill = hasTrivialKill(LHS);
Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
AArch64::sub_32);
Addr.setOffsetReg(Reg);
return true;
}
}
unsigned Reg = getRegForValue(Src);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
case Instruction::Mul: {
if (Addr.getOffsetReg())
break;
if (!isMulPowOf2(U))
break;
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
// Canonicalize power-of-2 value to the RHS.
if (const auto *C = dyn_cast<ConstantInt>(LHS))
if (C->getValue().isPowerOf2())
std::swap(LHS, RHS);
assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
const auto *C = cast<ConstantInt>(RHS);
unsigned Val = C->getValue().logBase2();
if (Val < 1 || Val > 3)
break;
uint64_t NumBytes = 0;
if (Ty && Ty->isSized()) {
uint64_t NumBits = DL.getTypeSizeInBits(Ty);
NumBytes = NumBits / 8;
if (!isPowerOf2_64(NumBits))
NumBytes = 0;
}
if (NumBytes != (1ULL << Val))
break;
Addr.setShift(Val);
Addr.setExtendType(AArch64_AM::LSL);
const Value *Src = LHS;
if (const auto *I = dyn_cast<Instruction>(Src))
if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
Src = I;
// Fold the zext or sext when it won't become a noop.
if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::UXTW);
Src = ZE->getOperand(0);
}
} else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::SXTW);
Src = SE->getOperand(0);
}
}
unsigned Reg = getRegForValue(Src);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
case Instruction::And: {
if (Addr.getOffsetReg())
break;
if (!Ty || DL.getTypeSizeInBits(Ty) != 8)
break;
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(LHS))
if (C->getValue() == 0xffffffff)
std::swap(LHS, RHS);
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 0xffffffff) {
Addr.setShift(0);
Addr.setExtendType(AArch64_AM::LSL);
Addr.setExtendType(AArch64_AM::UXTW);
unsigned Reg = getRegForValue(LHS);
if (!Reg)
return false;
bool RegIsKill = hasTrivialKill(LHS);
Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
AArch64::sub_32);
Addr.setOffsetReg(Reg);
return true;
}
break;
}
case Instruction::SExt:
case Instruction::ZExt: {
if (!Addr.getReg() || Addr.getOffsetReg())
break;
const Value *Src = nullptr;
// Fold the zext or sext when it won't become a noop.
if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::UXTW);
Src = ZE->getOperand(0);
}
} else if (const auto *SE = dyn_cast<SExtInst>(U)) {
if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::SXTW);
Src = SE->getOperand(0);
}
}
if (!Src)
break;
Addr.setShift(0);
unsigned Reg = getRegForValue(Src);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
} // end switch
if (Addr.isRegBase() && !Addr.getReg()) {
unsigned Reg = getRegForValue(Obj);
if (!Reg)
return false;
Addr.setReg(Reg);
return true;
}
if (!Addr.getOffsetReg()) {
unsigned Reg = getRegForValue(Obj);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
return false;
}
bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
bool InMBB = true;
if (const auto *I = dyn_cast<Instruction>(V)) {
Opcode = I->getOpcode();
U = I;
InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
} else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
Opcode = C->getOpcode();
U = C;
}
switch (Opcode) {
default: break;
case Instruction::BitCast:
// Look past bitcasts if its operand is in the same BB.
if (InMBB)
return computeCallAddress(U->getOperand(0), Addr);
break;
case Instruction::IntToPtr:
// Look past no-op inttoptrs if its operand is in the same BB.
if (InMBB &&
TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
return computeCallAddress(U->getOperand(0), Addr);
break;
case Instruction::PtrToInt:
// Look past no-op ptrtoints if its operand is in the same BB.
if (InMBB &&
TLI.getValueType(U->getType()) == TLI.getPointerTy())
return computeCallAddress(U->getOperand(0), Addr);
break;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Addr.setGlobalValue(GV);
return true;
}
// If all else fails, try to materialize the value in a register.
if (!Addr.getGlobalValue()) {
Addr.setReg(getRegForValue(V));
return Addr.getReg() != 0;
}
return false;
}
bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple())
return false;
VT = evt.getSimpleVT();
// This is a legal type, but it's not something we handle in fast-isel.
if (VT == MVT::f128)
return false;
// Handle all other legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
/// \brief Determine if the value type is supported by FastISel.
///
/// FastISel for AArch64 can handle more value types than are legal. This adds
/// simple value type such as i1, i8, and i16.
bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
if (Ty->isVectorTy() && !IsVectorAllowed)
return false;
if (isTypeLegal(Ty, VT))
return true;
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
bool AArch64FastISel::isValueAvailable(const Value *V) const {
if (!isa<Instruction>(V))
return true;
const auto *I = cast<Instruction>(V);
if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
return true;
return false;
}
bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
unsigned ScaleFactor = getImplicitScaleFactor(VT);
if (!ScaleFactor)
return false;
bool ImmediateOffsetNeedsLowering = false;
bool RegisterOffsetNeedsLowering = false;
int64_t Offset = Addr.getOffset();
if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
ImmediateOffsetNeedsLowering = true;
else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
!isUInt<12>(Offset / ScaleFactor))
ImmediateOffsetNeedsLowering = true;
// Cannot encode an offset register and an immediate offset in the same
// instruction. Fold the immediate offset into the load/store instruction and
// emit an additonal add to take care of the offset register.
if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
RegisterOffsetNeedsLowering = true;
// Cannot encode zero register as base.
if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
RegisterOffsetNeedsLowering = true;
// If this is a stack pointer and the offset needs to be simplified then put
// the alloca address into a register, set the base type back to register and
// continue. This should almost never happen.
if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
{
unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(Addr.getFI())
.addImm(0)
.addImm(0);
Addr.setKind(Address::RegBase);
Addr.setReg(ResultReg);
}
if (RegisterOffsetNeedsLowering) {
unsigned ResultReg = 0;
if (Addr.getReg()) {
if (Addr.getExtendType() == AArch64_AM::SXTW ||
Addr.getExtendType() == AArch64_AM::UXTW )
ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
/*TODO:IsKill=*/false, Addr.getOffsetReg(),
/*TODO:IsKill=*/false, Addr.getExtendType(),
Addr.getShift());
else
ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
/*TODO:IsKill=*/false, Addr.getOffsetReg(),
/*TODO:IsKill=*/false, AArch64_AM::LSL,
Addr.getShift());
} else {
if (Addr.getExtendType() == AArch64_AM::UXTW)
ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
/*Op0IsKill=*/false, Addr.getShift(),
/*IsZExt=*/true);
else if (Addr.getExtendType() == AArch64_AM::SXTW)
ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
/*Op0IsKill=*/false, Addr.getShift(),
/*IsZExt=*/false);
else
ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
/*Op0IsKill=*/false, Addr.getShift());
}
if (!ResultReg)
return false;
Addr.setReg(ResultReg);
Addr.setOffsetReg(0);
Addr.setShift(0);
Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
}
// Since the offset is too large for the load/store instruction get the
// reg+offset into a register.
if (ImmediateOffsetNeedsLowering) {
unsigned ResultReg;
if (Addr.getReg())
// Try to fold the immediate into the add instruction.
ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
else
ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
if (!ResultReg)
return false;
Addr.setReg(ResultReg);
Addr.setOffset(0);
}
return true;
}
void AArch64FastISel::addLoadStoreOperands(Address &Addr,
const MachineInstrBuilder &MIB,
unsigned Flags,
unsigned ScaleFactor,
MachineMemOperand *MMO) {
int64_t Offset = Addr.getOffset() / ScaleFactor;
// Frame base works a bit differently. Handle it separately.
if (Addr.isFIBase()) {
int FI = Addr.getFI();
// FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
// and alignment should be based on the VT.
MMO = FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(FI, Offset), Flags,
MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
// Now add the rest of the operands.
MIB.addFrameIndex(FI).addImm(Offset);
} else {
assert(Addr.isRegBase() && "Unexpected address kind.");
const MCInstrDesc &II = MIB->getDesc();
unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
Addr.setReg(
constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
Addr.setOffsetReg(
constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
if (Addr.getOffsetReg()) {
assert(Addr.getOffset() == 0 && "Unexpected offset");
bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
Addr.getExtendType() == AArch64_AM::SXTX;
MIB.addReg(Addr.getReg());
MIB.addReg(Addr.getOffsetReg());
MIB.addImm(IsSigned);
MIB.addImm(Addr.getShift() != 0);
} else
MIB.addReg(Addr.getReg()).addImm(Offset);
}
if (MMO)
MIB.addMemOperand(MMO);
}
unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
const Value *RHS, bool SetFlags,
bool WantResult, bool IsZExt) {
AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
bool NeedExtend = false;
switch (RetVT.SimpleTy) {
default:
return 0;
case MVT::i1:
NeedExtend = true;
break;
case MVT::i8:
NeedExtend = true;
ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
break;
case MVT::i16:
NeedExtend = true;
ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
break;
case MVT::i32: // fall-through
case MVT::i64:
break;
}
MVT SrcVT = RetVT;
RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
// Canonicalize immediates to the RHS first.
if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
std::swap(LHS, RHS);
// Canonicalize mul by power of 2 to the RHS.
if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
if (isMulPowOf2(LHS))
std::swap(LHS, RHS);
// Canonicalize shift immediate to the RHS.
if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
if (isa<ConstantInt>(SI->getOperand(1)))
if (SI->getOpcode() == Instruction::Shl ||
SI->getOpcode() == Instruction::LShr ||
SI->getOpcode() == Instruction::AShr )
std::swap(LHS, RHS);
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return 0;
bool LHSIsKill = hasTrivialKill(LHS);
if (NeedExtend)
LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
unsigned ResultReg = 0;
if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
if (C->isNegative())
ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
SetFlags, WantResult);
else
ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
WantResult);
} else if (const auto *C = dyn_cast<Constant>(RHS))
if (C->isNullValue())
ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
WantResult);
if (ResultReg)
return ResultReg;
// Only extend the RHS within the instruction if there is a valid extend type.
