mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
24473120a2
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want. What was done: 1. Changed semantics of index inside the getCaseValue method: getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous. 2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned. 3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment. 4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst. 4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor. 4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor. Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149481 91177308-0d34-0410-b5e6-96231b3b80d8
885 lines
34 KiB
C++
885 lines
34 KiB
C++
//===-- Local.cpp - Functions to perform local transformations ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions perform various local transformations to the
|
|
// program.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/GlobalAlias.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Metadata.h"
|
|
#include "llvm/Operator.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Analysis/DIBuilder.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/ProfileInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/IRBuilder.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/ValueHandle.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local constant propagation.
|
|
//
|
|
|
|
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
|
|
/// constant value, convert it into an unconditional branch to the constant
|
|
/// destination. This is a nontrivial operation because the successors of this
|
|
/// basic block must have their PHI nodes updated.
|
|
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
|
|
/// conditions and indirectbr addresses this might make dead if
|
|
/// DeleteDeadConditions is true.
|
|
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
|
|
TerminatorInst *T = BB->getTerminator();
|
|
IRBuilder<> Builder(T);
|
|
|
|
// Branch - See if we are conditional jumping on constant
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
|
|
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
|
|
BasicBlock *Dest1 = BI->getSuccessor(0);
|
|
BasicBlock *Dest2 = BI->getSuccessor(1);
|
|
|
|
if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
|
|
// Are we branching on constant?
|
|
// YES. Change to unconditional branch...
|
|
BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
|
|
BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
|
|
|
|
//cerr << "Function: " << T->getParent()->getParent()
|
|
// << "\nRemoving branch from " << T->getParent()
|
|
// << "\n\nTo: " << OldDest << endl;
|
|
|
|
// Let the basic block know that we are letting go of it. Based on this,
|
|
// it will adjust it's PHI nodes.
|
|
OldDest->removePredecessor(BB);
|
|
|
|
// Replace the conditional branch with an unconditional one.
|
|
Builder.CreateBr(Destination);
|
|
BI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (Dest2 == Dest1) { // Conditional branch to same location?
|
|
// This branch matches something like this:
|
|
// br bool %cond, label %Dest, label %Dest
|
|
// and changes it into: br label %Dest
|
|
|
|
// Let the basic block know that we are letting go of one copy of it.
|
|
assert(BI->getParent() && "Terminator not inserted in block!");
|
|
Dest1->removePredecessor(BI->getParent());
|
|
|
|
// Replace the conditional branch with an unconditional one.
|
|
Builder.CreateBr(Dest1);
|
|
Value *Cond = BI->getCondition();
|
|
BI->eraseFromParent();
|
|
if (DeleteDeadConditions)
|
|
RecursivelyDeleteTriviallyDeadInstructions(Cond);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
|
|
// If we are switching on a constant, we can convert the switch into a
|
|
// single branch instruction!
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
|
|
BasicBlock *TheOnlyDest = SI->getDefaultDest(); // The default dest
|
|
BasicBlock *DefaultDest = TheOnlyDest;
|
|
|
|
// Figure out which case it goes to.
|
|
for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i) {
|
|
// Found case matching a constant operand?
|
|
if (SI->getCaseValue(i) == CI) {
|
|
TheOnlyDest = SI->getCaseSuccessor(i);
|
|
break;
|
|
}
|
|
|
|
// Check to see if this branch is going to the same place as the default
|
|
// dest. If so, eliminate it as an explicit compare.
|
|
if (SI->getCaseSuccessor(i) == DefaultDest) {
|
|
// Remove this entry.
|
|
DefaultDest->removePredecessor(SI->getParent());
|
|
SI->removeCase(i);
|
|
--i; --e; // Don't skip an entry...
