mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-14 00:32:55 +00:00
e408e25132
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5872 91177308-0d34-0410-b5e6-96231b3b80d8
255 lines
10 KiB
C++
255 lines
10 KiB
C++
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
|
|
//
|
|
// Peephole optimize the CFG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
// PropagatePredecessors - This gets "Succ" ready to have the predecessors from
|
|
// "BB". This is a little tricky because "Succ" has PHI nodes, which need to
|
|
// have extra slots added to them to hold the merge edges from BB's
|
|
// predecessors, and BB itself might have had PHI nodes in it. This function
|
|
// returns true (failure) if the Succ BB already has a predecessor that is a
|
|
// predecessor of BB and incoming PHI arguments would not be discernable.
|
|
//
|
|
// Assumption: Succ is the single successor for BB.
|
|
//
|
|
static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
|
|
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
|
|
|
|
if (!isa<PHINode>(Succ->front()))
|
|
return false; // We can make the transformation, no problem.
|
|
|
|
// If there is more than one predecessor, and there are PHI nodes in
|
|
// the successor, then we need to add incoming edges for the PHI nodes
|
|
//
|
|
const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
|
|
|
|
// Check to see if one of the predecessors of BB is already a predecessor of
|
|
// Succ. If so, we cannot do the transformation if there are any PHI nodes
|
|
// with incompatible values coming in from the two edges!
|
|
//
|
|
for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
|
|
if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
|
|
// Loop over all of the PHI nodes checking to see if there are
|
|
// incompatible values coming in.
|
|
for (BasicBlock::iterator I = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
// Loop up the entries in the PHI node for BB and for *PI if the values
|
|
// coming in are non-equal, we cannot merge these two blocks (instead we
|
|
// should insert a conditional move or something, then merge the
|
|
// blocks).
|
|
int Idx1 = PN->getBasicBlockIndex(BB);
|
|
int Idx2 = PN->getBasicBlockIndex(*PI);
|
|
assert(Idx1 != -1 && Idx2 != -1 &&
|
|
"Didn't have entries for my predecessors??");
|
|
if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
|
|
return true; // Values are not equal...
|
|
}
|
|
}
|
|
|
|
// Loop over all of the PHI nodes in the successor BB
|
|
for (BasicBlock::iterator I = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
Value *OldVal = PN->removeIncomingValue(BB, false);
|
|
assert(OldVal && "No entry in PHI for Pred BB!");
|
|
|
|
// If this incoming value is one of the PHI nodes in BB...
|
|
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
|
|
PHINode *OldValPN = cast<PHINode>(OldVal);
|
|
for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
|
|
End = BBPreds.end(); PredI != End; ++PredI) {
|
|
PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
|
|
}
|
|
} else {
|
|
for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
|
|
End = BBPreds.end(); PredI != End; ++PredI) {
|
|
// Add an incoming value for each of the new incoming values...
|
|
PN->addIncoming(OldVal, *PredI);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// SimplifyCFG - This function is used to do simplification of a CFG. For
|
|
// example, it adjusts branches to branches to eliminate the extra hop, it
|
|
// eliminates unreachable basic blocks, and does other "peephole" optimization
|
|
// of the CFG. It returns true if a modification was made.
|
|
//
|
|
// WARNING: The entry node of a function may not be simplified.
|
|
//
|
|
bool SimplifyCFG(BasicBlock *BB) {
|
|
Function *M = BB->getParent();
|
|
|
|
assert(BB && BB->getParent() && "Block not embedded in function!");
|
|
assert(BB->getTerminator() && "Degenerate basic block encountered!");
|
|
assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
|
|
|
|
// Remove basic blocks that have no predecessors... which are unreachable.
|
|
if (pred_begin(BB) == pred_end(BB) &&
|
|
!BB->hasConstantReferences()) {
|
|
//cerr << "Removing BB: \n" << BB;
|
|
|
|
// Loop through all of our successors and make sure they know that one
|
|
// of their predecessors is going away.
|
|
for_each(succ_begin(BB), succ_end(BB),
|
|
std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
|
|
|
|
while (!BB->empty()) {
|
|
Instruction &I = BB->back();
|
|
// If this instruction is used, replace uses with an arbitrary
|
|
// constant value. Because control flow can't get here, we don't care
|
|
// what we replace the value with. Note that since this block is
|
|
// unreachable, and all values contained within it must dominate their
|
|
// uses, that all uses will eventually be removed.
|
|
if (!I.use_empty())
|
|
// Make all users of this instruction reference the constant instead
|
|
I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
|
|
|
|
// Remove the instruction from the basic block
|
|
BB->getInstList().pop_back();
|
|
}
|
|
M->getBasicBlockList().erase(BB);
|
|
return true;
|
|
}
|
|
|
|
// Check to see if this block has no non-phi instructions and only a single
|
|
// successor. If so, replace references to this basic block with references
|
|
// to the successor.