if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
isValueAvailable(RHS)) {
if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
unsigned RHSReg = getRegForValue(SI->getOperand(0));
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ExtendType, C->getZExtValue(),
SetFlags, WantResult);
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(RHS);
return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
ExtendType, 0, SetFlags, WantResult);
}
// Check if the mul can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS))
if (isMulPowOf2(RHS)) {
const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
if (C->getValue().isPowerOf2())
std::swap(MulLHS, MulRHS);
assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
unsigned RHSReg = getRegForValue(MulLHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(MulLHS);
return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
AArch64_AM::LSL, ShiftVal, SetFlags, WantResult);
}
// Check if the shift can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS))
if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
switch (SI->getOpcode()) {
default: break;
case Instruction::Shl: ShiftType = AArch64_AM::LSL; break;
case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
}
uint64_t ShiftVal = C->getZExtValue();
if (ShiftType != AArch64_AM::InvalidShiftExtend) {
unsigned RHSReg = getRegForValue(SI->getOperand(0));
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftType, ShiftVal, SetFlags,
WantResult);
}
}
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(RHS);
if (NeedExtend)
RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
SetFlags, WantResult);
}
unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill, bool SetFlags,
bool WantResult) {
assert(LHSReg && RHSReg && "Invalid register number.");
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWrr, AArch64::SUBXrr },
{ AArch64::ADDWrr, AArch64::ADDXrr } },
{ { AArch64::SUBSWrr, AArch64::SUBSXrr },
{ AArch64::ADDSWrr, AArch64::ADDSXrr } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill));
return ResultReg;
}
unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, uint64_t Imm,
bool SetFlags, bool WantResult) {
assert(LHSReg && "Invalid register number.");
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
unsigned ShiftImm;
if (isUInt<12>(Imm))
ShiftImm = 0;
else if ((Imm & 0xfff000) == Imm) {
ShiftImm = 12;
Imm >>= 12;
} else
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWri, AArch64::SUBXri },
{ AArch64::ADDWri, AArch64::ADDXri } },
{ { AArch64::SUBSWri, AArch64::SUBSXri },
{ AArch64::ADDSWri, AArch64::ADDSXri } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC;
if (SetFlags)
RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
else
RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addImm(Imm)
.addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
return ResultReg;
}
unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType,
uint64_t ShiftImm, bool SetFlags,
bool WantResult) {
assert(LHSReg && RHSReg && "Invalid register number.");
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWrs, AArch64::SUBXrs },
{ AArch64::ADDWrs, AArch64::ADDXrs } },
{ { AArch64::SUBSWrs, AArch64::SUBSXrs },
{ AArch64::ADDSWrs, AArch64::ADDSXrs } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill))
.addImm(getShifterImm(ShiftType, ShiftImm));
return ResultReg;
}
unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill,
AArch64_AM::ShiftExtendType ExtType,
uint64_t ShiftImm, bool SetFlags,
bool WantResult) {
assert(LHSReg && RHSReg && "Invalid register number.");
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWrx, AArch64::SUBXrx },
{ AArch64::ADDWrx, AArch64::ADDXrx } },
{ { AArch64::SUBSWrx, AArch64::SUBSXrx },
{ AArch64::ADDSWrx, AArch64::ADDSXrx } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC = nullptr;
if (SetFlags)
RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
else
RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill))
.addImm(getArithExtendImm(ExtType, ShiftImm));
return ResultReg;
}
bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
Type *Ty = LHS->getType();
EVT EVT = TLI.getValueType(Ty, true);
if (!EVT.isSimple())
return false;
MVT VT = EVT.getSimpleVT();
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
return emitICmp(VT, LHS, RHS, IsZExt);
case MVT::f32:
case MVT::f64:
return emitFCmp(VT, LHS, RHS);
}
}
bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
bool IsZExt) {
return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
IsZExt) != 0;
}
bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
uint64_t Imm) {
return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
/*SetFlags=*/true, /*WantResult=*/false) != 0;
}
bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
if (RetVT != MVT::f32 && RetVT != MVT::f64)
return false;
// Check to see if the 2nd operand is a constant that we can encode directly
// in the compare.
bool UseImm = false;
if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
if (CFP->isZero() && !CFP->isNegative())
UseImm = true;
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return false;
bool LHSIsKill = hasTrivialKill(LHS);
if (UseImm) {
unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(LHSReg, getKillRegState(LHSIsKill));
return true;
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
bool RHSIsKill = hasTrivialKill(RHS);
unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill));
return true;
}
unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags, bool WantResult, bool IsZExt) {
return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
IsZExt);
}
/// \brief This method is a wrapper to simplify add emission.
///
/// First try to emit an add with an immediate operand using emitAddSub_ri. If
/// that fails, then try to materialize the immediate into a register and use
/// emitAddSub_rr instead.
unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
int64_t Imm) {
unsigned ResultReg;
if (Imm < 0)
ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
else
ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
if (ResultReg)
return ResultReg;
unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
if (!CReg)
return 0;
ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
return ResultReg;
}
unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags, bool WantResult, bool IsZExt) {
return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
IsZExt);
}
unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill, bool WantResult) {
return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, /*SetFlags=*/true, WantResult);
}
unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType,
uint64_t ShiftImm, bool WantResult) {
return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
WantResult);
}
unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
const Value *LHS, const Value *RHS) {
// Canonicalize immediates to the RHS first.
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
std::swap(LHS, RHS);
// Canonicalize mul by power-of-2 to the RHS.
if (LHS->hasOneUse() && isValueAvailable(LHS))
if (isMulPowOf2(LHS))
std::swap(LHS, RHS);
// Canonicalize shift immediate to the RHS.
if (LHS->hasOneUse() && isValueAvailable(LHS))
if (const auto *SI = dyn_cast<ShlOperator>(LHS))
if (isa<ConstantInt>(SI->getOperand(1)))
std::swap(LHS, RHS);
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return 0;
bool LHSIsKill = hasTrivialKill(LHS);
unsigned ResultReg = 0;
if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
uint64_t Imm = C->getZExtValue();
ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
}
if (ResultReg)
return ResultReg;
// Check if the mul can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS))
if (isMulPowOf2(RHS)) {
const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
if (C->getValue().isPowerOf2())
std::swap(MulLHS, MulRHS);
assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
unsigned RHSReg = getRegForValue(MulLHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(MulLHS);
return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftVal);
}
// Check if the shift can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS))
if (const auto *SI = dyn_cast<ShlOperator>(RHS))
if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
uint64_t ShiftVal = C->getZExtValue();
unsigned RHSReg = getRegForValue(SI->getOperand(0));
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftVal);
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(RHS);
MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
}
return ResultReg;
}
unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
unsigned LHSReg, bool LHSIsKill,
uint64_t Imm) {
assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
"ISD nodes are not consecutive!");
static const unsigned OpcTable[3][2] = {
{ AArch64::ANDWri, AArch64::ANDXri },
{ AArch64::ORRWri, AArch64::ORRXri },
{ AArch64::EORWri, AArch64::EORXri }
};
const TargetRegisterClass *RC;
unsigned Opc;
unsigned RegSize;
switch (RetVT.SimpleTy) {
default:
return 0;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32: {
unsigned Idx = ISDOpc - ISD::AND;
Opc = OpcTable[Idx][0];
RC = &AArch64::GPR32spRegClass;
RegSize = 32;
break;
}
case MVT::i64:
Opc = OpcTable[ISDOpc - ISD::AND][1];
RC = &AArch64::GPR64spRegClass;
RegSize = 64;
break;
}
if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
return 0;
unsigned ResultReg =
fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
}
return ResultReg;
}
unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
unsigned LHSReg, bool LHSIsKill,
unsigned RHSReg, bool RHSIsKill,
uint64_t ShiftImm) {
assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
"ISD nodes are not consecutive!");
static const unsigned OpcTable[3][2] = {
{ AArch64::ANDWrs, AArch64::ANDXrs },
{ AArch64::ORRWrs, AArch64::ORRXrs },
{ AArch64::EORWrs, AArch64::EORXrs }
};
const TargetRegisterClass *RC;
unsigned Opc;
switch (RetVT.SimpleTy) {
default:
return 0;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
Opc = OpcTable[ISDOpc - ISD::AND][0];
RC = &AArch64::GPR32RegClass;
break;
case MVT::i64:
Opc = OpcTable[ISDOpc - ISD::AND][1];
RC = &AArch64::GPR64RegClass;
break;
}
unsigned ResultReg =
fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
}
return ResultReg;
}
unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
uint64_t Imm) {
return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
}
unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
bool WantZExt, MachineMemOperand *MMO) {
// Simplify this down to something we can handle.
if (!simplifyAddress(Addr, VT))
return 0;
unsigned ScaleFactor = getImplicitScaleFactor(VT);
if (!ScaleFactor)
llvm_unreachable("Unexpected value type.");
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
bool UseScaled = true;
if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
UseScaled = false;
ScaleFactor = 1;
}
static const unsigned GPOpcTable[2][8][4] = {
// Sign-extend.
{ { AArch64::LDURSBWi, AArch64::LDURSHWi, AArch64::LDURWi,
AArch64::LDURXi },
{ AArch64::LDURSBXi, AArch64::LDURSHXi, AArch64::LDURSWi,
AArch64::LDURXi },
{ AArch64::LDRSBWui, AArch64::LDRSHWui, AArch64::LDRWui,
AArch64::LDRXui },
{ AArch64::LDRSBXui, AArch64::LDRSHXui, AArch64::LDRSWui,
AArch64::LDRXui },
{ AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
AArch64::LDRXroX },
{ AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
AArch64::LDRXroX },
{ AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
AArch64::LDRXroW },
{ AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
AArch64::LDRXroW }
},
// Zero-extend.
{ { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
AArch64::LDURXi },
{ AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
AArch64::LDURXi },
{ AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
AArch64::LDRXui },
{ AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
AArch64::LDRXui },
{ AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
AArch64::LDRXroX },
{ AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
AArch64::LDRXroX },
{ AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
AArch64::LDRXroW },
{ AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
AArch64::LDRXroW }
}
};
static const unsigned FPOpcTable[4][2] = {
{ AArch64::LDURSi, AArch64::LDURDi },
{ AArch64::LDRSui, AArch64::LDRDui },
{ AArch64::LDRSroX, AArch64::LDRDroX },
{ AArch64::LDRSroW, AArch64::LDRDroW }
};
unsigned Opc;
const TargetRegisterClass *RC;
bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
Addr.getOffsetReg();
unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
if (Addr.getExtendType() == AArch64_AM::UXTW ||
Addr.getExtendType() == AArch64_AM::SXTW)
Idx++;
bool IsRet64Bit = RetVT == MVT::i64;
switch (VT.SimpleTy) {
default:
llvm_unreachable("Unexpected value type.");
case MVT::i1: // Intentional fall-through.
case MVT::i8:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
RC = (IsRet64Bit && !WantZExt) ?
&AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i16:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
RC = (IsRet64Bit && !WantZExt) ?
&AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i32:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
RC = (IsRet64Bit && !WantZExt) ?
&AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i64:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
RC = &AArch64::GPR64RegClass;
break;
case MVT::f32:
Opc = FPOpcTable[Idx][0];
RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
Opc = FPOpcTable[Idx][1];
RC = &AArch64::FPR64RegClass;
break;
}
// Create the base instruction, then add the operands.
unsigned ResultReg = createResultReg(RC);
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg);
addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
// Loading an i1 requires special handling.
if (VT == MVT::i1) {
unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
assert(ANDReg && "Unexpected AND instruction emission failure.");
ResultReg = ANDReg;
}
// For zero-extending loads to 64bit we emit a 32bit load and then convert
// the 32bit reg to a 64bit reg.
if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Reg64)
.addImm(0)
.addReg(ResultReg, getKillRegState(true))
.addImm(AArch64::sub_32);
ResultReg = Reg64;
}
return ResultReg;
}
bool AArch64FastISel::selectAddSub(const Instruction *I) {
MVT VT;
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
if (VT.isVector())
return selectOperator(I, I->getOpcode());
unsigned ResultReg;
switch (I->getOpcode()) {
default:
llvm_unreachable("Unexpected instruction.");
case Instruction::Add:
ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
break;
case Instruction::Sub:
ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
MVT VT;
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
if (VT.isVector())
return selectOperator(I, I->getOpcode());
unsigned ResultReg;
switch (I->getOpcode()) {
default:
llvm_unreachable("Unexpected instruction.");
case Instruction::And:
ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
break;
case Instruction::Or:
ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
break;
case Instruction::Xor:
ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectLoad(const Instruction *I) {
MVT VT;
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
cast<LoadInst>(I)->isAtomic())
return false;
// See if we can handle this address.
Address Addr;
if (!computeAddress(I->getOperand(0), Addr, I->getType()))
return false;
// Fold the following sign-/zero-extend into the load instruction.
bool WantZExt = true;
MVT RetVT = VT;
const Value *IntExtVal = nullptr;
if (I->hasOneUse()) {
if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
if (isTypeSupported(ZE->getType(), RetVT))
IntExtVal = ZE;
else
RetVT = VT;
} else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
if (isTypeSupported(SE->getType(), RetVT))
IntExtVal = SE;
else
RetVT = VT;
WantZExt = false;
}
}
unsigned ResultReg =
emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
if (!ResultReg)
return false;
// There are a few different cases we have to handle, because the load or the
// sign-/zero-extend might not be selected by FastISel if we fall-back to
// SelectionDAG. There is also an ordering issue when both instructions are in
// different basic blocks.