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check to see if the switch only branches to one destination.
|
|
// We do this by reseting "TheOnlyDest" to null when we find two non-equal
|
|
// destinations.
|
|
if (SI->getCaseSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
|
|
}
|
|
|
|
if (CI && !TheOnlyDest) {
|
|
// Branching on a constant, but not any of the cases, go to the default
|
|
// successor.
|
|
TheOnlyDest = SI->getDefaultDest();
|
|
}
|
|
|
|
// If we found a single destination that we can fold the switch into, do so
|
|
// now.
|
|
if (TheOnlyDest) {
|
|
// Insert the new branch.
|
|
Builder.CreateBr(TheOnlyDest);
|
|
BasicBlock *BB = SI->getParent();
|
|
|
|
// Remove entries from PHI nodes which we no longer branch to...
|
|
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
|
|
// Found case matching a constant operand?
|
|
BasicBlock *Succ = SI->getSuccessor(i);
|
|
if (Succ == TheOnlyDest)
|
|
TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
|
|
else
|
|
Succ->removePredecessor(BB);
|
|
}
|
|
|
|
// Delete the old switch.
|
|
Value *Cond = SI->getCondition();
|
|
SI->eraseFromParent();
|
|
if (DeleteDeadConditions)
|
|
RecursivelyDeleteTriviallyDeadInstructions(Cond);
|
|
return true;
|
|
}
|
|
|
|
if (SI->getNumCases() == 1) {
|
|
// Otherwise, we can fold this switch into a conditional branch
|
|
// instruction if it has only one non-default destination.
|
|
Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
|
|
SI->getCaseValue(0), "cond");
|
|
|
|
// Insert the new branch.
|
|
Builder.CreateCondBr(Cond, SI->getCaseSuccessor(0), SI->getDefaultDest());
|
|
|
|
// Delete the old switch.
|
|
SI->eraseFromParent();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
|
|
// indirectbr blockaddress(@F, @BB) -> br label @BB
|
|
if (BlockAddress *BA =
|
|
dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
|
|
BasicBlock *TheOnlyDest = BA->getBasicBlock();
|
|
// Insert the new branch.
|
|
Builder.CreateBr(TheOnlyDest);
|
|
|
|
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
|
|
if (IBI->getDestination(i) == TheOnlyDest)
|
|
TheOnlyDest = 0;
|
|
else
|
|
IBI->getDestination(i)->removePredecessor(IBI->getParent());
|
|
}
|
|
Value *Address = IBI->getAddress();
|
|
IBI->eraseFromParent();
|
|
if (DeleteDeadConditions)
|
|
RecursivelyDeleteTriviallyDeadInstructions(Address);
|
|
|
|
// If we didn't find our destination in the IBI successor list, then we
|
|
// have undefined behavior. Replace the unconditional branch with an
|
|
// 'unreachable' instruction.
|
|
if (TheOnlyDest) {
|
|
BB->getTerminator()->eraseFromParent();
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local dead code elimination.
|
|
//
|
|
|
|
/// isInstructionTriviallyDead - Return true if the result produced by the
|
|
/// instruction is not used, and the instruction has no side effects.
|
|
///
|
|
bool llvm::isInstructionTriviallyDead(Instruction *I) {
|
|
if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
|
|
|
|
// We don't want the landingpad instruction removed by anything this general.
|
|
if (isa<LandingPadInst>(I))
|
|
return false;
|
|
|
|
// We don't want debug info removed by anything this general, unless
|
|
// debug info is empty.
|
|
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
|
|
if (DDI->getAddress())
|
|
return false;
|
|
return true;
|
|
}
|
|
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
|
|
if (DVI->getValue())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
if (!I->mayHaveSideEffects()) return true;
|
|
|
|
// Special case intrinsics that "may have side effects" but can be deleted
|
|
// when dead.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
// Safe to delete llvm.stacksave if dead.
|
|
if (II->getIntrinsicID() == Intrinsic::stacksave)
|
|
return true;
|
|
|
|
// Lifetime intrinsics are dead when their right-hand is undef.
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
II->getIntrinsicID() == Intrinsic::lifetime_end)
|
|
return isa<UndefValue>(II->getArgOperand(1));
|
|
}
|
|
|
|
if (extractMallocCall(I)) return true;
|
|
|
|
if (CallInst *CI = isFreeCall(I))
|
|
if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
|
|
return C->isNullValue() || isa<UndefValue>(C);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
|
|
/// trivially dead instruction, delete it. If that makes any of its operands
|
|
/// trivially dead, delete them too, recursively. Return true if any
|
|
/// instructions were deleted.
