mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
c63ca0a71b
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91736 91177308-0d34-0410-b5e6-96231b3b80d8
299 lines
11 KiB
C++
299 lines
11 KiB
C++
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BasicBlock class for the VMCore library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/LeakDetector.h"
|
|
#include "SymbolTableListTraitsImpl.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
ValueSymbolTable *BasicBlock::getValueSymbolTable() {
|
|
if (Function *F = getParent())
|
|
return &F->getValueSymbolTable();
|
|
return 0;
|
|
}
|
|
|
|
LLVMContext &BasicBlock::getContext() const {
|
|
return getType()->getContext();
|
|
}
|
|
|
|
// Explicit instantiation of SymbolTableListTraits since some of the methods
|
|
// are not in the public header file...
|
|
template class llvm::SymbolTableListTraits<Instruction, BasicBlock>;
|
|
|
|
|
|
BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
|
|
BasicBlock *InsertBefore)
|
|
: Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(0) {
|
|
|
|
// Make sure that we get added to a function
|
|
LeakDetector::addGarbageObject(this);
|
|
|
|
if (InsertBefore) {
|
|
assert(NewParent &&
|
|
"Cannot insert block before another block with no function!");
|
|
NewParent->getBasicBlockList().insert(InsertBefore, this);
|
|
} else if (NewParent) {
|
|
NewParent->getBasicBlockList().push_back(this);
|
|
}
|
|
|
|
setName(Name);
|
|
}
|
|
|
|
|
|
BasicBlock::~BasicBlock() {
|
|
// If the address of the block is taken and it is being deleted (e.g. because
|
|
// it is dead), this means that there is either a dangling constant expr
|
|
// hanging off the block, or an undefined use of the block (source code
|
|
// expecting the address of a label to keep the block alive even though there
|
|
// is no indirect branch). Handle these cases by zapping the BlockAddress
|
|
// nodes. There are no other possible uses at this point.
|
|
if (hasAddressTaken()) {
|
|
assert(!use_empty() && "There should be at least one blockaddress!");
|
|
Constant *Replacement =
|
|
ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
|
|
while (!use_empty()) {
|
|
BlockAddress *BA = cast<BlockAddress>(use_back());
|
|
BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
|
|
BA->getType()));
|
|
BA->destroyConstant();
|
|
}
|
|
}
|
|
|
|
assert(getParent() == 0 && "BasicBlock still linked into the program!");
|
|
dropAllReferences();
|
|
InstList.clear();
|
|
}
|
|
|
|
void BasicBlock::setParent(Function *parent) {
|
|
if (getParent())
|
|
LeakDetector::addGarbageObject(this);
|
|
|
|
// Set Parent=parent, updating instruction symtab entries as appropriate.
|
|
InstList.setSymTabObject(&Parent, parent);
|
|
|
|
if (getParent())
|
|
LeakDetector::removeGarbageObject(this);
|
|
}
|
|
|
|
void BasicBlock::removeFromParent() {
|
|
getParent()->getBasicBlockList().remove(this);
|
|
}
|
|
|
|
void BasicBlock::eraseFromParent() {
|
|
getParent()->getBasicBlockList().erase(this);
|
|
}
|
|
|
|
/// moveBefore - Unlink this basic block from its current function and
|
|
/// insert it into the function that MovePos lives in, right before MovePos.
|
|
void BasicBlock::moveBefore(BasicBlock *MovePos) {
|
|
MovePos->getParent()->getBasicBlockList().splice(MovePos,
|
|
getParent()->getBasicBlockList(), this);
|
|
}
|
|
|
|
/// moveAfter - Unlink this basic block from its current function and
|
|
/// insert it into the function that MovePos lives in, right after MovePos.
|
|
void BasicBlock::moveAfter(BasicBlock *MovePos) {
|
|
Function::iterator I = MovePos;
|
|
MovePos->getParent()->getBasicBlockList().splice(++I,
|
|
getParent()->getBasicBlockList(), this);
|
|
}
|
|
|
|
|
|
TerminatorInst *BasicBlock::getTerminator() {
|
|
if (InstList.empty()) return 0;
|
|
return dyn_cast<TerminatorInst>(&InstList.back());
|
|
}
|
|
|
|
const TerminatorInst *BasicBlock::getTerminator() const {
|
|
if (InstList.empty()) return 0;
|
|
return dyn_cast<TerminatorInst>(&InstList.back());
|
|
}
|
|
|
|
Instruction* BasicBlock::getFirstNonPHI() {
|
|
BasicBlock::iterator i = begin();
|
|
// All valid basic blocks should have a terminator,
|
|
// which is not a PHINode. If we have an invalid basic
|
|
// block we'll get an assertion failure when dereferencing
|
|
// a past-the-end iterator.
|
|
while (isa<PHINode>(i)) ++i;
|
|
return &*i;
|
|
}
|
|
|
|
void BasicBlock::dropAllReferences() {
|
|
for(iterator I = begin(), E = end(); I != E; ++I)
|
|
I->dropAllReferences();
|
|
}
|
|
|
|
/// getSinglePredecessor - If this basic block has a single predecessor block,
|
|
/// return the block, otherwise return a null pointer.
|
|
BasicBlock *BasicBlock::getSinglePredecessor() {
|
|
pred_iterator PI = pred_begin(this), E = pred_end(this);
|
|
if (PI == E) return 0; // No preds.
|
|
BasicBlock *ThePred = *PI;
|
|
++PI;
|
|
return (PI == E) ? ThePred : 0 /*multiple preds*/;
|
|
}
|
|
|
|
/// getUniquePredecessor - If this basic block has a unique predecessor block,
|
|
/// return the block, otherwise return a null pointer.