// 1.) The load instruction is selected by FastISel, but the integer extend
// not. This usually happens when the integer extend is in a different
// basic block and SelectionDAG took over for that basic block.
// 2.) The load instruction is selected before the integer extend. This only
// happens when the integer extend is in a different basic block.
// 3.) The load instruction is selected by SelectionDAG and the integer extend
// by FastISel. This happens if there are instructions between the load
// and the integer extend that couldn't be selected by FastISel.
if (IntExtVal) {
// The integer extend hasn't been emitted yet. FastISel or SelectionDAG
// could select it. Emit a copy to subreg if necessary. FastISel will remove
// it when it selects the integer extend.
unsigned Reg = lookUpRegForValue(IntExtVal);
if (!Reg) {
if (RetVT == MVT::i64 && VT <= MVT::i32) {
if (WantZExt) {
// Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
std::prev(FuncInfo.InsertPt)->eraseFromParent();
ResultReg = std::prev(FuncInfo.InsertPt)->getOperand(0).getReg();
} else
ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
/*IsKill=*/true,
AArch64::sub_32);
}
updateValueMap(I, ResultReg);
return true;
}
// The integer extend has already been emitted - delete all the instructions
// that have been emitted by the integer extend lowering code and use the
// result from the load instruction directly.
while (Reg) {
auto *MI = MRI.getUniqueVRegDef(Reg);
if (!MI)
break;
Reg = 0;
for (auto &Opnd : MI->uses()) {
if (Opnd.isReg()) {
Reg = Opnd.getReg();
break;
}
}
MI->eraseFromParent();
}
updateValueMap(IntExtVal, ResultReg);
return true;
}
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
MachineMemOperand *MMO) {
// Simplify this down to something we can handle.
if (!simplifyAddress(Addr, VT))
return false;
unsigned ScaleFactor = getImplicitScaleFactor(VT);
if (!ScaleFactor)
llvm_unreachable("Unexpected value type.");
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
bool UseScaled = true;
if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
UseScaled = false;
ScaleFactor = 1;
}
static const unsigned OpcTable[4][6] = {
{ AArch64::STURBBi, AArch64::STURHHi, AArch64::STURWi, AArch64::STURXi,
AArch64::STURSi, AArch64::STURDi },
{ AArch64::STRBBui, AArch64::STRHHui, AArch64::STRWui, AArch64::STRXui,
AArch64::STRSui, AArch64::STRDui },
{ AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
AArch64::STRSroX, AArch64::STRDroX },
{ AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
AArch64::STRSroW, AArch64::STRDroW }
};
unsigned Opc;
bool VTIsi1 = false;
bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
Addr.getOffsetReg();
unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
if (Addr.getExtendType() == AArch64_AM::UXTW ||
Addr.getExtendType() == AArch64_AM::SXTW)
Idx++;
switch (VT.SimpleTy) {
default: llvm_unreachable("Unexpected value type.");
case MVT::i1: VTIsi1 = true;
case MVT::i8: Opc = OpcTable[Idx][0]; break;
case MVT::i16: Opc = OpcTable[Idx][1]; break;
case MVT::i32: Opc = OpcTable[Idx][2]; break;
case MVT::i64: Opc = OpcTable[Idx][3]; break;
case MVT::f32: Opc = OpcTable[Idx][4]; break;
case MVT::f64: Opc = OpcTable[Idx][5]; break;
}
// Storing an i1 requires special handling.
if (VTIsi1 && SrcReg != AArch64::WZR) {
unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
assert(ANDReg && "Unexpected AND instruction emission failure.");
SrcReg = ANDReg;
}
// Create the base instruction, then add the operands.
const MCInstrDesc &II = TII.get(Opc);
SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
MachineInstrBuilder MIB =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
return true;
}
bool AArch64FastISel::selectStore(const Instruction *I) {
MVT VT;
const Value *Op0 = I->getOperand(0);
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true) ||
cast<StoreInst>(I)->isAtomic())
return false;
// Get the value to be stored into a register. Use the zero register directly
// when possible to avoid an unnecessary copy and a wasted register.
unsigned SrcReg = 0;
if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
if (CI->isZero())
SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
} else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
if (CF->isZero() && !CF->isNegative()) {
VT = MVT::getIntegerVT(VT.getSizeInBits());
SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
}
}
if (!SrcReg)
SrcReg = getRegForValue(Op0);
if (!SrcReg)
return false;
// See if we can handle this address.
Address Addr;
if (!computeAddress(I->getOperand(1), Addr, I->getOperand(0)->getType()))
return false;
if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
return false;
return true;
}
static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
switch (Pred) {
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UEQ:
default:
// AL is our "false" for now. The other two need more compares.
return AArch64CC::AL;
case CmpInst::ICMP_EQ:
case CmpInst::FCMP_OEQ:
return AArch64CC::EQ;
case CmpInst::ICMP_SGT:
case CmpInst::FCMP_OGT:
return AArch64CC::GT;
case CmpInst::ICMP_SGE:
case CmpInst::FCMP_OGE:
return AArch64CC::GE;
case CmpInst::ICMP_UGT:
case CmpInst::FCMP_UGT:
return AArch64CC::HI;
case CmpInst::FCMP_OLT:
return AArch64CC::MI;
case CmpInst::ICMP_ULE:
case CmpInst::FCMP_OLE:
return AArch64CC::LS;
case CmpInst::FCMP_ORD:
return AArch64CC::VC;
case CmpInst::FCMP_UNO:
return AArch64CC::VS;
case CmpInst::FCMP_UGE:
return AArch64CC::PL;
case CmpInst::ICMP_SLT:
case CmpInst::FCMP_ULT:
return AArch64CC::LT;
case CmpInst::ICMP_SLE:
case CmpInst::FCMP_ULE:
return AArch64CC::LE;
case CmpInst::FCMP_UNE:
case CmpInst::ICMP_NE:
return AArch64CC::NE;
case CmpInst::ICMP_UGE:
return AArch64CC::HS;
case CmpInst::ICMP_ULT:
return AArch64CC::LO;
}
}
/// \brief Try to emit a combined compare-and-branch instruction.
bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
const CmpInst *CI = cast<CmpInst>(BI->getCondition());
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
const Value *LHS = CI->getOperand(0);
const Value *RHS = CI->getOperand(1);
MVT VT;
if (!isTypeSupported(LHS->getType(), VT))
return false;
unsigned BW = VT.getSizeInBits();
if (BW > 64)
return false;
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
// Try to take advantage of fallthrough opportunities.
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
Predicate = CmpInst::getInversePredicate(Predicate);
}
int TestBit = -1;
bool IsCmpNE;
switch (Predicate) {
default:
return false;
case CmpInst::ICMP_EQ:
case CmpInst::ICMP_NE:
if (isa<Constant>(LHS) && cast<Constant>(LHS)->isNullValue())
std::swap(LHS, RHS);
if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
return false;
if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
const Value *AndLHS = AI->getOperand(0);
const Value *AndRHS = AI->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
if (C->getValue().isPowerOf2())
std::swap(AndLHS, AndRHS);
if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
if (C->getValue().isPowerOf2()) {
TestBit = C->getValue().logBase2();
LHS = AndLHS;
}
}
if (VT == MVT::i1)
TestBit = 0;
IsCmpNE = Predicate == CmpInst::ICMP_NE;
break;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SGE:
if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
return false;
TestBit = BW - 1;
IsCmpNE = Predicate == CmpInst::ICMP_SLT;
break;
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SLE:
if (!isa<ConstantInt>(RHS))
return false;
if (cast<ConstantInt>(RHS)->getValue() != APInt(BW, -1, true))
return false;
TestBit = BW - 1;
IsCmpNE = Predicate == CmpInst::ICMP_SLE;
break;
} // end switch
static const unsigned OpcTable[2][2][2] = {
{ {AArch64::CBZW, AArch64::CBZX },
{AArch64::CBNZW, AArch64::CBNZX} },
{ {AArch64::TBZW, AArch64::TBZX },
{AArch64::TBNZW, AArch64::TBNZX} }
};
bool IsBitTest = TestBit != -1;
bool Is64Bit = BW == 64;
if (TestBit < 32 && TestBit >= 0)
Is64Bit = false;
unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
const MCInstrDesc &II = TII.get(Opc);
unsigned SrcReg = getRegForValue(LHS);
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(LHS);
if (BW == 64 && !Is64Bit)
SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
AArch64::sub_32);
if ((BW < 32) && !IsBitTest)
SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*IsZExt=*/true);
// Emit the combined compare and branch instruction.
SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
MachineInstrBuilder MIB =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(SrcReg, getKillRegState(SrcIsKill));
if (IsBitTest)
MIB.addImm(TestBit);
MIB.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
fastEmitBranch(FBB, DbgLoc);
return true;
}
bool AArch64FastISel::selectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
if (BI->isUnconditional()) {
MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
fastEmitBranch(MSucc, BI->getDebugLoc());
return true;
}
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
AArch64CC::CondCode CC = AArch64CC::NE;
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
if (CI->hasOneUse() && isValueAvailable(CI)) {
// Try to optimize or fold the cmp.
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
switch (Predicate) {
default:
break;
case CmpInst::FCMP_FALSE:
fastEmitBranch(FBB, DbgLoc);
return true;
case CmpInst::FCMP_TRUE:
fastEmitBranch(TBB, DbgLoc);
return true;
}
// Try to emit a combined compare-and-branch first.
if (emitCompareAndBranch(BI))
return true;
// Try to take advantage of fallthrough opportunities.
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
Predicate = CmpInst::getInversePredicate(Predicate);
}
// Emit the cmp.
if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
// FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
// instruction.
CC = getCompareCC(Predicate);
AArch64CC::CondCode ExtraCC = AArch64CC::AL;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_UEQ:
ExtraCC = AArch64CC::EQ;
CC = AArch64CC::VS;
break;
case CmpInst::FCMP_ONE:
ExtraCC = AArch64CC::MI;
CC = AArch64CC::GT;
break;
}
assert((CC != AArch64CC::AL) && "Unexpected condition code.");
// Emit the extra branch for FCMP_UEQ and FCMP_ONE.
if (ExtraCC != AArch64CC::AL) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(ExtraCC)
.addMBB(TBB);
}
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
fastEmitBranch(FBB, DbgLoc);
return true;
}
} else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
MVT SrcVT;
if (TI->hasOneUse() && isValueAvailable(TI) &&
isTypeSupported(TI->getOperand(0)->getType(), SrcVT)) {
unsigned CondReg = getRegForValue(TI->getOperand(0));
if (!CondReg)
return false;
bool CondIsKill = hasTrivialKill(TI->getOperand(0));
// Issue an extract_subreg to get the lower 32-bits.
if (SrcVT == MVT::i64) {
CondReg = fastEmitInst_extractsubreg(MVT::i32, CondReg, CondIsKill,
AArch64::sub_32);
CondIsKill = true;
}
unsigned ANDReg = emitAnd_ri(MVT::i32, CondReg, CondIsKill, 1);
assert(ANDReg && "Unexpected AND instruction emission failure.");
emitICmp_ri(MVT::i32, ANDReg, /*IsKill=*/true, 0);
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
fastEmitBranch(FBB, DbgLoc);
return true;
}
} else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
.addMBB(Target);
// Obtain the branch weight and add the target to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
Target->getBasicBlock());
FuncInfo.MBB->addSuccessor(Target, BranchWeight);
return true;
} else if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
// Fake request the condition, otherwise the intrinsic might be completely
// optimized away.
unsigned CondReg = getRegForValue(BI->getCondition());
if (!CondReg)
return false;
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
fastEmitBranch(FBB, DbgLoc);
return true;
}
unsigned CondReg = getRegForValue(BI->getCondition());
if (CondReg == 0)
return false;
bool CondRegIsKill = hasTrivialKill(BI->getCondition());
// We've been divorced from our compare! Our block was split, and
// now our compare lives in a predecessor block. We musn't
// re-compare here, as the children of the compare aren't guaranteed
// live across the block boundary (we *could* check for this).