|
|
bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
|
|
return false;
|
|
|
|
SmallVector<Instruction*, 16> DeadInsts;
|
|
DeadInsts.push_back(I);
|
|
|
|
do {
|
|
I = DeadInsts.pop_back_val();
|
|
|
|
// Null out all of the instruction's operands to see if any operand becomes
|
|
// dead as we go.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
Value *OpV = I->getOperand(i);
|
|
I->setOperand(i, 0);
|
|
|
|
if (!OpV->use_empty()) continue;
|
|
|
|
// If the operand is an instruction that became dead as we nulled out the
|
|
// operand, and if it is 'trivially' dead, delete it in a future loop
|
|
// iteration.
|
|
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
|
|
if (isInstructionTriviallyDead(OpI))
|
|
DeadInsts.push_back(OpI);
|
|
}
|
|
|
|
I->eraseFromParent();
|
|
} while (!DeadInsts.empty());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// areAllUsesEqual - Check whether the uses of a value are all the same.
|
|
/// This is similar to Instruction::hasOneUse() except this will also return
|
|
/// true when there are no uses or multiple uses that all refer to the same
|
|
/// value.
|
|
static bool areAllUsesEqual(Instruction *I) {
|
|
Value::use_iterator UI = I->use_begin();
|
|
Value::use_iterator UE = I->use_end();
|
|
if (UI == UE)
|
|
return true;
|
|
|
|
User *TheUse = *UI;
|
|
for (++UI; UI != UE; ++UI) {
|
|
if (*UI != TheUse)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
|
|
/// dead PHI node, due to being a def-use chain of single-use nodes that
|
|
/// either forms a cycle or is terminated by a trivially dead instruction,
|
|
/// delete it. If that makes any of its operands trivially dead, delete them
|
|
/// too, recursively. Return true if a change was made.
|
|
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
|
|
SmallPtrSet<Instruction*, 4> Visited;
|
|
for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
|
|
I = cast<Instruction>(*I->use_begin())) {
|
|
if (I->use_empty())
|
|
return RecursivelyDeleteTriviallyDeadInstructions(I);
|
|
|
|
// If we find an instruction more than once, we're on a cycle that
|
|
// won't prove fruitful.
|
|
if (!Visited.insert(I)) {
|
|
// Break the cycle and delete the instruction and its operands.
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
(void)RecursivelyDeleteTriviallyDeadInstructions(I);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
|
|
/// simplify any instructions in it and recursively delete dead instructions.
|
|
///
|
|
/// This returns true if it changed the code, note that it can delete
|
|
/// instructions in other blocks as well in this block.
|
|
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
|
|
bool MadeChange = false;
|
|
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
|
|
Instruction *Inst = BI++;
|
|
|
|
if (Value *V = SimplifyInstruction(Inst, TD)) {
|
|
WeakVH BIHandle(BI);
|
|
ReplaceAndSimplifyAllUses(Inst, V, TD);
|
|
MadeChange = true;
|
|
if (BIHandle != BI)
|
|
BI = BB->begin();
|
|
continue;
|
|
}
|
|
|
|
if (Inst->isTerminator())
|
|
break;
|
|
|
|
WeakVH BIHandle(BI);
|
|
MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
|
|
if (BIHandle != BI)
|
|
BI = BB->begin();
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Control Flow Graph Restructuring.
|
|
//
|
|
|
|
|
|
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
|
|
/// method is called when we're about to delete Pred as a predecessor of BB. If
|
|
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
|
|
///
|
|
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
|
|
/// nodes that collapse into identity values. For example, if we have:
|
|
/// x = phi(1, 0, 0, 0)
|
|
/// y = and x, z
|
|
///
|
|
/// .. and delete the predecessor corresponding to the '1', this will attempt to
|
|
/// recursively fold the and to 0.
|
|
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
|
|
TargetData *TD) {
|
|
// This only adjusts blocks with PHI nodes.
|
|
if (!isa<PHINode>(BB->begin()))
|
|
return;
|
|
|
|
// Remove the entries for Pred from the PHI nodes in BB, but do not simplify
|
|
// them down. This will leave us with single entry phi nodes and other phis
|
|
// that can be removed.
|
|
BB->removePredecessor(Pred, true);
|
|
|
|
WeakVH PhiIt = &BB->front();
|
|
while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
|
|
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
|
|
|
|
Value *PNV = SimplifyInstruction(PN, TD);
|
|
if (PNV == 0) continue;
|
|
|
|
// If we're able to simplify the phi to a single value, substitute the new
|
|
// value into all of its uses.