|
|
succ_iterator SI(succ_begin(BB));
|
|
if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
|
|
|
|
BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
|
|
while (isa<PHINode>(*BBI)) ++BBI;
|
|
|
|
if (BBI->isTerminator()) { // Terminator is the only non-phi instruction!
|
|
BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
|
|
|
|
if (Succ != BB) { // Arg, don't hurt infinite loops!
|
|
// If our successor has PHI nodes, then we need to update them to
|
|
// include entries for BB's predecessors, not for BB itself.
|
|
// Be careful though, if this transformation fails (returns true) then
|
|
// we cannot do this transformation!
|
|
//
|
|
if (!PropagatePredecessorsForPHIs(BB, Succ)) {
|
|
//cerr << "Killing Trivial BB: \n" << BB;
|
|
std::string OldName = BB->getName();
|
|
|
|
std::vector<BasicBlock*>
|
|
OldSuccPreds(pred_begin(Succ), pred_end(Succ));
|
|
|
|
// Move all PHI nodes in BB to Succ if they are alive, otherwise
|
|
// delete them.
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
|
|
if (PN->use_empty())
|
|
BB->getInstList().erase(BB->begin()); // Nuke instruction...
|
|
else {
|
|
// The instruction is alive, so this means that Succ must have
|
|
// *ONLY* had BB as a predecessor, and the PHI node is still valid
|
|
// now. Simply move it into Succ, because we know that BB
|
|
// strictly dominated Succ.
|
|
BB->getInstList().remove(BB->begin());
|
|
Succ->getInstList().push_front(PN);
|
|
|
|
// We need to add new entries for the PHI node to account for
|
|
// predecessors of Succ that the PHI node does not take into
|
|
// account. At this point, since we know that BB dominated succ,
|
|
// this means that we should any newly added incoming edges should
|
|
// use the PHI node as the value for these edges, because they are
|
|
// loop back edges.
|
|
|
|
for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
|
|
if (OldSuccPreds[i] != BB)
|
|
PN->addIncoming(PN, OldSuccPreds[i]);
|
|
}
|
|
|
|
// Everything that jumped to BB now goes to Succ...
|
|
BB->replaceAllUsesWith(Succ);
|
|
|
|
// Delete the old basic block...
|
|
M->getBasicBlockList().erase(BB);
|
|
|
|
if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can
|
|
Succ->setName(OldName);
|
|
|
|
//cerr << "Function after removal: \n" << M;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge basic blocks into their predecessor if there is only one distinct
|
|
// pred, and if there is only one distinct successor of the predecessor, and
|
|
// if there are no PHI nodes.
|
|
//
|
|
if (!BB->hasConstantReferences()) {
|
|
pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
|
|
BasicBlock *OnlyPred = *PI++;
|
|
for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
|
|
if (*PI != OnlyPred) {
|
|
OnlyPred = 0; // There are multiple different predecessors...
|
|
break;
|
|
}
|
|
|
|
BasicBlock *OnlySucc = 0;
|
|
if (OnlyPred && OnlyPred != BB) { // Don't break self loops
|
|
// Check to see if there is only one distinct successor...
|
|
succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
|
|
OnlySucc = BB;
|
|
for (; SI != SE; ++SI)
|
|
if (*SI != OnlySucc) {
|
|
OnlySucc = 0; // There are multiple distinct successors!
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (OnlySucc) {
|
|
//cerr << "Merging: " << BB << "into: " << OnlyPred;
|
|
TerminatorInst *Term = OnlyPred->getTerminator();
|
|
|
|
// Resolve any PHI nodes at the start of the block. They are all
|
|
// guaranteed to have exactly one entry if they exist, unless there are
|
|
// multiple duplicate (but guaranteed to be equal) entries for the
|
|
// incoming edges. This occurs when there are multiple edges from
|
|
// OnlyPred to OnlySucc.
|
|
//
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
BB->getInstList().pop_front(); // Delete the phi node...
|
|
}
|
|
|
|
// Delete the unconditional branch from the predecessor...
|
|
OnlyPred->getInstList().pop_back();
|
|
|
|
// Move all definitions in the succecessor to the predecessor...
|
|
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
|
|
|
|
// Make all PHI nodes that refered to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(OnlyPred);
|
|
|
|
std::string OldName = BB->getName();
|
|
|
|
// Erase basic block from the function...
|
|
M->getBasicBlockList().erase(BB);
|
|
|
|
// Inherit predecessors name if it exists...
|
|
if (!OldName.empty() && !OnlyPred->hasName())
|
|
OnlyPred->setName(OldName);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|