// Regardless, the compare has been done in the predecessor block,
// and it left a value for us in a virtual register. Ergo, we test
// the one-bit value left in the virtual register.
emitICmp_ri(MVT::i32, CondReg, CondRegIsKill, 0);
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
fastEmitBranch(FBB, DbgLoc);
return true;
}
bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
const IndirectBrInst *BI = cast<IndirectBrInst>(I);
unsigned AddrReg = getRegForValue(BI->getOperand(0));
if (AddrReg == 0)
return false;
// Emit the indirect branch.
const MCInstrDesc &II = TII.get(AArch64::BR);
AddrReg = constrainOperandRegClass(II, AddrReg, II.getNumDefs());
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
// Make sure the CFG is up-to-date.
for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
return true;
}
bool AArch64FastISel::selectCmp(const Instruction *I) {
const CmpInst *CI = cast<CmpInst>(I);
// Try to optimize or fold the cmp.
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
unsigned ResultReg = 0;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_FALSE:
ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(AArch64::WZR, getKillRegState(true));
break;
case CmpInst::FCMP_TRUE:
ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
break;
}
if (ResultReg) {
updateValueMap(I, ResultReg);
return true;
}
// Emit the cmp.
if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
ResultReg = createResultReg(&AArch64::GPR32RegClass);
// FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
// condition codes are inverted, because they are used by CSINC.
static unsigned CondCodeTable[2][2] = {
{ AArch64CC::NE, AArch64CC::VC },
{ AArch64CC::PL, AArch64CC::LE }
};
unsigned *CondCodes = nullptr;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_UEQ:
CondCodes = &CondCodeTable[0][0];
break;
case CmpInst::FCMP_ONE:
CondCodes = &CondCodeTable[1][0];
break;
}
if (CondCodes) {
unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
TmpReg1)
.addReg(AArch64::WZR, getKillRegState(true))
.addReg(AArch64::WZR, getKillRegState(true))
.addImm(CondCodes[0]);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg)
.addReg(TmpReg1, getKillRegState(true))
.addReg(AArch64::WZR, getKillRegState(true))
.addImm(CondCodes[1]);
updateValueMap(I, ResultReg);
return true;
}
// Now set a register based on the comparison.
AArch64CC::CondCode CC = getCompareCC(Predicate);
assert((CC != AArch64CC::AL) && "Unexpected condition code.");
AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg)
.addReg(AArch64::WZR, getKillRegState(true))
.addReg(AArch64::WZR, getKillRegState(true))
.addImm(invertedCC);
updateValueMap(I, ResultReg);
return true;
}
/// \brief Optimize selects of i1 if one of the operands has a 'true' or 'false'
/// value.
bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
if (!SI->getType()->isIntegerTy(1))
return false;
const Value *Src1Val, *Src2Val;
unsigned Opc = 0;
bool NeedExtraOp = false;
if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
if (CI->isOne()) {
Src1Val = SI->getCondition();
Src2Val = SI->getFalseValue();
Opc = AArch64::ORRWrr;
} else {
assert(CI->isZero());
Src1Val = SI->getFalseValue();
Src2Val = SI->getCondition();
Opc = AArch64::BICWrr;
}
} else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
if (CI->isOne()) {
Src1Val = SI->getCondition();
Src2Val = SI->getTrueValue();
Opc = AArch64::ORRWrr;
NeedExtraOp = true;
} else {
assert(CI->isZero());
Src1Val = SI->getCondition();
Src2Val = SI->getTrueValue();
Opc = AArch64::ANDWrr;
}
}
if (!Opc)
return false;
unsigned Src1Reg = getRegForValue(Src1Val);
if (!Src1Reg)
return false;
bool Src1IsKill = hasTrivialKill(Src1Val);
unsigned Src2Reg = getRegForValue(Src2Val);
if (!Src2Reg)
return false;
bool Src2IsKill = hasTrivialKill(Src2Val);
if (NeedExtraOp) {
Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
Src1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32spRegClass, Src1Reg,
Src1IsKill, Src2Reg, Src2IsKill);
updateValueMap(SI, ResultReg);
return true;
}
bool AArch64FastISel::selectSelect(const Instruction *I) {
assert(isa<SelectInst>(I) && "Expected a select instruction.");
MVT VT;
if (!isTypeSupported(I->getType(), VT))
return false;
unsigned Opc;
const TargetRegisterClass *RC;
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
Opc = AArch64::CSELWr;
RC = &AArch64::GPR32RegClass;
break;
case MVT::i64:
Opc = AArch64::CSELXr;
RC = &AArch64::GPR64RegClass;
break;
case MVT::f32:
Opc = AArch64::FCSELSrrr;
RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
Opc = AArch64::FCSELDrrr;
RC = &AArch64::FPR64RegClass;
break;
}
const SelectInst *SI = cast<SelectInst>(I);
const Value *Cond = SI->getCondition();
AArch64CC::CondCode CC = AArch64CC::NE;
AArch64CC::CondCode ExtraCC = AArch64CC::AL;
if (optimizeSelect(SI))
return true;
// Try to pickup the flags, so we don't have to emit another compare.
if (foldXALUIntrinsic(CC, I, Cond)) {
// Fake request the condition to force emission of the XALU intrinsic.
unsigned CondReg = getRegForValue(Cond);
if (!CondReg)
return false;
} else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
isValueAvailable(Cond)) {
const auto *Cmp = cast<CmpInst>(Cond);
// Try to optimize or fold the cmp.
CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
const Value *FoldSelect = nullptr;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_FALSE:
FoldSelect = SI->getFalseValue();
break;
case CmpInst::FCMP_TRUE:
FoldSelect = SI->getTrueValue();
break;
}
if (FoldSelect) {
unsigned SrcReg = getRegForValue(FoldSelect);
if (!SrcReg)
return false;
unsigned UseReg = lookUpRegForValue(SI);
if (UseReg)
MRI.clearKillFlags(UseReg);
updateValueMap(I, SrcReg);
return true;
}
// Emit the cmp.
if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
return false;
// FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
CC = getCompareCC(Predicate);
switch (Predicate) {
default:
break;
case CmpInst::FCMP_UEQ:
ExtraCC = AArch64CC::EQ;
CC = AArch64CC::VS;
break;
case CmpInst::FCMP_ONE:
ExtraCC = AArch64CC::MI;
CC = AArch64CC::GT;
break;
}
assert((CC != AArch64CC::AL) && "Unexpected condition code.");
} else {
unsigned CondReg = getRegForValue(Cond);
if (!CondReg)
return false;
bool CondIsKill = hasTrivialKill(Cond);
// Emit a TST instruction (ANDS wzr, reg, #imm).
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDSWri),
AArch64::WZR)
.addReg(CondReg, getKillRegState(CondIsKill))
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
}
unsigned Src1Reg = getRegForValue(SI->getTrueValue());
bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
unsigned Src2Reg = getRegForValue(SI->getFalseValue());
bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
if (!Src1Reg || !Src2Reg)
return false;
if (ExtraCC != AArch64CC::AL) {
Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
Src2IsKill, ExtraCC);
Src2IsKill = true;
}
unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
Src2IsKill, CC);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectFPExt(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
return false;
unsigned Op = getRegForValue(V);
if (Op == 0)
return false;
unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
ResultReg).addReg(Op);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
return false;
unsigned Op = getRegForValue(V);
if (Op == 0)
return false;
unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
ResultReg).addReg(Op);
updateValueMap(I, ResultReg);
return true;
}
// FPToUI and FPToSI
bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (SrcReg == 0)
return false;
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
if (SrcVT == MVT::f128)
return false;
unsigned Opc;
if (SrcVT == MVT::f64) {
if (Signed)
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
else
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
} else {
if (Signed)
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
else
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
}
unsigned ResultReg = createResultReg(
DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
"Unexpected value type.");
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(I->getOperand(0));
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
// Handle sign-extension.
if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
SrcReg =
emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
if (!SrcReg)
return false;
SrcIsKill = true;
}
unsigned Opc;
if (SrcVT == MVT::i64) {
if (Signed)
Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
else
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
} else {
if (Signed)
Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
else
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
}
unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
SrcIsKill);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::fastLowerArguments() {
if (!FuncInfo.CanLowerReturn)
return false;
const Function *F = FuncInfo.Fn;
if (F->isVarArg())
return false;
CallingConv::ID CC = F->getCallingConv();
if (CC != CallingConv::C)
return false;
// Only handle simple cases of up to 8 GPR and FPR each.
unsigned GPRCnt = 0;
unsigned FPRCnt = 0;
unsigned Idx = 0;
for (auto const &Arg : F->args()) {
// The first argument is at index 1.
++Idx;
if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
F->getAttributes().hasAttribute(Idx, Attribute::Nest))
return false;
Type *ArgTy = Arg.getType();
if (ArgTy->isStructTy() || ArgTy->isArrayTy())
return false;
EVT ArgVT = TLI.getValueType(ArgTy);
if (!ArgVT.isSimple())
return false;
MVT VT = ArgVT.getSimpleVT().SimpleTy;
if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
return false;
if (VT.isVector() &&
(!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
return false;
if (VT >= MVT::i1 && VT <= MVT::i64)
++GPRCnt;
else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
VT.is128BitVector())
++FPRCnt;
else
return false;
if (GPRCnt > 8 || FPRCnt > 8)
return false;
}
static const MCPhysReg Registers[6][8] = {
{ AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
AArch64::W5, AArch64::W6, AArch64::W7 },
{ AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
AArch64::X5, AArch64::X6, AArch64::X7 },
{ AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
AArch64::H5, AArch64::H6, AArch64::H7 },
{ AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
AArch64::S5, AArch64::S6, AArch64::S7 },
{ AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
AArch64::D5, AArch64::D6, AArch64::D7 },
{ AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
AArch64::Q5, AArch64::Q6, AArch64::Q7 }
};
unsigned GPRIdx = 0;
unsigned FPRIdx = 0;
for (auto const &Arg : F->args()) {
MVT VT = TLI.getSimpleValueType(Arg.getType());
unsigned SrcReg;
const TargetRegisterClass *RC;
if (VT >= MVT::i1 && VT <= MVT::i32) {
SrcReg = Registers[0][GPRIdx++];
RC = &AArch64::GPR32RegClass;
VT = MVT::i32;
} else if (VT == MVT::i64) {
SrcReg = Registers[1][GPRIdx++];
RC = &AArch64::GPR64RegClass;
} else if (VT == MVT::f16) {
SrcReg = Registers[2][FPRIdx++];
RC = &AArch64::FPR16RegClass;
} else if (VT == MVT::f32) {
SrcReg = Registers[3][FPRIdx++];
RC = &AArch64::FPR32RegClass;
} else if ((VT == MVT::f64) || VT.is64BitVector()) {
SrcReg = Registers[4][FPRIdx++];
RC = &AArch64::FPR64RegClass;
} else if (VT.is128BitVector()) {
SrcReg = Registers[5][FPRIdx++];
RC = &AArch64::FPR128RegClass;
} else
llvm_unreachable("Unexpected value type.");
unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
// FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
// Without this, EmitLiveInCopies may eliminate the livein if its only
// use is a bitcast (which isn't turned into an instruction).