|
|
assert(PNV != PN && "SimplifyInstruction broken!");
|
|
|
|
Value *OldPhiIt = PhiIt;
|
|
ReplaceAndSimplifyAllUses(PN, PNV, TD);
|
|
|
|
// If recursive simplification ended up deleting the next PHI node we would
|
|
// iterate to, then our iterator is invalid, restart scanning from the top
|
|
// of the block.
|
|
if (PhiIt != OldPhiIt) PhiIt = &BB->front();
|
|
}
|
|
}
|
|
|
|
|
|
/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
|
|
/// predecessor is known to have one successor (DestBB!). Eliminate the edge
|
|
/// between them, moving the instructions in the predecessor into DestBB and
|
|
/// deleting the predecessor block.
|
|
///
|
|
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
|
|
// If BB has single-entry PHI nodes, fold them.
|
|
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
|
|
Value *NewVal = PN->getIncomingValue(0);
|
|
// Replace self referencing PHI with undef, it must be dead.
|
|
if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
|
|
PN->replaceAllUsesWith(NewVal);
|
|
PN->eraseFromParent();
|
|
}
|
|
|
|
BasicBlock *PredBB = DestBB->getSinglePredecessor();
|
|
assert(PredBB && "Block doesn't have a single predecessor!");
|
|
|
|
// Zap anything that took the address of DestBB. Not doing this will give the
|
|
// address an invalid value.
|
|
if (DestBB->hasAddressTaken()) {
|
|
BlockAddress *BA = BlockAddress::get(DestBB);
|
|
Constant *Replacement =
|
|
ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
|
|
BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
|
|
BA->getType()));
|
|
BA->destroyConstant();
|
|
}
|
|
|
|
// Anything that branched to PredBB now branches to DestBB.
|
|
PredBB->replaceAllUsesWith(DestBB);
|
|
|
|
// Splice all the instructions from PredBB to DestBB.
|
|
PredBB->getTerminator()->eraseFromParent();
|
|
DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
|
|
|
|
if (P) {
|
|
DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
|
|
if (DT) {
|
|
BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
|
|
DT->changeImmediateDominator(DestBB, PredBBIDom);
|
|
DT->eraseNode(PredBB);
|
|
}
|
|
ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
|
|
if (PI) {
|
|
PI->replaceAllUses(PredBB, DestBB);
|
|
PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
|
|
}
|
|
}
|
|
// Nuke BB.
|
|
PredBB->eraseFromParent();
|
|
}
|
|
|
|
/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
|
|
/// almost-empty BB ending in an unconditional branch to Succ, into succ.
|
|
///
|
|
/// Assumption: Succ is the single successor for BB.
|
|
///
|
|
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
|
|
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
|
|
|
|
DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
|
|
<< Succ->getName() << "\n");
|
|
// Shortcut, if there is only a single predecessor it must be BB and merging
|
|
// is always safe
|
|
if (Succ->getSinglePredecessor()) return true;
|
|
|
|
// Make a list of the predecessors of BB
|
|
SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
|
|
|
|
// Look at all the phi nodes in Succ, to see if they present a conflict when
|
|
// merging these blocks
|
|
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
// If the incoming value from BB is again a PHINode in
|
|
// BB which has the same incoming value for *PI as PN does, we can
|
|
// merge the phi nodes and then the blocks can still be merged
|
|
PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
|
|
if (BBPN && BBPN->getParent() == BB) {
|
|
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
|
|
BasicBlock *IBB = PN->getIncomingBlock(PI);
|
|
if (BBPreds.count(IBB) &&
|
|
BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
|
|
DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
|
|
<< Succ->getName() << " is conflicting with "
|
|
<< BBPN->getName() << " with regard to common predecessor "
|
|
<< IBB->getName() << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
Value* Val = PN->getIncomingValueForBlock(BB);
|
|
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
|
|
// See if the incoming value for the common predecessor is equal to the
|
|
// one for BB, in which case this phi node will not prevent the merging
|
|
// of the block.