|
|
/// Note that unique predecessor doesn't mean single edge, there can be
|
|
/// multiple edges from the unique predecessor to this block (for example
|
|
/// a switch statement with multiple cases having the same destination).
|
|
BasicBlock *BasicBlock::getUniquePredecessor() {
|
|
pred_iterator PI = pred_begin(this), E = pred_end(this);
|
|
if (PI == E) return 0; // No preds.
|
|
BasicBlock *PredBB = *PI;
|
|
++PI;
|
|
for (;PI != E; ++PI) {
|
|
if (*PI != PredBB)
|
|
return 0;
|
|
// The same predecessor appears multiple times in the predecessor list.
|
|
// This is OK.
|
|
}
|
|
return PredBB;
|
|
}
|
|
|
|
/// removePredecessor - This method is used to notify a BasicBlock that the
|
|
/// specified Predecessor of the block is no longer able to reach it. This is
|
|
/// actually not used to update the Predecessor list, but is actually used to
|
|
/// update the PHI nodes that reside in the block. Note that this should be
|
|
/// called while the predecessor still refers to this block.
|
|
///
|
|
void BasicBlock::removePredecessor(BasicBlock *Pred,
|
|
bool DontDeleteUselessPHIs) {
|
|
assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
|
|
find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
|
|
"removePredecessor: BB is not a predecessor!");
|
|
|
|
if (InstList.empty()) return;
|
|
PHINode *APN = dyn_cast<PHINode>(&front());
|
|
if (!APN) return; // Quick exit.
|
|
|
|
// If there are exactly two predecessors, then we want to nuke the PHI nodes
|
|
// altogether. However, we cannot do this, if this in this case:
|
|
//
|
|
// Loop:
|
|
// %x = phi [X, Loop]
|
|
// %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
|
|
// br Loop ;; %x2 does not dominate all uses
|
|
//
|
|
// This is because the PHI node input is actually taken from the predecessor
|
|
// basic block. The only case this can happen is with a self loop, so we
|
|
// check for this case explicitly now.
|
|
//
|
|
unsigned max_idx = APN->getNumIncomingValues();
|
|
assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
|
|
if (max_idx == 2) {
|
|
BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
|
|
|
|
// Disable PHI elimination!
|
|
if (this == Other) max_idx = 3;
|
|
}
|
|
|
|
// <= Two predecessors BEFORE I remove one?
|
|
if (max_idx <= 2 && !DontDeleteUselessPHIs) {
|
|
// Yup, loop through and nuke the PHI nodes
|
|
while (PHINode *PN = dyn_cast<PHINode>(&front())) {
|
|
// Remove the predecessor first.
|
|
PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
|
|
|
|
// If the PHI _HAD_ two uses, replace PHI node with its now *single* value
|
|
if (max_idx == 2) {
|
|
if (PN->getOperand(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getOperand(0));
|
|
else
|
|
// We are left with an infinite loop with no entries: kill the PHI.
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
getInstList().pop_front(); // Remove the PHI node
|
|
}
|
|
|
|
// If the PHI node already only had one entry, it got deleted by
|
|
// removeIncomingValue.
|
|
}
|
|
} else {
|
|
// Okay, now we know that we need to remove predecessor #pred_idx from all
|
|
// PHI nodes. Iterate over each PHI node fixing them up
|
|
PHINode *PN;
|
|
for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
|
|
++II;
|
|
PN->removeIncomingValue(Pred, false);
|
|
// If all incoming values to the Phi are the same, we can replace the Phi
|
|
// with that value.
|
|
Value* PNV = 0;
|
|
if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) {
|
|
PN->replaceAllUsesWith(PNV);
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// splitBasicBlock - This splits a basic block into two at the specified
|
|
/// instruction. Note that all instructions BEFORE the specified iterator stay
|
|
/// as part of the original basic block, an unconditional branch is added to
|
|
/// the new BB, and the rest of the instructions in the BB are moved to the new
|
|
/// BB, including the old terminator. This invalidates the iterator.
|
|
///
|
|
/// Note that this only works on well formed basic blocks (must have a
|
|
/// terminator), and 'I' must not be the end of instruction list (which would
|
|
/// cause a degenerate basic block to be formed, having a terminator inside of
|
|
/// the basic block).
|
|
///
|
|
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
|
|
assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
|
|
assert(I != InstList.end() &&
|
|
"Trying to get me to create degenerate basic block!");
|
|
|
|
BasicBlock *InsertBefore = llvm::next(Function::iterator(this))
|
|
.getNodePtrUnchecked();
|
|
BasicBlock *New = BasicBlock::Create(getContext(), BBName,
|
|
getParent(), InsertBefore);
|
|
|
|
// Move all of the specified instructions from the original basic block into
|
|
// the new basic block.
|
|
New->getInstList().splice(New->end(), this->getInstList(), I, end());
|
|
|
|
// Add a branch instruction to the newly formed basic block.
|
|
BranchInst::Create(New, this);
|
|
|
|
// Now we must loop through all of the successors of the New block (which
|
|
// _were_ the successors of the 'this' block), and update any PHI nodes in
|
|
// successors. If there were PHI nodes in the successors, then they need to
|
|
// know that incoming branches will be from New, not from Old.
|
|
//
|
|
for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
|
|
// Loop over any phi nodes in the basic block, updating the BB field of
|
|
// incoming values...
|
|
BasicBlock *Successor = *I;
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator II = Successor->begin();
|
|
(PN = dyn_cast<PHINode>(II)); ++II) {
|
|
int IDX = PN->getBasicBlockIndex(this);
|
|
while (IDX != -1) {
|
|
PN->setIncomingBlock((unsigned)IDX, New);
|
|
IDX = PN->getBasicBlockIndex(this);
|
|
}
|
|
}
|
|
}
|
|
return New;
|
|
}
|
|
|