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(DstReg, getKillRegState(true));
updateValueMap(&Arg, ResultReg);
}
return true;
}
bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
SmallVectorImpl<MVT> &OutVTs,
unsigned &NumBytes) {
CallingConv::ID CC = CLI.CallConv;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
NumBytes = CCInfo.getNextStackOffset();
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
.addImm(NumBytes);
// Process the args.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
const Value *ArgVal = CLI.OutVals[VA.getValNo()];
MVT ArgVT = OutVTs[VA.getValNo()];
unsigned ArgReg = getRegForValue(ArgVal);
if (!ArgReg)
return false;
// Handle arg promotion: SExt, ZExt, AExt.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::SExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
if (!ArgReg)
return false;
break;
}
case CCValAssign::AExt:
// Intentional fall-through.
case CCValAssign::ZExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
if (!ArgReg)
return false;
break;
}
default:
llvm_unreachable("Unknown arg promotion!");
}
// Now copy/store arg to correct locations.
if (VA.isRegLoc() && !VA.needsCustom()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
CLI.OutRegs.push_back(VA.getLocReg());
} else if (VA.needsCustom()) {
// FIXME: Handle custom args.
return false;
} else {
assert(VA.isMemLoc() && "Assuming store on stack.");
// Don't emit stores for undef values.
if (isa<UndefValue>(ArgVal))
continue;
// Need to store on the stack.
unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
unsigned BEAlign = 0;
if (ArgSize < 8 && !Subtarget->isLittleEndian())
BEAlign = 8 - ArgSize;
Address Addr;
Addr.setKind(Address::RegBase);
Addr.setReg(AArch64::SP);
Addr.setOffset(VA.getLocMemOffset() + BEAlign);
unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getStack(Addr.getOffset()),
MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
if (!emitStore(ArgVT, ArgReg, Addr, MMO))
return false;
}
}
return true;
}
bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
unsigned NumBytes) {
CallingConv::ID CC = CLI.CallConv;
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
.addImm(NumBytes).addImm(0);
// Now the return value.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
// Only handle a single return value.
if (RVLocs.size() != 1)
return false;
// Copy all of the result registers out of their specified physreg.
MVT CopyVT = RVLocs[0].getValVT();
unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(RVLocs[0].getLocReg());
CLI.InRegs.push_back(RVLocs[0].getLocReg());
CLI.ResultReg = ResultReg;
CLI.NumResultRegs = 1;
}
return true;
}
bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
CallingConv::ID CC = CLI.CallConv;
bool IsTailCall = CLI.IsTailCall;
bool IsVarArg = CLI.IsVarArg;
const Value *Callee = CLI.Callee;
const char *SymName = CLI.SymName;
if (!Callee && !SymName)
return false;
// Allow SelectionDAG isel to handle tail calls.
if (IsTailCall)
return false;
CodeModel::Model CM = TM.getCodeModel();
// Only support the small and large code model.
if (CM != CodeModel::Small && CM != CodeModel::Large)
return false;
// FIXME: Add large code model support for ELF.
if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
return false;
// Let SDISel handle vararg functions.
if (IsVarArg)
return false;
// FIXME: Only handle *simple* calls for now.
MVT RetVT;
if (CLI.RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(CLI.RetTy, RetVT))
return false;
for (auto Flag : CLI.OutFlags)
if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
return false;
// Set up the argument vectors.
SmallVector<MVT, 16> OutVTs;
OutVTs.reserve(CLI.OutVals.size());
for (auto *Val : CLI.OutVals) {
MVT VT;
if (!isTypeLegal(Val->getType(), VT) &&
!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
return false;
// We don't handle vector parameters yet.
if (VT.isVector() || VT.getSizeInBits() > 64)
return false;
OutVTs.push_back(VT);
}
Address Addr;
if (Callee && !computeCallAddress(Callee, Addr))
return false;
// Handle the arguments now that we've gotten them.
unsigned NumBytes;
if (!processCallArgs(CLI, OutVTs, NumBytes))
return false;
// Issue the call.
MachineInstrBuilder MIB;
if (CM == CodeModel::Small) {
const MCInstrDesc &II = TII.get(Addr.getReg() ? AArch64::BLR : AArch64::BL);
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
if (SymName)
MIB.addExternalSymbol(SymName, 0);
else if (Addr.getGlobalValue())
MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
else if (Addr.getReg()) {
unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
MIB.addReg(Reg);
} else
return false;
} else {
unsigned CallReg = 0;
if (SymName) {
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGE);
CallReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
CallReg)
.addReg(ADRPReg)
.addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
AArch64II::MO_NC);
} else if (Addr.getGlobalValue())
CallReg = materializeGV(Addr.getGlobalValue());
else if (Addr.getReg())
CallReg = Addr.getReg();
if (!CallReg)
return false;
const MCInstrDesc &II = TII.get(AArch64::BLR);
CallReg = constrainOperandRegClass(II, CallReg, 0);
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
}
// Add implicit physical register uses to the call.
for (auto Reg : CLI.OutRegs)
MIB.addReg(Reg, RegState::Implicit);
// Add a register mask with the call-preserved registers.
// Proper defs for return values will be added by setPhysRegsDeadExcept().
MIB.addRegMask(TRI.getCallPreservedMask(CC));
CLI.Call = MIB;
// Finish off the call including any return values.
return finishCall(CLI, RetVT, NumBytes);
}
bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
if (Alignment)
return Len / Alignment <= 4;
else
return Len < 32;
}
bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
uint64_t Len, unsigned Alignment) {
// Make sure we don't bloat code by inlining very large memcpy's.
if (!isMemCpySmall(Len, Alignment))
return false;
int64_t UnscaledOffset = 0;
Address OrigDest = Dest;
Address OrigSrc = Src;
while (Len) {
MVT VT;
if (!Alignment || Alignment >= 8) {
if (Len >= 8)
VT = MVT::i64;
else if (Len >= 4)
VT = MVT::i32;
else if (Len >= 2)
VT = MVT::i16;
else {
VT = MVT::i8;
}
} else {
// Bound based on alignment.
if (Len >= 4 && Alignment == 4)
VT = MVT::i32;
else if (Len >= 2 && Alignment == 2)
VT = MVT::i16;
else {
VT = MVT::i8;
}
}
unsigned ResultReg = emitLoad(VT, VT, Src);
if (!ResultReg)
return false;
if (!emitStore(VT, ResultReg, Dest))
return false;
int64_t Size = VT.getSizeInBits() / 8;
Len -= Size;
UnscaledOffset += Size;
// We need to recompute the unscaled offset for each iteration.
Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
}
return true;
}
/// \brief Check if it is possible to fold the condition from the XALU intrinsic
/// into the user. The condition code will only be updated on success.
bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
const Instruction *I,
const Value *Cond) {
if (!isa<ExtractValueInst>(Cond))
return false;
const auto *EV = cast<ExtractValueInst>(Cond);
if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
return false;
const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
MVT RetVT;
const Function *Callee = II->getCalledFunction();
Type *RetTy =
cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
if (!isTypeLegal(RetTy, RetVT))
return false;
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return false;
const Value *LHS = II->getArgOperand(0);
const Value *RHS = II->getArgOperand(1);
// Canonicalize immediate to the RHS.
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
isCommutativeIntrinsic(II))
std::swap(LHS, RHS);
// Simplify multiplies.
unsigned IID = II->getIntrinsicID();
switch (IID) {
default:
break;
case Intrinsic::smul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2)
IID = Intrinsic::sadd_with_overflow;
break;
case Intrinsic::umul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2)
IID = Intrinsic::uadd_with_overflow;
break;
}
AArch64CC::CondCode TmpCC;
switch (IID) {
default:
return false;
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
TmpCC = AArch64CC::VS;
break;
case Intrinsic::uadd_with_overflow:
TmpCC = AArch64CC::HS;
break;
case Intrinsic::usub_with_overflow:
TmpCC = AArch64CC::LO;
break;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
TmpCC = AArch64CC::NE;
break;
}
// Check if both instructions are in the same basic block.
if (!isValueAvailable(II))
return false;
// Make sure nothing is in the way
BasicBlock::const_iterator Start = I;
BasicBlock::const_iterator End = II;
for (auto Itr = std::prev(Start); Itr != End; --Itr) {
// We only expect extractvalue instructions between the intrinsic and the
// instruction to be selected.
if (!isa<ExtractValueInst>(Itr))
return false;
// Check that the extractvalue operand comes from the intrinsic.
const auto *EVI = cast<ExtractValueInst>(Itr);
if (EVI->getAggregateOperand() != II)
return false;
}
CC = TmpCC;
return true;
}
bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
// FIXME: Handle more intrinsics.
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::frameaddress: {
MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
MFI->setFrameAddressIsTaken(true);
const AArch64RegisterInfo *RegInfo =
static_cast<const AArch64RegisterInfo *>(
TM.getSubtargetImpl()->getRegisterInfo());
unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
unsigned SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
// Recursively load frame address
// ldr x0, [fp]
// ldr x0, [x0]
// ldr x0, [x0]
// ...
unsigned DestReg;
unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
while (Depth--) {
DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
SrcReg, /*IsKill=*/true, 0);
assert(DestReg && "Unexpected LDR instruction emission failure.");
SrcReg = DestReg;
}
updateValueMap(II, SrcReg);
return true;
}
case Intrinsic::memcpy:
case Intrinsic::memmove: {
const auto *MTI = cast<MemTransferInst>(II);
// Don't handle volatile.
if (MTI->isVolatile())
return false;
// Disable inlining for memmove before calls to ComputeAddress. Otherwise,
// we would emit dead code because we don't currently handle memmoves.
bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
// Small memcpy's are common enough that we want to do them without a call
// if possible.
uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
unsigned Alignment = MTI->getAlignment();
if (isMemCpySmall(Len, Alignment)) {
Address Dest, Src;
if (!computeAddress(MTI->getRawDest(), Dest) ||
!computeAddress(MTI->getRawSource(), Src))
return false;
if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
return true;
}
}
if (!MTI->getLength()->getType()->isIntegerTy(64))
return false;
if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
}
case Intrinsic::memset: {
const MemSetInst *MSI = cast<MemSetInst>(II);
// Don't handle volatile.
if (MSI->isVolatile())
return false;
if (!MSI->getLength()->getType()->isIntegerTy(64))
return false;
if (MSI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
}
case Intrinsic::sin:
case Intrinsic::cos:
case Intrinsic::pow: {
MVT RetVT;
if (!isTypeLegal(II->getType(), RetVT))
return false;
if (RetVT != MVT::f32 && RetVT != MVT::f64)
return false;
static const RTLIB::Libcall LibCallTable[3][2] = {
{ RTLIB::SIN_F32, RTLIB::SIN_F64 },
{ RTLIB::COS_F32, RTLIB::COS_F64 },
{ RTLIB::POW_F32, RTLIB::POW_F64 }
};
RTLIB::Libcall LC;
bool Is64Bit = RetVT == MVT::f64;
switch (II->getIntrinsicID()) {
default:
llvm_unreachable("Unexpected intrinsic.");
case Intrinsic::sin:
LC = LibCallTable[0][Is64Bit];
break;
case Intrinsic::cos:
LC = LibCallTable[1][Is64Bit];
break;
case Intrinsic::pow:
LC = LibCallTable[2][Is64Bit];
break;
}
ArgListTy Args;
Args.reserve(II->getNumArgOperands());
// Populate the argument list.
for (auto &Arg : II->arg_operands()) {
ArgListEntry Entry;
Entry.Val = Arg;
Entry.Ty = Arg->getType();
Args.push_back(Entry);
}
CallLoweringInfo CLI;
CLI.setCallee(TLI.getLibcallCallingConv(LC), II->getType(),
TLI.getLibcallName(LC), std::move(Args));
if (!lowerCallTo(CLI))
return false;
updateValueMap(II, CLI.ResultReg);
return true;
}
case Intrinsic::fabs: {
MVT VT;
if (!isTypeLegal(II->getType(), VT))
return false;
unsigned Opc;
switch (VT.SimpleTy) {
default:
return false;
case MVT::f32:
Opc = AArch64::FABSSr;
break;
case MVT::f64:
Opc = AArch64::FABSDr;
break;
}
unsigned SrcReg = getRegForValue(II->getOperand(0));
if (!SrcReg)
return false;
bool SrcRegIsKill = hasTrivialKill(II->getOperand(0));
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg, getKillRegState(SrcRegIsKill));
updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::trap: {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
.addImm(1);
return true;
}
case Intrinsic::sqrt: {
Type *RetTy = II->getCalledFunction()->getReturnType();
MVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
unsigned Op0Reg = getRegForValue(II->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(II->getOperand(0));
unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
if (!ResultReg)
return false;
updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
// This implements the basic lowering of the xalu with overflow intrinsics.
const Function *Callee = II->getCalledFunction();
auto *Ty = cast<StructType>(Callee->getReturnType());
Type *RetTy = Ty->getTypeAtIndex(0U);
MVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
if (VT != MVT::i32 && VT != MVT::i64)
return false;
const Value *LHS = II->getArgOperand(0);
const Value *RHS = II->getArgOperand(1);
// Canonicalize immediate to the RHS.