|
|
BasicBlock *IBB = PN->getIncomingBlock(PI);
|
|
if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
|
|
DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
|
|
<< Succ->getName() << " is conflicting with regard to common "
|
|
<< "predecessor " << IBB->getName() << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
|
|
/// unconditional branch, and contains no instructions other than PHI nodes,
|
|
/// potential side-effect free intrinsics and the branch. If possible,
|
|
/// eliminate BB by rewriting all the predecessors to branch to the successor
|
|
/// block and return true. If we can't transform, return false.
|
|
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
|
|
assert(BB != &BB->getParent()->getEntryBlock() &&
|
|
"TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
|
|
|
|
// We can't eliminate infinite loops.
|
|
BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
|
|
if (BB == Succ) return false;
|
|
|
|
// Check to see if merging these blocks would cause conflicts for any of the
|
|
// phi nodes in BB or Succ. If not, we can safely merge.
|
|
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
|
|
|
|
// Check for cases where Succ has multiple predecessors and a PHI node in BB
|
|
// has uses which will not disappear when the PHI nodes are merged. It is
|
|
// possible to handle such cases, but difficult: it requires checking whether
|
|
// BB dominates Succ, which is non-trivial to calculate in the case where
|
|
// Succ has multiple predecessors. Also, it requires checking whether
|
|
// constructing the necessary self-referential PHI node doesn't intoduce any
|
|
// conflicts; this isn't too difficult, but the previous code for doing this
|
|
// was incorrect.
|
|
//
|
|
// Note that if this check finds a live use, BB dominates Succ, so BB is
|
|
// something like a loop pre-header (or rarely, a part of an irreducible CFG);
|
|
// folding the branch isn't profitable in that case anyway.
|
|
if (!Succ->getSinglePredecessor()) {
|
|
BasicBlock::iterator BBI = BB->begin();
|
|
while (isa<PHINode>(*BBI)) {
|
|
for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
|
|
UI != E; ++UI) {
|
|
if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
|
|
if (PN->getIncomingBlock(UI) != BB)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
++BBI;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
|
|
|
|
if (isa<PHINode>(Succ->begin())) {
|
|
// If there is more than one pred of succ, and there are PHI nodes in
|
|
// the successor, then we need to add incoming edges for the PHI nodes
|
|
//
|
|
const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
|
|
|
|
// Loop over all of the PHI nodes in the successor of BB.
|
|
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
Value *OldVal = PN->removeIncomingValue(BB, false);
|
|
assert(OldVal && "No entry in PHI for Pred BB!");
|
|
|
|
// If this incoming value is one of the PHI nodes in BB, the new entries
|
|
// in the PHI node are the entries from the old PHI.
|
|
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
|
|
PHINode *OldValPN = cast<PHINode>(OldVal);
|
|
for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
|
|
// Note that, since we are merging phi nodes and BB and Succ might
|
|
// have common predecessors, we could end up with a phi node with
|
|
// identical incoming branches. This will be cleaned up later (and
|
|
// will trigger asserts if we try to clean it up now, without also
|
|
// simplifying the corresponding conditional branch).
|
|
PN->addIncoming(OldValPN->getIncomingValue(i),
|
|
OldValPN->getIncomingBlock(i));
|
|
} else {
|
|
// Add an incoming value for each of the new incoming values.
|
|
for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
|
|
PN->addIncoming(OldVal, BBPreds[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Succ->getSinglePredecessor()) {
|
|
// BB is the only predecessor of Succ, so Succ will end up with exactly
|
|
// the same predecessors BB had.
|
|
|
|
// Copy over any phi, debug or lifetime instruction.
|
|
BB->getTerminator()->eraseFromParent();
|
|
Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
|
|
} else {
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
|
// We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
|
|
assert(PN->use_empty() && "There shouldn't be any uses here!");
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Everything that jumped to BB now goes to Succ.
|
|
BB->replaceAllUsesWith(Succ);
|
|
if (!Succ->hasName()) Succ->takeName(BB);
|
|
BB->eraseFromParent(); // Delete the old basic block.
|
|
return true;
|
|
}
|
|
|
|
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
|
|
/// nodes in this block. This doesn't try to be clever about PHI nodes
|
|
/// which differ only in the order of the incoming values, but instcombine
|
|
/// orders them so it usually won't matter.
|
|
///
|
|
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
|
|
bool Changed = false;
|
|
|
|
// This implementation doesn't currently consider undef operands
|
|
// specially. Theoretically, two phis which are identical except for
|
|
// one having an undef where the other doesn't could be collapsed.