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
isCommutativeIntrinsic(II))
std::swap(LHS, RHS);
// Simplify multiplies.
unsigned IID = II->getIntrinsicID();
switch (IID) {
default:
break;
case Intrinsic::smul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2) {
IID = Intrinsic::sadd_with_overflow;
RHS = LHS;
}
break;
case Intrinsic::umul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2) {
IID = Intrinsic::uadd_with_overflow;
RHS = LHS;
}
break;
}
unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0;
AArch64CC::CondCode CC = AArch64CC::Invalid;
switch (IID) {
default: llvm_unreachable("Unexpected intrinsic!");
case Intrinsic::sadd_with_overflow:
ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::VS;
break;
case Intrinsic::uadd_with_overflow:
ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::HS;
break;
case Intrinsic::ssub_with_overflow:
ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::VS;
break;
case Intrinsic::usub_with_overflow:
ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::LO;
break;
case Intrinsic::smul_with_overflow: {
CC = AArch64CC::NE;
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return false;
bool LHSIsKill = hasTrivialKill(LHS);
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
bool RHSIsKill = hasTrivialKill(RHS);
if (VT == MVT::i32) {
MulReg = emitSMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned ShiftReg = emitLSR_ri(MVT::i64, MVT::i64, MulReg,
/*IsKill=*/false, 32);
MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
AArch64::sub_32);
ShiftReg = fastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
AArch64::sub_32);
emitSubs_rs(VT, ShiftReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
AArch64_AM::ASR, 31, /*WantResult=*/false);
} else {
assert(VT == MVT::i64 && "Unexpected value type.");
MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
RHSReg, RHSIsKill);
emitSubs_rs(VT, SMULHReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
AArch64_AM::ASR, 63, /*WantResult=*/false);
}
break;
}
case Intrinsic::umul_with_overflow: {
CC = AArch64CC::NE;
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return false;
bool LHSIsKill = hasTrivialKill(LHS);
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
bool RHSIsKill = hasTrivialKill(RHS);
if (VT == MVT::i32) {
MulReg = emitUMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
emitSubs_rs(MVT::i64, AArch64::XZR, /*IsKill=*/true, MulReg,
/*IsKill=*/false, AArch64_AM::LSR, 32,
/*WantResult=*/false);
MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
AArch64::sub_32);
} else {
assert(VT == MVT::i64 && "Unexpected value type.");
MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
RHSReg, RHSIsKill);
emitSubs_rr(VT, AArch64::XZR, /*IsKill=*/true, UMULHReg,
/*IsKill=*/false, /*WantResult=*/false);
}
break;
}
}
if (MulReg) {
ResultReg1 = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg);
}
ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass,
AArch64::WZR, /*IsKill=*/true, AArch64::WZR,
/*IsKill=*/true, getInvertedCondCode(CC));
(void)ResultReg2;
assert((ResultReg1 + 1) == ResultReg2 &&
"Nonconsecutive result registers.");
updateValueMap(II, ResultReg1, 2);
return true;
}
}
return false;
}
bool AArch64FastISel::selectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
const Function &F = *I->getParent()->getParent();
if (!FuncInfo.CanLowerReturn)
return false;
if (F.isVarArg())
return false;
// Build a list of return value registers.
SmallVector<unsigned, 4> RetRegs;
if (Ret->getNumOperands() > 0) {
CallingConv::ID CC = F.getCallingConv();
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
CCInfo.AnalyzeReturn(Outs, RetCC);
// Only handle a single return value for now.
if (ValLocs.size() != 1)
return false;
CCValAssign &VA = ValLocs[0];
const Value *RV = Ret->getOperand(0);
// Don't bother handling odd stuff for now.
if ((VA.getLocInfo() != CCValAssign::Full) &&
(VA.getLocInfo() != CCValAssign::BCvt))
return false;
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
unsigned SrcReg = Reg + VA.getValNo();
unsigned DestReg = VA.getLocReg();
// Avoid a cross-class copy. This is very unlikely.
if (!MRI.getRegClass(SrcReg)->contains(DestReg))
return false;
EVT RVEVT = TLI.getValueType(RV->getType());
if (!RVEVT.isSimple())
return false;
// Vectors (of > 1 lane) in big endian need tricky handling.
if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1 &&
!Subtarget->isLittleEndian())
return false;
MVT RVVT = RVEVT.getSimpleVT();
if (RVVT == MVT::f128)
return false;
MVT DestVT = VA.getValVT();
// Special handling for extended integers.
if (RVVT != DestVT) {
if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
return false;
if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
return false;
bool IsZExt = Outs[0].Flags.isZExt();
SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
if (SrcReg == 0)
return false;
}
// Make the copy.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
// Add register to return instruction.
RetRegs.push_back(VA.getLocReg());
}
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::RET_ReallyLR));
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
MIB.addReg(RetRegs[i], RegState::Implicit);
return true;
}
bool AArch64FastISel::selectTrunc(const Instruction *I) {
Type *DestTy = I->getType();
Value *Op = I->getOperand(0);
Type *SrcTy = Op->getType();
EVT SrcEVT = TLI.getValueType(SrcTy, true);
EVT DestEVT = TLI.getValueType(DestTy, true);
if (!SrcEVT.isSimple())
return false;
if (!DestEVT.isSimple())
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
MVT DestVT = DestEVT.getSimpleVT();
if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
SrcVT != MVT::i8)
return false;
if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
DestVT != MVT::i1)
return false;
unsigned SrcReg = getRegForValue(Op);
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(Op);
// If we're truncating from i64 to a smaller non-legal type then generate an
// AND. Otherwise, we know the high bits are undefined and a truncate only
// generate a COPY. We cannot mark the source register also as result
// register, because this can incorrectly transfer the kill flag onto the
// source register.
unsigned ResultReg;
if (SrcVT == MVT::i64) {
uint64_t Mask = 0;
switch (DestVT.SimpleTy) {
default:
// Trunc i64 to i32 is handled by the target-independent fast-isel.
return false;
case MVT::i1:
Mask = 0x1;
break;
case MVT::i8:
Mask = 0xff;
break;
case MVT::i16:
Mask = 0xffff;
break;
}
// Issue an extract_subreg to get the lower 32-bits.
unsigned Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
AArch64::sub_32);
// Create the AND instruction which performs the actual truncation.
ResultReg = emitAnd_ri(MVT::i32, Reg32, /*IsKill=*/true, Mask);
assert(ResultReg && "Unexpected AND instruction emission failure.");
} else {
ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(SrcReg, getKillRegState(SrcIsKill));
}
updateValueMap(I, ResultReg);
return true;
}
unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) {
assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
DestVT == MVT::i64) &&
"Unexpected value type.");
// Handle i8 and i16 as i32.
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
if (IsZExt) {
unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
assert(ResultReg && "Unexpected AND instruction emission failure.");
if (DestVT == MVT::i64) {
// We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
// upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Reg64)
.addImm(0)
.addReg(ResultReg)
.addImm(AArch64::sub_32);
ResultReg = Reg64;
}
return ResultReg;
} else {
if (DestVT == MVT::i64) {
// FIXME: We're SExt i1 to i64.
return 0;
}
return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg,
/*TODO:IsKill=*/false, 0, 0);
}
}
unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
unsigned Opc, ZReg;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8:
case MVT::i16:
case MVT::i32:
RetVT = MVT::i32;
Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
case MVT::i64:
Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
return fastEmitInst_rrr(Opc, RC, Op0, Op0IsKill, Op1, Op1IsKill,
/*IsKill=*/ZReg, true);
}
unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
if (RetVT != MVT::i64)
return 0;
return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass,
Op0, Op0IsKill, Op1, Op1IsKill,
AArch64::XZR, /*IsKill=*/true);
}
unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
if (RetVT != MVT::i64)
return 0;
return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass,
Op0, Op0IsKill, Op1, Op1IsKill,
AArch64::XZR, /*IsKill=*/true);
}
unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill) {
unsigned Opc = 0;
bool NeedTrunc = false;
uint64_t Mask = 0;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff; break;
case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break;
case MVT::i32: Opc = AArch64::LSLVWr; break;
case MVT::i64: Opc = AArch64::LSLVXr; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
if (NeedTrunc) {
Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
Op1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
Op1IsKill);
if (NeedTrunc)
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
return ResultReg;
}
unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
bool Op0IsKill, uint64_t Shift,
bool IsZExt) {
assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
"Unexpected source/return type pair.");
assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
"Unexpected source value type.");
assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
RetVT == MVT::i64) && "Unexpected return value type.");
bool Is64Bit = (RetVT == MVT::i64);
unsigned RegSize = Is64Bit ? 64 : 32;
unsigned DstBits = RetVT.getSizeInBits();
unsigned SrcBits = SrcVT.getSizeInBits();
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
// Just emit a copy for "zero" shifts.
if (Shift == 0) {
if (RetVT == SrcVT) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill));
return ResultReg;
} else
return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
}
// Don't deal with undefined shifts.
if (Shift >= DstBits)
return 0;
// For immediate shifts we can fold the zero-/sign-extension into the shift.
// {S|U}BFM Wd, Wn, #r, #s
// Wd<32+s-r,32-r> = Wn<s:0> when r > s
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = shl i16 %1, 4
// Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7
// 0b1111_1111_1111_1111__1111_1010_1010_0000 sext
// 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext
// 0b0000_0000_0000_0000__0000_1010_1010_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = shl i16 %1, 8
// Wd<32+7-24,32-24> = Wn<7:0>
// 0b1111_1111_1111_1111__1010_1010_0000_0000 sext
// 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext
// 0b0000_0000_0000_0000__1010_1010_0000_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = shl i16 %1, 12
// Wd<32+3-20,32-20> = Wn<3:0>
// 0b1111_1111_1111_1111__1010_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext
// 0b0000_0000_0000_0000__1010_0000_0000_0000 zext
unsigned ImmR = RegSize - Shift;
// Limit the width to the length of the source type.
unsigned ImmS = std::min<unsigned>(SrcBits - 1, DstBits - 1 - Shift);
static const unsigned OpcTable[2][2] = {
{AArch64::SBFMWri, AArch64::SBFMXri},
{AArch64::UBFMWri, AArch64::UBFMXri}
};
unsigned Opc = OpcTable[IsZExt][Is64Bit];
if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
unsigned TmpReg = MRI.createVirtualRegister(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
.addReg(Op0, getKillRegState(Op0IsKill))
.addImm(AArch64::sub_32);
Op0 = TmpReg;
Op0IsKill = true;
}
return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
}
unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill) {
unsigned Opc = 0;
bool NeedTrunc = false;
uint64_t Mask = 0;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff; break;
case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break;
case MVT::i32: Opc = AArch64::LSRVWr; break;
case MVT::i64: Opc = AArch64::LSRVXr; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
if (NeedTrunc) {
Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Op0IsKill, Mask);
Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
Op0IsKill = Op1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
Op1IsKill);
if (NeedTrunc)
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
return ResultReg;
}
unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
bool Op0IsKill, uint64_t Shift,
bool IsZExt) {
assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
"Unexpected source/return type pair.");
assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
"Unexpected source value type.");
assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
RetVT == MVT::i64) && "Unexpected return value type.");
bool Is64Bit = (RetVT == MVT::i64);
unsigned RegSize = Is64Bit ? 64 : 32;
unsigned DstBits = RetVT.getSizeInBits();
unsigned SrcBits = SrcVT.getSizeInBits();
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
// Just emit a copy for "zero" shifts.
if (Shift == 0) {
if (RetVT == SrcVT) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill));
return ResultReg;
} else
return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
}
// Don't deal with undefined shifts.
if (Shift >= DstBits)
return 0;
// For immediate shifts we can fold the zero-/sign-extension into the shift.