|
|
|
|
// Map from PHI hash values to PHI nodes. If multiple PHIs have
|
|
// the same hash value, the element is the first PHI in the
|
|
// linked list in CollisionMap.
|
|
DenseMap<uintptr_t, PHINode *> HashMap;
|
|
|
|
// Maintain linked lists of PHI nodes with common hash values.
|
|
DenseMap<PHINode *, PHINode *> CollisionMap;
|
|
|
|
// Examine each PHI.
|
|
for (BasicBlock::iterator I = BB->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I++); ) {
|
|
// Compute a hash value on the operands. Instcombine will likely have sorted
|
|
// them, which helps expose duplicates, but we have to check all the
|
|
// operands to be safe in case instcombine hasn't run.
|
|
uintptr_t Hash = 0;
|
|
// This hash algorithm is quite weak as hash functions go, but it seems
|
|
// to do a good enough job for this particular purpose, and is very quick.
|
|
for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
|
|
Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
|
|
Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
|
|
}
|
|
for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
|
|
I != E; ++I) {
|
|
Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
|
|
Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
|
|
}
|
|
// Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
|
|
Hash >>= 1;
|
|
// If we've never seen this hash value before, it's a unique PHI.
|
|
std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
|
|
HashMap.insert(std::make_pair(Hash, PN));
|
|
if (Pair.second) continue;
|
|
// Otherwise it's either a duplicate or a hash collision.
|
|
for (PHINode *OtherPN = Pair.first->second; ; ) {
|
|
if (OtherPN->isIdenticalTo(PN)) {
|
|
// A duplicate. Replace this PHI with its duplicate.
|
|
PN->replaceAllUsesWith(OtherPN);
|
|
PN->eraseFromParent();
|
|
Changed = true;
|
|
break;
|
|
}
|
|
// A non-duplicate hash collision.
|
|
DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
|
|
if (I == CollisionMap.end()) {
|
|
// Set this PHI to be the head of the linked list of colliding PHIs.
|
|
PHINode *Old = Pair.first->second;
|
|
Pair.first->second = PN;
|
|
CollisionMap[PN] = Old;
|
|
break;
|
|
}
|
|
// Procede to the next PHI in the list.
|
|
OtherPN = I->second;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// enforceKnownAlignment - If the specified pointer points to an object that
|
|
/// we control, modify the object's alignment to PrefAlign. This isn't
|
|
/// often possible though. If alignment is important, a more reliable approach
|
|
/// is to simply align all global variables and allocation instructions to
|
|
/// their preferred alignment from the beginning.
|
|
///
|
|
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
|
|
unsigned PrefAlign, const TargetData *TD) {
|
|
V = V->stripPointerCasts();
|
|
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
// If the preferred alignment is greater than the natural stack alignment
|
|
// then don't round up. This avoids dynamic stack realignment.
|
|
if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
|
|
return Align;
|
|
// If there is a requested alignment and if this is an alloca, round up.
|
|
if (AI->getAlignment() >= PrefAlign)
|
|
return AI->getAlignment();
|
|
AI->setAlignment(PrefAlign);
|
|
return PrefAlign;
|
|
}
|
|
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
// If there is a large requested alignment and we can, bump up the alignment
|
|
// of the global.
|
|
if (GV->isDeclaration()) return Align;
|
|
// If the memory we set aside for the global may not be the memory used by
|
|
// the final program then it is impossible for us to reliably enforce the
|
|
// preferred alignment.
|
|
if (GV->isWeakForLinker()) return Align;
|
|
|
|
if (GV->getAlignment() >= PrefAlign)
|
|
return GV->getAlignment();
|
|
// We can only increase the alignment of the global if it has no alignment
|
|
// specified or if it is not assigned a section. If it is assigned a
|
|
// section, the global could be densely packed with other objects in the
|
|
// section, increasing the alignment could cause padding issues.
|
|
if (!GV->hasSection() || GV->getAlignment() == 0)
|
|
GV->setAlignment(PrefAlign);
|
|
return GV->getAlignment();
|
|
}
|
|
|
|
return Align;
|
|
}
|
|
|
|
/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
|
|
/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
|
|
/// and it is more than the alignment of the ultimate object, see if we can
|
|
/// increase the alignment of the ultimate object, making this check succeed.