// {S|U}BFM Wd, Wn, #r, #s
// Wd<s-r:0> = Wn<s:r> when r <= s
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = lshr i16 %1, 4
// Wd<7-4:0> = Wn<7:4>
// 0b0000_0000_0000_0000__0000_1111_1111_1010 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
// 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = lshr i16 %1, 8
// Wd<7-7,0> = Wn<7:7>
// 0b0000_0000_0000_0000__0000_0000_1111_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = lshr i16 %1, 12
// Wd<7-7,0> = Wn<7:7> <- clamp r to 7
// 0b0000_0000_0000_0000__0000_0000_0000_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
if (Shift >= SrcBits && IsZExt)
return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
// It is not possible to fold a sign-extend into the LShr instruction. In this
// case emit a sign-extend.
if (!IsZExt) {
Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt);
if (!Op0)
return 0;
Op0IsKill = true;
SrcVT = RetVT;
SrcBits = SrcVT.getSizeInBits();
IsZExt = true;
}
unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
unsigned ImmS = SrcBits - 1;
static const unsigned OpcTable[2][2] = {
{AArch64::SBFMWri, AArch64::SBFMXri},
{AArch64::UBFMWri, AArch64::UBFMXri}
};
unsigned Opc = OpcTable[IsZExt][Is64Bit];
if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
unsigned TmpReg = MRI.createVirtualRegister(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
.addReg(Op0, getKillRegState(Op0IsKill))
.addImm(AArch64::sub_32);
Op0 = TmpReg;
Op0IsKill = true;
}
return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
}
unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill) {
unsigned Opc = 0;
bool NeedTrunc = false;
uint64_t Mask = 0;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff; break;
case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break;
case MVT::i32: Opc = AArch64::ASRVWr; break;
case MVT::i64: Opc = AArch64::ASRVXr; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
if (NeedTrunc) {
Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*IsZExt=*/false);
Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
Op0IsKill = Op1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
Op1IsKill);
if (NeedTrunc)
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
return ResultReg;
}
unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
bool Op0IsKill, uint64_t Shift,
bool IsZExt) {
assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
"Unexpected source/return type pair.");
assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
"Unexpected source value type.");
assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
RetVT == MVT::i64) && "Unexpected return value type.");
bool Is64Bit = (RetVT == MVT::i64);
unsigned RegSize = Is64Bit ? 64 : 32;
unsigned DstBits = RetVT.getSizeInBits();
unsigned SrcBits = SrcVT.getSizeInBits();
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
// Just emit a copy for "zero" shifts.
if (Shift == 0) {
if (RetVT == SrcVT) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill));
return ResultReg;
} else
return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
}
// Don't deal with undefined shifts.
if (Shift >= DstBits)
return 0;
// For immediate shifts we can fold the zero-/sign-extension into the shift.
// {S|U}BFM Wd, Wn, #r, #s
// Wd<s-r:0> = Wn<s:r> when r <= s
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = ashr i16 %1, 4
// Wd<7-4:0> = Wn<7:4>
// 0b1111_1111_1111_1111__1111_1111_1111_1010 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
// 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = ashr i16 %1, 8
// Wd<7-7,0> = Wn<7:7>
// 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = ashr i16 %1, 12
// Wd<7-7,0> = Wn<7:7> <- clamp r to 7
// 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
if (Shift >= SrcBits && IsZExt)
return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
unsigned ImmS = SrcBits - 1;
static const unsigned OpcTable[2][2] = {
{AArch64::SBFMWri, AArch64::SBFMXri},
{AArch64::UBFMWri, AArch64::UBFMXri}
};
unsigned Opc = OpcTable[IsZExt][Is64Bit];
if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
unsigned TmpReg = MRI.createVirtualRegister(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
.addReg(Op0, getKillRegState(Op0IsKill))
.addImm(AArch64::sub_32);
Op0 = TmpReg;
Op0IsKill = true;
}
return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
}
unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
bool IsZExt) {
assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
// FastISel does not have plumbing to deal with extensions where the SrcVT or
// DestVT are odd things, so test to make sure that they are both types we can
// handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
// bail out to SelectionDAG.
if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
(DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
((SrcVT != MVT::i1) && (SrcVT != MVT::i8) &&
(SrcVT != MVT::i16) && (SrcVT != MVT::i32)))
return 0;
unsigned Opc;
unsigned Imm = 0;
switch (SrcVT.SimpleTy) {
default:
return 0;
case MVT::i1:
return emiti1Ext(SrcReg, DestVT, IsZExt);
case MVT::i8:
if (DestVT == MVT::i64)
Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 7;
break;
case MVT::i16:
if (DestVT == MVT::i64)
Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 15;
break;
case MVT::i32:
assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
Imm = 31;
break;
}
// Handle i8 and i16 as i32.
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
else if (DestVT == MVT::i64) {
unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Src64)
.addImm(0)
.addReg(SrcReg)
.addImm(AArch64::sub_32);
SrcReg = Src64;
}
const TargetRegisterClass *RC =
(DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
return fastEmitInst_rii(Opc, RC, SrcReg, /*TODO:IsKill=*/false, 0, Imm);
}
static bool isZExtLoad(const MachineInstr *LI) {
switch (LI->getOpcode()) {
default:
return false;
case AArch64::LDURBBi:
case AArch64::LDURHHi:
case AArch64::LDURWi:
case AArch64::LDRBBui:
case AArch64::LDRHHui:
case AArch64::LDRWui:
case AArch64::LDRBBroX:
case AArch64::LDRHHroX:
case AArch64::LDRWroX:
case AArch64::LDRBBroW:
case AArch64::LDRHHroW:
case AArch64::LDRWroW:
return true;
}
}
static bool isSExtLoad(const MachineInstr *LI) {
switch (LI->getOpcode()) {
default:
return false;
case AArch64::LDURSBWi:
case AArch64::LDURSHWi:
case AArch64::LDURSBXi:
case AArch64::LDURSHXi:
case AArch64::LDURSWi:
case AArch64::LDRSBWui:
case AArch64::LDRSHWui:
case AArch64::LDRSBXui:
case AArch64::LDRSHXui:
case AArch64::LDRSWui:
case AArch64::LDRSBWroX:
case AArch64::LDRSHWroX:
case AArch64::LDRSBXroX:
case AArch64::LDRSHXroX:
case AArch64::LDRSWroX:
case AArch64::LDRSBWroW:
case AArch64::LDRSHWroW:
case AArch64::LDRSBXroW:
case AArch64::LDRSHXroW:
case AArch64::LDRSWroW:
return true;
}
}
bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT,
MVT SrcVT) {
const auto *LI = dyn_cast<LoadInst>(I->getOperand(0));
if (!LI || !LI->hasOneUse())
return false;
// Check if the load instruction has already been selected.
unsigned Reg = lookUpRegForValue(LI);
if (!Reg)
return false;
MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
if (!MI)
return false;
// Check if the correct load instruction has been emitted - SelectionDAG might
// have emitted a zero-extending load, but we need a sign-extending load.
bool IsZExt = isa<ZExtInst>(I);
const auto *LoadMI = MI;
if (LoadMI->getOpcode() == TargetOpcode::COPY &&
LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) {
unsigned LoadReg = MI->getOperand(1).getReg();
LoadMI = MRI.getUniqueVRegDef(LoadReg);
assert(LoadMI && "Expected valid instruction");
}
if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI)))
return false;
// Nothing to be done.
if (RetVT != MVT::i64 || SrcVT > MVT::i32) {
updateValueMap(I, Reg);
return true;
}
if (IsZExt) {
unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Reg64)
.addImm(0)
.addReg(Reg, getKillRegState(true))
.addImm(AArch64::sub_32);
Reg = Reg64;
} else {
assert((MI->getOpcode() == TargetOpcode::COPY &&
MI->getOperand(1).getSubReg() == AArch64::sub_32) &&
"Expected copy instruction");
Reg = MI->getOperand(1).getReg();
MI->eraseFromParent();
}
updateValueMap(I, Reg);
return true;
}
bool AArch64FastISel::selectIntExt(const Instruction *I) {
assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
"Unexpected integer extend instruction.");
MVT RetVT;
MVT SrcVT;
if (!isTypeSupported(I->getType(), RetVT))
return false;
if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT))
return false;
// Try to optimize already sign-/zero-extended values from load instructions.
if (optimizeIntExtLoad(I, RetVT, SrcVT))
return true;
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(I->getOperand(0));
// Try to optimize already sign-/zero-extended values from function arguments.
bool IsZExt = isa<ZExtInst>(I);
if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0))) {
if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) {
if (RetVT == MVT::i64 && SrcVT != MVT::i64) {
unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), ResultReg)
.addImm(0)
.addReg(SrcReg, getKillRegState(SrcIsKill))
.addImm(AArch64::sub_32);
SrcReg = ResultReg;
}
// Conservatively clear all kill flags from all uses, because we are
// replacing a sign-/zero-extend instruction at IR level with a nop at MI
// level. The result of the instruction at IR level might have been
// trivially dead, which is now not longer true.
unsigned UseReg = lookUpRegForValue(I);
if (UseReg)
MRI.clearKillFlags(UseReg);
updateValueMap(I, SrcReg);
return true;
}
}
unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) {
EVT DestEVT = TLI.getValueType(I->getType(), true);
if (!DestEVT.isSimple())
return false;
MVT DestVT = DestEVT.getSimpleVT();
if (DestVT != MVT::i64 && DestVT != MVT::i32)
return false;
unsigned DivOpc;
bool Is64bit = (DestVT == MVT::i64);
switch (ISDOpcode) {
default:
return false;
case ISD::SREM:
DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
break;
case ISD::UREM:
DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
break;
}
unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
bool Src1IsKill = hasTrivialKill(I->getOperand(1));
const TargetRegisterClass *RC =
(DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, /*IsKill=*/false,
Src1Reg, /*IsKill=*/false);
assert(QuotReg && "Unexpected DIV instruction emission failure.");
// The remainder is computed as numerator - (quotient * denominator) using the
// MSUB instruction.
unsigned ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, /*IsKill=*/true,
Src1Reg, Src1IsKill, Src0Reg,
Src0IsKill);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectMul(const Instruction *I) {
MVT VT;
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
if (VT.isVector())
return selectBinaryOp(I, ISD::MUL);
const Value *Src0 = I->getOperand(0);
const Value *Src1 = I->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(Src0))
if (C->getValue().isPowerOf2())
std::swap(Src0, Src1);
// Try to simplify to a shift instruction.