|
|
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
|
|
const TargetData *TD) {
|
|
assert(V->getType()->isPointerTy() &&
|
|
"getOrEnforceKnownAlignment expects a pointer!");
|
|
unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
|
|
APInt Mask = APInt::getAllOnesValue(BitWidth);
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
|
|
unsigned TrailZ = KnownZero.countTrailingOnes();
|
|
|
|
// Avoid trouble with rediculously large TrailZ values, such as
|
|
// those computed from a null pointer.
|
|
TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
|
|
|
|
unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
|
|
|
|
// LLVM doesn't support alignments larger than this currently.
|
|
Align = std::min(Align, +Value::MaximumAlignment);
|
|
|
|
if (PrefAlign > Align)
|
|
Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
|
|
|
|
// We don't need to make any adjustment.
|
|
return Align;
|
|
}
|
|
|
|
///===---------------------------------------------------------------------===//
|
|
/// Dbg Intrinsic utilities
|
|
///
|
|
|
|
/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
|
|
/// that has an associated llvm.dbg.decl intrinsic.
|
|
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
|
|
StoreInst *SI, DIBuilder &Builder) {
|
|
DIVariable DIVar(DDI->getVariable());
|
|
if (!DIVar.Verify())
|
|
return false;
|
|
|
|
Instruction *DbgVal = NULL;
|
|
// If an argument is zero extended then use argument directly. The ZExt
|
|
// may be zapped by an optimization pass in future.
|
|
Argument *ExtendedArg = NULL;
|
|
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
|
|
ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
|
|
if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
|
|
ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
|
|
if (ExtendedArg)
|
|
DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
|
|
else
|
|
DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
|
|
|
|
// Propagate any debug metadata from the store onto the dbg.value.
|
|
DebugLoc SIDL = SI->getDebugLoc();
|
|
if (!SIDL.isUnknown())
|
|
DbgVal->setDebugLoc(SIDL);
|
|
// Otherwise propagate debug metadata from dbg.declare.
|
|
else
|
|
DbgVal->setDebugLoc(DDI->getDebugLoc());
|
|
return true;
|
|
}
|
|
|
|
/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
|
|
/// that has an associated llvm.dbg.decl intrinsic.
|
|
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
|
|
LoadInst *LI, DIBuilder &Builder) {
|
|
DIVariable DIVar(DDI->getVariable());
|
|
if (!DIVar.Verify())
|
|
return false;
|
|
|
|
Instruction *DbgVal =
|
|
Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
|
|
DIVar, LI);
|
|
|
|
// Propagate any debug metadata from the store onto the dbg.value.
|
|
DebugLoc LIDL = LI->getDebugLoc();
|
|
if (!LIDL.isUnknown())
|
|
DbgVal->setDebugLoc(LIDL);
|
|
// Otherwise propagate debug metadata from dbg.declare.
|
|
else
|
|
DbgVal->setDebugLoc(DDI->getDebugLoc());
|
|
return true;
|
|
}
|
|
|
|
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
|
|
/// of llvm.dbg.value intrinsics.
|
|
bool llvm::LowerDbgDeclare(Function &F) {
|
|
DIBuilder DIB(*F.getParent());
|
|
SmallVector<DbgDeclareInst *, 4> Dbgs;
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
|
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
|
|
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
|
|
Dbgs.push_back(DDI);
|
|
}
|
|
if (Dbgs.empty())
|
|
return false;
|
|
|
|
for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
|
|
E = Dbgs.end(); I != E; ++I) {
|
|
DbgDeclareInst *DDI = *I;
|
|
if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
|
|
bool RemoveDDI = true;
|
|
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
|
|
UI != E; ++UI)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
|
|
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
|
|
else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
|
|
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
|
|
else
|
|
RemoveDDI = false;
|
|
if (RemoveDDI)
|
|
DDI->eraseFromParent();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
|
|
/// alloca 'V', if any.
|
|
DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
|
|
if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
|
|
for (Value::use_iterator UI = DebugNode->use_begin(),
|
|
E = DebugNode->use_end(); UI != E; ++UI)
|
|
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
|
|
return DDI;
|
|
|
|
return 0;
|
|
}
|