if (const auto *C = dyn_cast<ConstantInt>(Src1))
if (C->getValue().isPowerOf2()) {
uint64_t ShiftVal = C->getValue().logBase2();
MVT SrcVT = VT;
bool IsZExt = true;
if (const auto *ZExt = dyn_cast<ZExtInst>(Src0)) {
if (!isIntExtFree(ZExt)) {
MVT VT;
if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) {
SrcVT = VT;
IsZExt = true;
Src0 = ZExt->getOperand(0);
}
}
} else if (const auto *SExt = dyn_cast<SExtInst>(Src0)) {
if (!isIntExtFree(SExt)) {
MVT VT;
if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) {
SrcVT = VT;
IsZExt = false;
Src0 = SExt->getOperand(0);
}
}
}
unsigned Src0Reg = getRegForValue(Src0);
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(Src0);
unsigned ResultReg =
emitLSL_ri(VT, SrcVT, Src0Reg, Src0IsKill, ShiftVal, IsZExt);
if (ResultReg) {
updateValueMap(I, ResultReg);
return true;
}
}
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
bool Src1IsKill = hasTrivialKill(I->getOperand(1));
unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectShift(const Instruction *I) {
MVT RetVT;
if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true))
return false;
if (RetVT.isVector())
return selectOperator(I, I->getOpcode());
if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
unsigned ResultReg = 0;
uint64_t ShiftVal = C->getZExtValue();
MVT SrcVT = RetVT;
bool IsZExt = (I->getOpcode() == Instruction::AShr) ? false : true;
const Value *Op0 = I->getOperand(0);
if (const auto *ZExt = dyn_cast<ZExtInst>(Op0)) {
if (!isIntExtFree(ZExt)) {
MVT TmpVT;
if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) {
SrcVT = TmpVT;
IsZExt = true;
Op0 = ZExt->getOperand(0);
}
}
} else if (const auto *SExt = dyn_cast<SExtInst>(Op0)) {
if (!isIntExtFree(SExt)) {
MVT TmpVT;
if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) {
SrcVT = TmpVT;
IsZExt = false;
Op0 = SExt->getOperand(0);
}
}
}
unsigned Op0Reg = getRegForValue(Op0);
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(Op0);
switch (I->getOpcode()) {
default: llvm_unreachable("Unexpected instruction.");
case Instruction::Shl:
ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
break;
case Instruction::AShr:
ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
break;
case Instruction::LShr:
ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (!Op1Reg)
return false;
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
unsigned ResultReg = 0;
switch (I->getOpcode()) {
default: llvm_unreachable("Unexpected instruction.");
case Instruction::Shl:
ResultReg = emitLSL_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
break;
case Instruction::AShr:
ResultReg = emitASR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
break;
case Instruction::LShr:
ResultReg = emitLSR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectBitCast(const Instruction *I) {
MVT RetVT, SrcVT;
if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
return false;
if (!isTypeLegal(I->getType(), RetVT))
return false;
unsigned Opc;
if (RetVT == MVT::f32 && SrcVT == MVT::i32)
Opc = AArch64::FMOVWSr;
else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
Opc = AArch64::FMOVXDr;
else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
Opc = AArch64::FMOVSWr;
else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
Opc = AArch64::FMOVDXr;
else
return false;
const TargetRegisterClass *RC = nullptr;
switch (RetVT.SimpleTy) {
default: llvm_unreachable("Unexpected value type.");
case MVT::i32: RC = &AArch64::GPR32RegClass; break;
case MVT::i64: RC = &AArch64::GPR64RegClass; break;
case MVT::f32: RC = &AArch64::FPR32RegClass; break;
case MVT::f64: RC = &AArch64::FPR64RegClass; break;
}
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
unsigned ResultReg = fastEmitInst_r(Opc, RC, Op0Reg, Op0IsKill);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectFRem(const Instruction *I) {
MVT RetVT;
if (!isTypeLegal(I->getType(), RetVT))
return false;
RTLIB::Libcall LC;
switch (RetVT.SimpleTy) {
default:
return false;
case MVT::f32:
LC = RTLIB::REM_F32;
break;
case MVT::f64:
LC = RTLIB::REM_F64;
break;
}
ArgListTy Args;
Args.reserve(I->getNumOperands());
// Populate the argument list.
for (auto &Arg : I->operands()) {
ArgListEntry Entry;
Entry.Val = Arg;
Entry.Ty = Arg->getType();
Args.push_back(Entry);
}
CallLoweringInfo CLI;
CLI.setCallee(TLI.getLibcallCallingConv(LC), I->getType(),
TLI.getLibcallName(LC), std::move(Args));
if (!lowerCallTo(CLI))
return false;
updateValueMap(I, CLI.ResultReg);
return true;
}
bool AArch64FastISel::selectSDiv(const Instruction *I) {
MVT VT;
if (!isTypeLegal(I->getType(), VT))
return false;
if (!isa<ConstantInt>(I->getOperand(1)))
return selectBinaryOp(I, ISD::SDIV);
const APInt &C = cast<ConstantInt>(I->getOperand(1))->getValue();
if ((VT != MVT::i32 && VT != MVT::i64) || !C ||
!(C.isPowerOf2() || (-C).isPowerOf2()))
return selectBinaryOp(I, ISD::SDIV);
unsigned Lg2 = C.countTrailingZeros();
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(I->getOperand(0));
if (cast<BinaryOperator>(I)->isExact()) {
unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Src0IsKill, Lg2);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
int64_t Pow2MinusOne = (1ULL << Lg2) - 1;
unsigned AddReg = emitAdd_ri_(VT, Src0Reg, /*IsKill=*/false, Pow2MinusOne);
if (!AddReg)
return false;
// (Src0 < 0) ? Pow2 - 1 : 0;
if (!emitICmp_ri(VT, Src0Reg, /*IsKill=*/false, 0))
return false;
unsigned SelectOpc;
const TargetRegisterClass *RC;
if (VT == MVT::i64) {
SelectOpc = AArch64::CSELXr;
RC = &AArch64::GPR64RegClass;
} else {
SelectOpc = AArch64::CSELWr;
RC = &AArch64::GPR32RegClass;
}
unsigned SelectReg =
fastEmitInst_rri(SelectOpc, RC, AddReg, /*IsKill=*/true, Src0Reg,
Src0IsKill, AArch64CC::LT);
if (!SelectReg)
return false;
// Divide by Pow2 --> ashr. If we're dividing by a negative value we must also
// negate the result.
unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
unsigned ResultReg;
if (C.isNegative())
ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, /*IsKill=*/true,
SelectReg, /*IsKill=*/true, AArch64_AM::ASR, Lg2);
else
ResultReg = emitASR_ri(VT, VT, SelectReg, /*IsKill=*/true, Lg2);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
/// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We
/// have to duplicate it for AArch64, because otherwise we would fail during the
/// sign-extend emission.
std::pair<unsigned, bool> AArch64FastISel::getRegForGEPIndex(const Value *Idx) {
unsigned IdxN = getRegForValue(Idx);
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return std::pair<unsigned, bool>(0, false);
bool IdxNIsKill = hasTrivialKill(Idx);
// If the index is smaller or larger than intptr_t, truncate or extend it.
MVT PtrVT = TLI.getPointerTy();
EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
if (IdxVT.bitsLT(PtrVT)) {
IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*IsZExt=*/false);
IdxNIsKill = true;
} else if (IdxVT.bitsGT(PtrVT))
llvm_unreachable("AArch64 FastISel doesn't support types larger than i64");
return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
}
/// This is mostly a copy of the existing FastISel GEP code, but we have to
/// duplicate it for AArch64, because otherwise we would bail out even for
/// simple cases. This is because the standard fastEmit functions don't cover
/// MUL at all and ADD is lowered very inefficientily.
bool AArch64FastISel::selectGetElementPtr(const Instruction *I) {
unsigned N = getRegForValue(I->getOperand(0));
if (!N)
return false;
bool NIsKill = hasTrivialKill(I->getOperand(0));
// Keep a running tab of the total offset to coalesce multiple N = N + Offset
// into a single N = N + TotalOffset.
uint64_t TotalOffs = 0;
Type *Ty = I->getOperand(0)->getType();
MVT VT = TLI.getPointerTy();
for (auto OI = std::next(I->op_begin()), E = I->op_end(); OI != E; ++OI) {
const Value *Idx = *OI;
if (auto *StTy = dyn_cast<StructType>(Ty)) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
// N = N + Offset
if (Field)
TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
Ty = StTy->getElementType(Field);
} else {
Ty = cast<SequentialType>(Ty)->getElementType();
// If this is a constant subscript, handle it quickly.
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->isZero())
continue;
// N = N + Offset
TotalOffs +=
DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
continue;
}
if (TotalOffs) {
N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
if (!N)
return false;
NIsKill = true;
TotalOffs = 0;
}
// N = N + Idx * ElementSize;
uint64_t ElementSize = DL.getTypeAllocSize(Ty);
std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
unsigned IdxN = Pair.first;
bool IdxNIsKill = Pair.second;
if (!IdxN)
return false;
if (ElementSize != 1) {
unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize);
if (!C)
return false;
IdxN = emitMul_rr(VT, IdxN, IdxNIsKill, C, true);
if (!IdxN)
return false;
IdxNIsKill = true;
}
N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
if (!N)
return false;
}
}
if (TotalOffs) {
N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
if (!N)
return false;
}
updateValueMap(I, N);
return true;
}
bool AArch64FastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
default:
break;
case Instruction::Add:
case Instruction::Sub:
return selectAddSub(I);
case Instruction::Mul:
return selectMul(I);
case Instruction::SDiv:
return selectSDiv(I);
case Instruction::SRem:
if (!selectBinaryOp(I, ISD::SREM))
return selectRem(I, ISD::SREM);
return true;
case Instruction::URem:
if (!selectBinaryOp(I, ISD::UREM))
return selectRem(I, ISD::UREM);
return true;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
return selectShift(I);
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
return selectLogicalOp(I);
case Instruction::Br:
return selectBranch(I);
case Instruction::IndirectBr:
return selectIndirectBr(I);
case Instruction::BitCast:
if (!FastISel::selectBitCast(I))
return selectBitCast(I);
return true;
case Instruction::FPToSI:
if (!selectCast(I, ISD::FP_TO_SINT))
return selectFPToInt(I, /*Signed=*/true);
return true;
case Instruction::FPToUI:
return selectFPToInt(I, /*Signed=*/false);
case Instruction::ZExt:
case Instruction::SExt:
return selectIntExt(I);
case Instruction::Trunc:
if (!selectCast(I, ISD::TRUNCATE))
return selectTrunc(I);
return true;
case Instruction::FPExt:
return selectFPExt(I);
case Instruction::FPTrunc:
return selectFPTrunc(I);
case Instruction::SIToFP:
if (!selectCast(I, ISD::SINT_TO_FP))
return selectIntToFP(I, /*Signed=*/true);
return true;
case Instruction::UIToFP:
return selectIntToFP(I, /*Signed=*/false);
case Instruction::Load:
return selectLoad(I);
case Instruction::Store:
return selectStore(I);
case Instruction::FCmp:
case Instruction::ICmp:
return selectCmp(I);
case Instruction::Select:
return selectSelect(I);
case Instruction::Ret:
return selectRet(I);
case Instruction::FRem:
return selectFRem(I);
case Instruction::GetElementPtr:
return selectGetElementPtr(I);
}
// fall-back to target-independent instruction selection.
return selectOperator(I, I->getOpcode());
// Silence warnings.
(void)&CC_AArch64_DarwinPCS_VarArg;
}
namespace llvm {
llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) {
return new AArch64FastISel(FuncInfo, LibInfo);
}
}